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Abstract
Age estimation in forensic odontology is mainly based on the development of permanent teeth. To register the developmental 
status of an examined tooth, staging techniques were developed. However, due to inappropriate calibration, uncertainties 
during stage allocation, and lack of experience, non-uniformity in stage allocation exists between expert observers. As a 
consequence, related age estimation results are inconsistent. An automated staging technique applicable to all tooth types 
can overcome this drawback.
This study aimed to establish an integrated automated technique to stage the development of all mandibular tooth types and 
to compare their staging performances.
Calibrated observers staged FDI teeth 31, 33, 34, 37 and 38 according to a ten-stage modified Demirjian staging technique. 
According to a standardised bounding box around each examined tooth, the retrospectively collected panoramic radiographs 
were cropped using Photoshop CC 2021® software (Adobe®, version 23.0). A gold standard set of 1639 radiographs were 
selected  (n31 = 259,  n33 = 282,  n34 = 308,  n37 = 390,  n38 = 400) and input into a convolutional neural network (CNN) trained for 
optimal staging accuracy. The performance evaluation of the network was conducted in a five-fold cross-validation scheme. In 
each fold, the entire dataset was split into a training and a test set in a non-overlapping fashion between the folds (i.e., 80% and 
20% of the dataset, respectively). Staging performances were calculated per tooth type and overall (accuracy, mean absolute 
difference, linearly weighted Cohen’s Kappa and intra-class correlation coefficient). Overall, these metrics equalled 0.53, 
0.71, 0.71, and 0.89, respectively. All staging performance indices were best for 37 and worst for 31. The highest number of 
misclassified stages were associated to adjacent stages. Most misclassifications were observed in all available stages of 31.
Our findings suggest that the developmental status of mandibular molars can be taken into account in an automated approach 
for age estimation, while taking incisors into account may hinder age estimation.
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Introduction

Estimating the age of young people lacking proof of birth and/
or identity may be necessary to elucidate legal questions regard-
ing the reliability of the stated age when applying for interna-
tional protection or punishment in criminal offences. Based on 
the Children’s Rights, unaccompanied minor refugees benefit 
from specific provisions when granted international protection 
[1–3]. In children and young adults, age estimates are estab-
lished based on their developmental status. One reliable indi-
cator of that developmental status is tooth development [4–7].

Expert human observers assess the extent of tooth devel-
opment on medical images (e.g., panoramic radiographs) and 
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correlate it with age. Thereto, several tooth development staging 
techniques have been established. They cover the entire tooth 
developmental track, from bud formation until closure of the 
root apices [8–13]. Although each consecutive developmental 
stage is well-defined in the various tooth development staging 
techniques, manual stage allocation remains prone to inter- and 
intra-observer variability [14]. The variability in stage alloca-
tion is due to (1) inappropriate calibration of investigators, caus-
ing difficulties in achieving compliance [15]; (2) uncertainties 
about stage allocation caused by ambiguous stage definitions, or 
an excessive or deficient number of stages [16, 17]; and (3) the 
observer’s degree of experience [18]. Non-uniformity in stage 
allocation between expert observers and during repeated stage 
allocations leads to inconsistent age estimation outcomes. After 
all, dental age estimation methods were developed based on 
data obtained by applying a chosen tooth development staging 
technique on all subjects in a sample from a specific popula-
tion. Those data represent a technique-specific reference for that 
given population and are used to compile population-specific 
age estimation atlases, tables, or models.

Due to the variability in stage allocation, the provided age 
estimations could be considered inadequate proof of the sub-
ject's age. In a legal context, this may lead to repeated court 
trials or appeals [19]. An automated stage allocation tech-
nique can be part of an automated age estimation method, 
providing uniformity in stage allocation and, consequently, 
undisputable age estimation outcomes.

Initially, such a technique was reported for third molar 
development [14]. A convolutional neural network (CNN) 
was used, and further improvements were made by altering 
the CNN architecture and the approach to abstracting relevant 
information from panoramic radiographs (i.e., partial and com-
plete tooth segmentation) [14, 20]. Such a neural network is a 
learning system that can be trained to perform machine learning 
tasks, such as classification and regression. This ability to learn 
has allowed neural networks to be used in many fields, includ-
ing medical data analysis [21, 22]. A subcategory of neural 
networks, the CNN, is particularly suitable for learning from 
image data, as popularly demonstrated by Krizhevsky, Sutsk-
ever, and Hinton in 2012 [23]. A CNN architecture, namely 
AlexNet, was able to classify images into one of 1000 catego-
ries with an accuracy of 0.85, showing the capability of the 
CNNs for image-based tasks [21]. New CNN architectures have 
been designed and deployed in many image-based tasks since 
[24, 25]. The CNN uses multiple layers of kernel convolutions 
applied to the input image to progressively extract higher-level 
features. This feature extraction phase is then followed by a 
conventional neural network to utilise these features for the 
task at hand, i.e. classification or regression. The parameters 
of these kernels and the neural network weights are tuned dur-
ing training, allowing the network to learn and look for the 
relevant features in the images, thus maximising performance. 
The CNNs naturally lend themselves to use in dental staging 

problems from panoramic radiographs, as in its origin, this is 
exactly an image-based classification task [20, 26, 27].

Later on, automated staging techniques were also 
reported for other tooth types [26, 28]. After all, combin-
ing tooth developmental information of permanent teeth 
and third molars improves the accuracy of the age estimates 
in children and young adults [29]. Despite reported overall 
accuracies ranging between 0.70 [26, 30] and 0.94 [31] for 
automated staging of all permanent teeth (including third 
molars), few previous studies reported tooth type-specific 
results, which may mask a tooth type-induced bias of the 
staging results. Moreover, none of the previous studies 
selected their reference population to obtain an evenly spread 
number of cases per stage per tooth type. Consequently, 
over- or underrepresentation of certain stages caused large 
accuracy discrepancies between stages [28].

Reflecting on possible differences in staging performance 
between tooth types allows determining whether automated 
staging can be an asset in automated age estimation, i.e. 
whether the staging results should be taken into account by 
the network to ameliorate the age estimation outcomes. Thus, 
the current study aims were (1) to select a reference population 
stratified by dental developmental stage per tooth type in the 
lower left quadrant; (2) to establish an integrated automated 
technique to stage the development of those teeth on pano-
ramic radiographs using artificial intelligence (CNN); (3) to 
compare the staging performances of the different tooth types.

Materials and methods

Radiograph collection

Radiographs were selected from an available set of 4000 
panoramic radiographs from UZ Leuven patient files reg-
istered between 2000 and 2015. All radiographs were pro-
cessed anonymously, excluding all personal data except 
sex and age. Radiographs with the following criteria were 
excluded: (1) absence of the tooth type under study, (2) pres-
ence of orthodontic appliances, (3) inadequate image quality, 
(4) severe overlap with neighbouring tooth structures, and 
(5) abnormal position of the tooth under study.

The aim was to collect 400 radiographs per tooth type, 20 
per stage per sex, thus establishing a gold standard data set. 
Therefore, two investigators sorted independently through 
the available set of panoramic radiographs. A third senior 
investigator decided about disagreements between both first 
investigators. To represent all tooth types (incisors, canines, 
premolars, molars, and third molars), teeth with Fédération 
Dentaire Internationale (FDI) [32] numbers 31, 33, 34, 37, 
and 38 were examined. A modified Demirjian staging tech-
nique described by De Tobel et al. (2017) [14] (Tables 1 
and 2) was used to manually allocate a developmental stage.
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Radiograph post‑processing

The radiograph post-processing was conducted using Adobe 
Photoshop 2021® (version 23.0).

To obtain a uniform orientation of the examined teeth, the 
radiographs were rotated vertically by the long axis of the tooth 
(Fig. 1). For further processing, each tooth was extracted in a 
standardised bounding box, manually indicated on the rotated 

radiograph. The standard dimensions of the bounding box 
were defined per tooth type by measuring the maximum width 
and length that occurred in the entire set. Each tooth was then 
centred within its box and positioned with its occlusal plane 8 
pixels below the upper border of the bounding box. The images 
inside these standardized bounding boxes were then defined 
as input for the staging network. This procedure corresponded 
with the one described in detail by De Tobel et al. [14].

Table 1  Modified Demirjian descriptive allocation criteria for developmental stages in multi-rooted teeth

Stage Allocation Criteria

0 The developmental crypt is visible in the jawbone. Calcification has yet to begin
1 Start of calcification is visible at the superior level of the crypt in the form of small cones. The calcified points are not fused together
2 The calcified points are fused and present a regularly outlined occlusal surface
3 a Occlusal enamel formation is complete. Extension towards the cervical region is seen

b Dentinal deposition has started
c The pulp chamber can be seen as a radiolucent curved outline at the occlusal border

4 a Crown formation is completed down to the cemento-enamel junction
b Pulp chamber outline has a trapezoidal shape. The projections of the pulp horns create an umbrella like shape

5 a Beginning of root formation is seen as a spicule
b The root length is less than the crown height
c A calcified point or semi-lunar shape shows initial formation of the root bifurcation

6 a Roots are more defined with funnel shaped endings
b Root length is equal to or greater than the crown height

7 Walls of the root canal are parallel; the apical end is still partially open
8 Walls of the root canal are converging at the apex; the apical end is still partially open
9 a The apical end of the root canal is completely closed

b The periodontal ligament has a uniform width around the entire root

Table 2  Modified Demirjian descriptive allocation criteria for developmental stages in single-rooted teeth

Stage Allocation Criteria

0 The developmental crypt is visible in the jawbone. Calcification has yet to begin
1 Start of calcification is visible at the superior level of the crypt in the form of a cone
2 The calcified point forms one uniform cusp presenting a regularly outlined incisal edge
3 a Incisal enamel formation is complete. Extension towards the cervical region is seen

b Dentinal deposition has started
c The coronal outline of the pulp chamber can be seen as a radiolucent thick line in the center of the crown

4 a Crown formation is completed down to the cemento-enamel junction
b Pulp chamber outline has a thick rectilinear shape

5 a Beginning of root formation is seen as an extension of dentine and cementum deposit downwards from the cemento-enamel junction
b The root length is less than the crown height

6 Root length is equal to or greater than the crown height
7 Walls of the root canal are parallel; the apical end is still partially open
8 Walls of the root canal are converging at the apex; the apical end is still partially open
9 a The apical end of the root canal is completely closed

b The periodontal ligament has a uniform width around the entire root
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CNN Network

A deep, densely connected DenseNet201 CNN architecture 
consisting of four blocks of layers was used. The blocks 
consisted of 12, 24, 96 and 32 convolutional layers, respec-
tively. This architecture uses the residual connection concept 
in which every layer is connected to each subsequent layer 
within the same block (Fig. 2). This allows the neural net-
work to grow deeper without encountering the vanishing 
gradient problem [33, 34]. Within the network, the feature 
maps produced by each preceding layer are concatenated 
before being passed to the following layer. In an N-layer 
network, this concatenation produces N (N + 1)/2 connec-
tions, increasing the learning capability of the network 
without increasing the number of network parameters. The 
DenseNet201 architecture was initially trained on the Ima-
geNet dataset, which has 1000 outputs on the output layer, 
and was modified to accommodate the ten developmental 
stages used in this study.

The input images for all teeth were resized such that 
the height of the image was 224 pixels and zero-padded 
to preserve the aspect ratio of the bounding boxes. Data 
augmentation was not necessary, due to the already large 
inherent variation of the dataset, and because performance 
evaluation of the network was conducted in a five-fold 
cross-validation scheme, which is robust against overfit-
ting. In each fold, the entire dataset was split into train-
ing and test sets in a non-overlapping fashion between the 
folds (i.e., 80% and 20% of the dataset, respectively). Dur-
ing the training phase, the parameters of the network were 

iteratively calculated to maximize classification accuracy 
on the training set. Since dental staging involves a multi-
class classification problem, categorical cross-entropy was 
selected as the loss function during training. The training 
set for each fold was used for the stochastic training of the 
neural network, and the performance evaluation was car-
ried out on the test data from the same fold. Throughout 
the cross-validation, a stochastic gradient descent optimi-
sation algorithm with a learning rate of 0.001 and momen-
tum of 0.9 was utilized. The models for each fold were 
trained for 150 epochs with a batch size of 8 samples. The 
performance metrics were then aggregated across folds. 
These NN learning parameters were kept constant over the 
different tooth types, while the parameters of the network 
itself were optimized for each tooth type independently.

Evaluation of staging performance

Firstly, per tooth type, a confusion matrix of allocated stages 
between the human investigators (gold standard) and the 
automated software was constructed. Secondly, the clas-
sification performances were evaluated by measuring the 
Rank-N recognition rate (Rank-N RR), accuracy (expressed 
as Rank-1 RR), mean absolute difference (MAD, expressed 
in number of stages difference), linearly weighted Cohen’s 
kappa (LWK), and intra-class correlation coefficient (ICC). 
Note that LWK and ICC produce similar results if the rating 
means and variations are close. Therefore, a discrepancy 
between LWK and ICC indicates more disparity between 
the rating means and variations.

Fig. 1  Illustration of radiograph post-processing to extract tooth 33. 
a Original total radiograph. b The vertical axis of the tooth is manu-
ally drawn. c The radiograph is rotated so that tooth 33’s vertical axis 
corresponds with a true vertical. d A horizontal guideline is placed 

8 pixels cranially from the tooth’s incisal border. e The tooth is cap-
tured in a bounding box of a standard size. f The image is cropped to 
the bounding box. This image is used as input for the neural network
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Results

In the youngest stages of teeth 31, 33, 34, and 37, the tar-
get of 20 radiographs per stage, sex and tooth type was not 
met (Table 3). Thousand six hundred and thirty-nine teeth 
 (n31 = 259,  n33 = 282,  n34 = 308,  n37 = 390,  n38 = 400) were 
selected from the initial dataset to act as gold standard input 
for the neural network. Figure 3 illustrates an example of each 
stage, present in the gold standard set for each tooth type.

The confusion matrices (Fig. 4) showed that, in general, 
the highest number of misclassified stages were allocated 
to the adjacent stages. Note that the spread in the confusion 
matrix (i.e. a higher occurrence of large stage discrepan-
cies) was higher for teeth 31 and 38 than for the other teeth. 
Furthermore, the highest numbers of misclassifications were 
observed in all available stages of tooth 31, with proportions 
of perfect agreement ranging from 0.06 to 0.45. In contrast, 
tooth 37 showed the lowest numbers of misclassifications, 
with proportions of perfect agreement ranging from 0.43 to 
0.86. Furthermore, tooth 33 demonstrated a range of 0 to 
0.90, tooth 34 from 0 to 0.65, and tooth 38 from 0.40 to 0.70.

Similarly, all studied classification performance indices 
were worst for tooth 31 and best for tooth 37 (Tables 4 and 
5). Note that the performance indices were very similar 
for teeth 33, 34, and 38, except for the MAD. Compared 

to 33 and 34, the remarkably higher MAD for 38 is in 
line with the remarkably higher spread in its confusion 
matrix, which is also reflected in the discrepancy between 
the LWK and the ICC.

Discussion

Interpretation of results and comparison 
with literature

Three groups of automated staging performance were 
noted in the current study. Firstly, staging 31 proved to be 
the hardest for the network. Secondly, the network staged 
33, 34, and 38 with moderate performance. Finally, stag-
ing 37 proved to be the easiest for the network. These 
results are in line with Ong et al. (2024) who reported 
staging performances on an upward trend from mandibular 
left incisors, over canines, premolars, and molars (third 
molars were not studied) [35]. However, Table 6 demon-
strates contrasting results from other studies. In Aliyev 
et al. (2022) staging of 32 and 33 showed the worst per-
formance, with an accuracy around 0.60 [26], while in 
Han et al. (2022) staging of 31, 33, and 37 showed the 
worst performance, with an accuracy around 0.55 [28]. 

Fig. 2  An overview of the DenseNet-201 model architecture. This 
model consists of four dense blocks, each in turn made up N con-
volutional units of a 1 × 1 convolution followed by a 3 × 3 convolu-
tion. Within each block, all the units are densely inter-connected 
via residual connections, allowing the network to go deeper without 
facing vanishing gradients and to learn more complex features. The 
initial Conv + Pool is a 7 × 7 convolution and a 3 × 3 max-pooling, 

which acts as a preliminary filter. The transition units all consist of 
1 × 1 convolution, and 2 × 2 average pooling, which reduces the fea-
ture map size, retaining important patterns. The final fully connected 
layer projects high-dimensional feature maps onto 1000 dimension. 
All convolutions are followed by a ReLU activation, and the output 
layer uses a SoftMax activation function
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Table 3  Number of radiographs included per stage and per tooth type

Stage Tooth type

31 33 34 37 38

0 0 0 0 30 40
1 0 0 3 40 40
2 0 2 25 40 40
3 19 40 40 40 40
4 40 40 40 40 40
5 40 40 40 40 40
6 40 40 40 40 40
7 40 40 40 40 40
8 40 40 40 40 40
9 40 40 40 40 40
Total 259 282 308 390 400

Fig. 3  Visual representation of the various stages amongst the different tooth types, according to the modified Demirjian technique
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In contrast, accuracies around 0.55 corresponded with a 
moderate performance in the current study. Also in previ-
ous studies by our research group, the overall accuracy was 
lower than reported by other researchers (Table 7). This 
might be due to an over- or underrepresentation of teeth in 
certain stages and/or teeth of certain types (Table 6) [28, 
31]. Still, tooth 37 was reported among the best suitable 
for automated staging by Aliyev et al. (2022) [26], which 
was confirmed by our current findings. From a radiological 

and anatomical point of view, it makes sense that a molar 
would be easier to stage, for the network as well as for a 
human observer. Imaging artefacts mostly do not affect 
the molars, while they often hinder interpreting the central 
part of a panoramic radiograph. Moreover, the anatomy of 
molars is straightforward (as opposed to the anatomy of 
third molars) and they are at a distance from the mandibu-
lar canal (which might interfere with the image of the third 
molar) [36, 37]. Finally, when taking the step to estimate 

Fig. 4  Confusion matrices of allocated stages, showing the propor-
tions per tooth type. Gold standard stages (rows) and stages allocated 
by the DenseNet201 CNN (columns) are shown. Bold values indicate 

perfect agreement between automated and reference staging. Light 
grey cells show deficit stages per tooth type

Table 4  Mean Rank-N 
recognition rate of automated 
stage allocation per tooth type

Tooth The correct stage was ranked

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

31 0.30 0.23 0.17 0.14 0.09 0.04 0.02 0.00 0.00 0.00
33 0.55 0.26 0.13 0.04 0.02 0.00 0.00 0.00 0.00 0.00
34 0.51 0.27 0.15 0.03 0.02 0.01 0.00 0.00 0.00 0.00
37 0.71 0.25 0.03 0.01 0.00 0.00 0.00 0.00 0.00 0.00
38 0.57 0.17 0.10 0.07 0.04 0.01 0.00 0.01 0.01 0.01



 International Journal of Legal Medicine

age based on dental staging, Aliyev et al. (2022) found 
that tooth 37 contributed the most of all permanent left 
mandibular teeth, even in their study population between 
6 and 13 years old.

Motivation for the network

Several factors led to the choice of DenseNet over other 
network architectures. A first significant advantage of 
DenseNet’s dense connectivity lies in the feature map reuse, 
allowing for an increased number of connections with fewer 
parameters compared to conventional sequentially connected 
networks [25, 38]. This helps alleviate the vanishing gradi-
ent problem common in deep networks, allowing the usage 
of deeper models. Feeding previous feature maps to deeper 
layers reduces layer redundancy, ensuring that deeper layers 
still receive low-level feature map inputs. This is particularly 
applicable to staging (dental) development. For example, 
a fully formed crown indicates that part of the sample is 
above a certain stage. This feature, at the early layers of the 
model, allows the decision space to be limited, and also can 
be incorporated with other, more high level, features deeper 
into the network, helping increase decision performance. In 
conventional sequential networks, deeper layers may face 

insignificant differences in feature maps, diminishing pre-
dictive capability.

A second advantage of dense connections is that they 
enhance training effectiveness by increasing parameter effi-
ciency and improving gradient flow during training [25]. 
They act as a regularisation method, enhancing predictive 
performance and reducing overfitting. This is particularly 
beneficial in scenarios like dental staging on panoramic 
radiographs where data collection and manual operations 
are labour-intensive, and data may be scarce.

However, compared to conventional sequential 
approaches, the major limitation of DenseNet is the require-
ment of significantly more GPU memory. Due to the concat-
enation operations, larger feature map inputs are generated 
to each layer compared to, for example, the ResNet architec-
ture, which employs residual connectivity but without dense 
connections. DenseNet also requires a longer training time, 
because it uses much smaller convolutions. A large convolu-
tion is a more compact operation than several small convolu-
tions on a GPU, and including these small convolution layers 
significantly increases the training time. This introduces a 
trade-off between the predictive capability and the demand 
on hardware resources [39]. In the benefit of the outcome, 
we chose to prioritise the former over the latter.

Limitations and future prospects

A first limitation of the current study lies in its focus only 
on the staging step, which represents one of three steps 
needed in a fully automated age estimation approach: (1) 
identifying the regions of interest; (2) assessing the devel-
opmental status of the anatomical structures of interest; 
(3) inferring an age estimate based on the developmental 
status of the individual (combining the information from 
different anatomical structures). Beware that the last step 
– i.e. the age estimate – may be biased by each of the for-
mer steps. Therefore, to exclude any bias induced by the 
first step, we opted for a standardised manual cropping of 
the teeth. Other studies have focused on automating this 
first step, be it by selecting bounding boxes around the 
teeth, or by segmenting the teeth (Table 7) [20, 40–42].

Next, the second step can induce bias because of stag-
ing performance differences of different tooth types. The 

Table 5  Overall stage allocation performances in the different tooth 
types

Accuracy is expressed as the first rank recognition rate (proportion 
of correctly allocated stages); Mean Absolute Difference (MAD) 
indicates the difference between automated and manual staging 
(expressed in number of stages); Linearly weighted Cohen’s kappa 
coefficient (LWK) and intraclass correlation coefficient (ICC) quan-
tify the overall agreement between the gold standard and the auto-
mated stages. LWK takes the ordinal character of staging into 
account. So does ICC, while it is generally higher than LWK, but it is 
more severely affected by large stage discrepancies

Performance Index Tooth Type

31 33 34 37 38
Accuracy 0.30 0.55 0.51 0.71 0.57
MAD 1.20 0.58 0.62 0.31 0.86
LWK 0.42 0.75 0.76 0.90 0.74
ICC 0.58 0.90 0.91 0.97 0.84

Table 6  Literature overview of the accuracy of automated dental stage allocation per tooth type. The number of individuals per tooth type is dis-
played between brackets. However, Aliyev et al. (2022) did not report these numbers

Accuracy (Number of 
individuals)

Tooth Type

31 32 33 34 35 36 37 38

Aliyev et al. (2022) 0.70 0.58 0.63 0.74 0.72 0.79 0.77 -
Han et al. (2022) 0.53 (49) 0.67 (46) 0.57 (135) 0.71 (406) 0.80 (826) 0.67 (649) 0.55 (645) 0.97 (5126)
Current work 0.30 (259) - 0.55 (282) 0.51 (308) - - 0.71 (390) 0.57 (400)
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current study suggests that including the developmental 
information of all mandibular tooth types might hinder age 
estimation. This was in line with previous studies (Table 6). 
Although some previous studies integrated the staging step 
and the age estimation step, none of them unfortunately 
studied the effect that only including the developmental 
information of certain tooth types would have on age esti-
mation. Such a study would contribute to the explainability 
of the automated approach using neural networks, which is 
essential for an automated approach to be put into practice 
[27]. Furthermore, the age estimation performance of any 
automated approach needs to be compared with the cur-
rent gold standard, verifying its superiority (e.g. regarding 
speed, reliability, performance) over manual approaches.

A second limitation lies in the relatively small study 
sample, with the number of individuals per tooth type rang-
ing from 259 to 400. Table 7 demonstrates that a higher 
accuracy was obtained in studies with a larger study sample. 
Still, our sample was stratified by stage per tooth type, which 
allows drawing firmer conclusions about staging than studies 
with samples stratified by age or with non-stratified samples.

Conclusion

Our findings suggest that the developmental status of man-
dibular molars can be taken into account in an automated 
approach for age estimation, which would increase explain-
ability. Canines, premolars, and third molars can be taken 
into account with caution. Finally, incisors are the hardest 
to assess for an automated approach, and taking them into 
account may hinder age estimation.

Data Availability The dataset consisting of four thousand panoramic 
radiographs generated and analyzed during the current study is avail-
able through the corresponding author upon reasonable request.
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