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Abstract
Necrophagous flies, particularly blowflies, serve as vital indicators in forensic entomology and ecological studies, contributing to 
minimum postmortem interval estimations and environmental monitoring. The study investigates variations in the predominant 
cuticular hydrocarbons (CHCs) viz. n-C25, n-C27, n-C28, and n-C29 of empty puparia of Calliphora vicina Robineau-Desvoidy, 
1830, (Diptera: Calliphoridae) across diverse environmental conditions, including burial, above-ground and indoor settings, 
over 90 days. Notable trends include a significant decrease in n-C25 concentrations in buried and above-ground conditions 
over time, while n-C27 concentrations decline in buried and above-ground conditions but remain stable indoors. Burial condi-
tions show significant declines in n-C27 and n-C29 concentrations over time, indicating environmental influences. Conversely, 
above-ground conditions exhibit uniform declines in all hydrocarbons. Indoor conditions remain relatively stable, with weak 
correlations between weathering time and CHC concentrations. Additionally, machine learning techniques, specifically Extreme 
Gradient Boosting (XGBoost), are employed for age estimation of empty puparia, yielding accurate predictions across differ-
ent outdoor and indoor conditions. These findings highlight the subtle responses of CHC profiles to environmental stimuli, 
underscoring the importance of considering environmental factors in forensic entomology and ecological research. The study 
advances the understanding of insect remnant degradation processes and their forensic implications. Furthermore, integrating 
machine learning with entomological expertise offers standardized methodologies for age determination, enhancing the reli-
ability of entomological evidence in legal contexts and paving the way for future research and development.
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Introduction

Insect physiology encompasses a broad array of topics, ranging 
from the intricacies of metabolic pathways to the physiologi-
cal adaptations that enable survival in diverse environments. 
Among the myriad physiological processes studied within this 
discipline, the composition and temporal variation of cuticular 
hydrocarbons (CHCs) in insects have garnered significant atten-
tion [1–5]. CHCs, comprising a complex mixture of long-chain 
hydrocarbons and their derivatives, are vital components of the 
insect cuticle, playing pivotal roles in various ecological interac-
tions, such as communication, reproduction, and defense [5–7].

The Calliphoridae family, commonly known as blow 
flies, comprises a diverse group of insects with consider-
able ecological and forensic significance. Among these, Cal-
liphora vicina holds particular interest due to its widespread 
distribution and close association with carrion decomposi-
tion [8–10]. The development stages of C. vicina serve as 
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a critical temporal marker in forensic entomology, aiding 
in estimating minimum postmortem intervals (PMI min) in 
forensic investigations. As blow flies progress through their 
life cycle, transitioning from larval stages to puparia and 
ultimately emerging as adult flies, the puparia retain residual 
hydrocarbons on their cuticles. Understanding the tempo-
ral dynamics of CHCs in C. vicina puparia holds excellent 
potential for forensic applications.

In the late stages of decomposition, when the body has 
reached the skeletal stage, and no soft tissues or dead insects 
are available, empty puparia remain significant forensic evi-
dence [11, 12]. These puparia can be found in various loca-
tions, such as on the body, beneath the body, or buried in soil 
[13, 14]. This distribution occurs as insects migrate away 
from the original feeding source to find a suitable place for 
pupation. Therefore, empty puparia have a high potential to 
be discovered as evidence in forensic investigations [15]. 
Puparia play a vital role in forensic entomology and eco-
logical research by providing insights into decomposition 
timelines, species identification, and environmental pro-
cesses [12, 16–19]. Studies on insect stages other than empty 
puparia are abundant [18, 20–24]. Yet, research focusing 
specifically on empty puparia of blow flies, specifically in 
field conditions, as crucial evidence during advanced stages 
of decomposition is relatively limited in comparison [18, 25, 
26]. Addressing the limitations and knowledge gaps associ-
ated with their use requires interdisciplinary collaboration, 
methodological advancement, and a detailed understanding 
of insect biology and ecosystem dynamics. Overcoming 
these challenges will enhance the reliability and applicability 
of puparial analysis in both forensic science and ecological 
studies, contributing to advancements in understanding envi-
ronmental health and forensic investigation methodologies.

Given the interdisciplinary nature of CHCs in C. vicina 
puparia, this study seeks to integrate principles from insect 
physiology, ecology, and forensic entomology to shed light 
on the temporal variation of CHCs in a species of signifi-
cant ecological and forensic importance. Prior research has 
emphasized that more than half of the lipids from blow-
fly puparia comprise alkanes falling within the n-C25 to 
n-C30 range [27]. In this context, our investigation spe-
cifically focused on the analysis of CHCs in empty blowfly 
puparia, with a particular emphasis on five predominant 
CHCs - n-Pentacosane (n-C25), n-Hexacosane (n-C26), 
n-Heptacosane (n-C27), n-Octacosane (n-C28), and n-Non-
acosane (n-C29) [2, 4, 28]. These CHCs are chosen for their 
recognized stability and lower volatility when compared to 
smaller chain CHCs. This study employs the machine learn-
ing model XGBoost for age estimation of empty puparia 
based on hydrocarbon concentrations, connecting baseline 
research with the practical utilization of blowfly puparia in 
environmental forensics and ecological studies.

Materials and experiment design

The rearing process followed the protocol outlined in our pre-
vious study [4] 300 larvae were divided into three groups of 
100 larvae each. These larvae were placed in plastic cups with 
20 g of minced pork meat and transferred to plastic boxes 
filled with sawdust to aid pupation (refer to Fig S1 in Sup-
plementary file). Empty puparia were collected from these 
three groups and placed in three conditions: buried outdoors, 
placed above-ground outdoors, and stored indoors (Fig S2). 
For the outdoor buried condition, ten empty puparia were 
buried approximately 5 inches deep in nylon stockings at the 
Institute of Legal Medicine in Frankfurt am Main, Germany. 
The study was conducted from late October to early Febru-
ary, encompassing the winter season. Sampling occurred on 
days 1, 28, 56, and 90, with two empty puparia collected per 
time point per replication. Similarly, above-ground outdoor 
and indoor conditions each involved the same sampling pro-
tocol. Samples were prepared by submerging two puparial 
cases in n-hexane and methadone-d9 (used as internal stand-
ard), followed by ultrasonication, drying with nitrogen air, and 
GC-MS analysis with hexane reconstitution and blank runs for 
carryover prevention as detailed in our previous study [28].

CHC profile analysis

Chemical analysis was conducted using an Agilent GC-MS 
system comprising a 7693 GC and a 7890 B MSD, equipped 
with a split/splitless injector in splitless mode. Samples, 
injected with 1 µl at 250 °C, were separated on an Agilent 
VG-1 ms capillary column (30 m × 250 μm I.D. × 0.25 μm 
film thickness). The temperature program started with a 2-min-
ute hold at 100 °C, followed by ramps to 200 °C at 25 °C/min, 
260 °C at 3 °C/min, and 320 °C at 20 °C/min, holding for 
2 min. Helium flowed at 1.2 ml/min. The 5977 B MSD oper-
ated in positive ion mode (70 eV), using Selected Ion Moni-
toring (SIM) and scan modes (m/z 45–600) from 4 min into 
the run. Quantification of n-C25 to n-C29 compounds utilized 
SIM, with specific ions (352, 366, 380, 394, 408) and metha-
done-d9 (303) as internal standard. Calibration curves (0.4–50 
ng/µl) were constructed with Agilent Chemstation, yielding 
regression coefficients > 0.994 (S3). Regular calibrations and 
hexane blanks ensured analysis accuracy and reliability.

Statistical analysis

Statistical analysis encompassed One-way ANOVA followed 
by Dunnett’s test to identify significant variations in hydrocar-
bon means across different age groups of empty puparia. To 
track changes in CHC concentrations over time, normalization 
involved dividing initial day one concentrations by subsequent 
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time points and expressing results as percentages. A correla-
tion heatmap in IBM SPSS version 25 investigated relation-
ships between compound concentrations and weathering time 
alongside canonical discriminant analysis (CDA) and regres-
sion analysis. Following these analyses, for practical utility 
in age prediction of empty puparia, we employed machine 
learning technique, specifically eXtreme Gradient Boosting 
(XGBoost). Recognizing that simple regression analysis and 
CDA may not directly serve this purpose, we utilized XGBoost 
to develop a predictive model relevant to age determination.

Machine learning via XGBoost modeled the age predic-
tion of puparia using n-C25 to n-C29 concentrations after log 
transformation (because of heteroscedasticity in data) with 
the ‘xgboost’ library in R. 70% of the data was allocated for 

model training and the remaining 30% solely for testing the 
model’s generalizability to unseen data points as test data. A 
robust 5-fold cross-validation approach was applied, divid-
ing the dataset into five subsets to facilitate accurate per-
formance assessment. The training set was used for param-
eter tuning via 5-fold cross-validation, where we explored a 
grid of parameters including the number of boosting rounds 
(‘nrounds’), maximum tree depth (‘max_depth’), and learn-
ing rate (‘eta’). During tuning, regularization parameters 
such as ‘gamma’, ‘colsample_bytree,’ ‘min_child_weigh’t, 
and ‘subsample’ were fixed [29]. The selection of hyperpa-
rameters aimed at minimizing the Root Mean Squared Error 
(RMSE) and Mean Absolute Error (MAE). Below is the R 
script for this method.

# Load the required libraries

library(xgboost)

library(caret)

library(ggplot2)

# Read data (assuming it's in a data frame named 'data')

# Replace 'data.csv' with the actual path to the data file

data <- read.csv("data.csv")

# Separate the target variable (age) and the features (concentrations)

target <- data$Age

features <- data[, -1]

# Apply logp(1+x) transformation to the features

transformed_features <- log1p(features)

# Combine the transformed features and the target back into a data frame

transformed_data <- data.frame(Age = target, transformed_features)

# Convert data to DMatrix format (required for XGBoost)

data_matrix <- xgb.DMatrix(data = as.matrix(transformed_data[, -1]), label =

transformed_data$Age)
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# Split the data into training and testing sets (70% training, 30% testing)

set.seed(123)

splitIndex <- createDataPartition(transformed_data$Age, p = 0.7, list = FALSE)

train_data <- transformed_data[splitIndex, ]

test_data <- transformed_data[-splitIndex, ]

tuneGrid <- expand.grid(

.nrounds = c(50, 100, 150),            # Number of boosting rounds

.max_depth = c(3, 6, 9),               # Maximum depth of trees

.eta = c(0.01, 0.1, 0.3),              # Learning rate

.gamma = 0,                            # Regularization parameter

.colsample_bytree = 1,                 # Column subsampling ratio for each tree

.min_child_weight = 1,                 # Minimum sum of instance weight (Hessian) needed in a child

.subsample = 1                         # Subsample ratio of the training instance

)

# Perform cross-validation

xgb_cv <- train(

x = as.matrix(train_data[, -1]),

y = train_data$Age,

trControl = trainControl(method = "cv", number = 5),  # 5-fold cross-validation

tuneGrid = tuneGrid,                                # Use the specified tuning grid

method = "xgbTree",

metric = "RMSE"

)
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# Access the best parameters from cross-validation

best_params <- xgb_cv$bestTune

# Convert best_params to a list

best_params_list <- list(

objective = "reg:squarederror",  # Regression task

max_depth = best_params$max_depth,

nrounds = best_params$nrounds,

eta = best_params$eta,

gamma = best_params$gamma,

colsample_bytree = best_params$colsample_bytree,

min_child_weight = best_params$min_child_weight,

subsample = best_params$subsample

)

# Train the final XGBoost model using the best parameters

final_xgb_model <- xgb.train(params = best_params_list, data = data_matrix, nrounds =

best_params$nrounds)

# Make predictions on test data

test_matrix <- xgb.DMatrix(data = as.matrix(test_data[, -1]), label = test_data$Age)

test_predictions <- predict(final_xgb_model, test_matrix)

# Calculate RMSE and MAE for the test set

test_rmse <- sqrt(mean((test_data$Age - test_predictions)^2))

test_mae <- mean(abs(test_data$Age - test_predictions))
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# Calculate TSS and RSS for test data

test_actual_mean <- mean(test_data$Age)

test_tss <- sum((test_data$Age - test_actual_mean)^2)

test_rss <- sum((test_data$Age - test_predictions)^2)

# Calculate R-squared for test data

test_r_squared <- 1 - (test_rss / test_tss)

# Print the R-squared values

cat("R-squared value for training data:", round(train_r_squared, 4), "\n")

cat("R-squared value for test data:", round(test_r_squared, 4), "\n")

# Create a scatter plot for the training set

train_plot <- ggplot(data = train_data, aes(x = Age, y = train_predictions)) +

geom_point() +

geom_abline(intercept = 0, slope = 1, linetype = "dashed") +

labs(x = "Actual Age", y = "Predicted Age", title = "Training Set") +

annotate("text", x = min(train_data$Age), y = max(train_predictions), 

label = paste("RMSE:", round(train_rmse, 2), "\nMAE:", round(train_mae, 2)),

hjust = 0, vjust = 1) +  # Adjust hjust to 0 for left alignment

theme_minimal()
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# Display the training plot

print(train_plot)

# Create a scatter plot for the test set

test_plot <- ggplot(data = test_data, aes(x = Age, y = test_predictions)) +

geom_point() +

geom_abline(intercept = 0, slope = 1, linetype = "dashed") +

labs(x = "Actual Age", y = "Predicted Age", title = "Test Set") +

annotate("text", x = min(test_data$Age), y = max(test_predictions), 

label = paste("RMSE:", round(test_rmse, 2), "\nMAE:", round(test_mae, 2)),

hjust = 0, vjust = 1) +  # Adjust hjust to 0 for left alignment

theme_minimal()

# Display the test plot

print(test_plot)

Results

 The study explored variations in the CHCs of empty puparia 
of C. vicina across different natural environmental condi-
tions for 90 days. The chromatograms depicting these condi-
tions are presented in Fig. 1. Examination of hydrocarbons 
at different time intervals revealed a consistent highest con-
centration of n-C27 hydrocarbon in all three conditions, as 
detailed in Table 1. N-C26 is omitted in the analysis due to 
concentrations below 2%. Subsequent to n-C27, the concen-
trations of hydrocarbons followed a descending order: n-C29, 
n-C28, and n-C25. From the data logger readings, the highest 
temperature observed outdoors in buried conditions reached 
12.5 °C, while the lowest dropped to 2 °C.

Conversely, outdoor above-ground conditions experi-
enced a maximum of 10 °C and a minimum of -3 °C. 
Indoors, temperatures ranged from a maximum of 21.5 °C 
to a minimum of 16 °C (Fig S4). Key trends include a sig-
nificant decrease in n-C25 concentrations in buried and 
above-ground settings over time. n-C27 concentrations 
consistently decline in buried and above-ground condi-
tions while remaining stable indoors. n-C28 concentra-
tions decrease in above-ground and indoor settings. n-C29 
concentrations decrease in buried and above-ground con-
ditions, with a slight, statistically insignificant increase 
indoors.

In the buried condition, n-C27 and n-C29 exhibited a 
significant (p < 0.0001) declining trend over the observa-
tion period, indicating decreased concentrations from 
Day 1 to Month 3. However, no significant changes were 
observed in the concentrations of n-C25 (p = 0.419) and 
n-C28 (p = 0.223) during the same period. This suggests 
that the burial environment may selectively influence cer-
tain hydrocarbons in empty puparia of C. vicina, with n-C27 
and n-C29 showing a more pronounced response (Fig. 2A).

Conversely, all hydrocarbons, including n-C27, n-C28, 
n-C25, and n-C29, displayed a significant decline in the 
above-ground condition. Concentrations decreased notably 
from Day 1 to Month 3. This uniform decline suggests a 
consistent environmental influence on the hydrocarbon com-
position of puparia when placed above-ground (Fig. 2B).

In the indoor condition, no significant (p > 0.05) 
changes were observed in the concentrations of the ana-
lyzed hydrocarbons over time. This relative stability sug-
gests that the indoor environment has a less discernible 
impact on the hydrocarbon composition of empty puparia 
compared to the outdoor conditions (Fig. 2C). The dis-
tinct trends observed in different environmental settings 
highlight the nuanced responses of C. vicina puparia to 
varying conditions, providing valuable insights into the 
environmental factors shaping their hydrocarbon profiles.
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Fig. 1  Chromatograms repre-
senting the cuticular hydrocar-
bons (CHCs) extracted from 
empty puparia of Calliphora 
vicina in three conditions i.e. (I) 
Buried, (II) Above-ground and 
(III) Indoor showing peaks 1 to 
4 for n-C25, n-C27, n-C28, and 
n-C29, respectively
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The correlation analysis between weathering time 
and CHC concentrations in empty puparia buried in soil 
revealed intriguing relationships (Fig. 3A). Notably, a neg-
ligible correlation was observed between weathering time 
and n-C25 concentration (r= -0.0471), indicating minimal 
impact of time on this specific hydrocarbon. In contrast, a 
strong negative correlation was identified between weath-
ering time and n-C27 concentration (r= -0.8248), sug-
gesting a significant decrease in n-C27 levels over time. 
Similarly, a strong negative correlation (r= -0.7778) was 
found between weathering time and n-C29 concentration, 
indicating a pronounced reduction in n-C29 levels with 
increasing time. When exploring relationships between 
CHCs, weak to very weak correlations were identified. 
For instance, a weak positive correlation (r = 0.1425) 
was observed between n-C25 and n-C27 concentrations, 
while a moderate positive correlation (r = 0.6451) existed 
between n-C27 and n-C29 concentrations.

The correlation analysis between weathering time and 
CHC concentrations in empty puparia placed outdoors above 
ground yielded noteworthy insights into the dynamics of 
CHC changes over time in a natural environment. Moderate 
to strong negative correlation was observed between weath-
ering time and each of the specific CHCs, namely n-C25 
(r= -0.6546), n-C27 (r= -0.8171), n-C28 (r= -0.6765), and 
n-C29 (r= -0.8733). When examining the interplay between 
different CHCs, significant positive correlations were identi-
fied. For instance, a strong positive correlation (r = 0.7606) 
was observed between n-C25 and n-C27 concentrations, 
indicating a concurrent increase or decrease in both hydro-
carbons over time. Similarly, moderate positive correlations 
were found between n-C25 and n-C28 (r = 0.6164), n-C27 
and n-C28 (r = 0.6301), and n-C27 and n-C29 (r = 0.6416) 
(Fig. 3B). These correlations suggest potential synchronized 
variations in the concentrations of these CHCs during the 
weathering process.

In indoor conditions, weathering time shows a weak nega-
tive correlation with n-C25 (r = -0.026), indicating a slight 
tendency for the concentration of this hydrocarbon to decrease 
with increasing weathering time. Similarly, the correlations 
with n-C27 (r = -0.157) and n-C28 (r = -0.051) are negative 
but remain weak, suggesting only marginal decreases in their 
concentrations over time. The positive correlation between 
weathering time and n-C29 (r = 0.123) is also weak, signi-
fying a slight increase in concentration with more extended 
weathering periods. However, the correlations between weath-
ering time (days) and the concentrations of CHCs appear to be 
generally weak and insignificant. The correlation coefficients 
range from − 0.026 to 0.366, suggesting subtle or limited 
associations between these variables (Fig. 3C).

In the CDA conducted to assess the discriminative potential of 
CHCs among four distinct age groups, the results revealed signifi-
cant differentiation between the groups, with an overall accuracy Ta
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of 76.7%. Specifically, variables nC27 and nC29 emerged as 
crucial contributors to accurate group classification. The Eigen-
values provided further insight, with the first function explain-
ing a substantial portion of the total variance (94.2%), indicating 
strong discriminatory power. However, in varying scenarios, such 
as in outdoor above-ground conditions, where the first function 
explained a remarkably high percentage (98.5%) of the total 
variance, and in indoor conditions, where it accounted for a rela-
tively lower proportion (57.7%) of the cumulative variance, the 
discriminatory power varied, highlighting interpretations of the 
data across different contexts (for details refer to Fig. S5 in Sup-
plementary information). Further, regression analyses conducted 
on three datasets—burial, above-ground, and indoor—revealed 
significant findings for CHCs in Calliphora vicina empty puparia. 
In the burial dataset, the model showed a strong correlation 
(R = 0.888, R²=0.789) with nC27 and nC29 as significant predic-
tors (p < 0.001). Similarly, the above-ground dataset exhibited a 

robust model (R = 0.947, R²=0.896) emphasizing the importance 
of nC29 (p < 0.001). Conversely, the indoor dataset demonstrated 
a weaker model (R = 0.361, R²=0.130) with non-significant pre-
dictors overall (p > 0.05). Detailed results for each dataset can be 
found in the Supplementary file S6. To enhance precision in age 
estimation, the study transitioned to machine learning models, 
capitalizing on their effectiveness in predicting CHC dynamics.

Age estimation of empty puparia placed in outdoor 
buried using XGBoost model

The predictive model’s performance in estimating the age 
of puparia based on hydrocarbon concentrations in bur-
ied conditions was evaluated and presented in Fig. 4. The 
model optimization was carried out using a robust 5-fold 
cross-validation methodology coupled with hyperparameter 

Fig. 2  Residual ratio (%) vs. 
Weathering time (days) plot. A. 
Outdoor (buried) Among the 
studied hydrocarbons, n-C7, and 
n-C29 displayed a decreasing 
trend after 28 days. B Outdoor 
(Above-ground) displaying 
decreasing trend over the time. 
C Indoor, where hydrocarbons 
showed stability
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tuning through a grid search approach. The optimized model 
parameters included Boosting Rounds set to 100, a Maxi-
mum Tree Depth of 6, and a Learning Rate of 0.1.

The cross-validation results demonstrated that the model 
achieved an average training RMSE of 5.36 and an MAE of 
4.05. When applied to the test dataset, the model’s perfor-
mance was comparable, with an RMSE of 5.54 and an MAE 
of 3.57. These error metrics indicate the model’s capability 
to predict the age of puparia with high precision.

Furthermore, the R-squared values underscore the mod-
el’s accuracy and reliability. The training dataset yielded an 
R-squared value of 0.9737, while the test dataset exhibited 
a closely matching R-squared value of 0.9719. These high 

R-squared values reflect the model’s strong predictive power 
and robustness in estimating the age of puparia under buried 
conditions.

Age estimation using XGBoost on outdoor 
(above‑soil)

The optimized model parameters through grid search 
included Boosting Rounds set to 50, a Maximum Tree 
Depth of 3, and a Learning Rate of 0.3. The cross-vali-
dation results demonstrated that the model achieved an 
average training RMSE of 0.03. When applied to the test 
dataset, the model’s performance was consistent, with an 

A. Outdoor- Buried B. Outdoor- Above-ground

C. Indoor 

Fig. 3  Heatmap displaying the correlation matrix of CHCs and 
Weathering time (days). A  Outdoor-buried. B  Outdoor-Above-
ground. C Indoor. Each cell in the heatmap represents the correlation 

coefficient between the corresponding CHCs and weathering time. 
Negative correlations are represented by red color, positive correla-
tions by blue
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RMSE of 0.05 and an MAE of 0.04. These error met-
rics indicate the model’s capability to predict the age of 
puparia with very high precision.

Furthermore, the R-squared values underscore the mod-
el’s accuracy and reliability. The training dataset yielded 
an R-squared value of 0.9999, while the test dataset exhib-
ited an R-squared value of 0.999. These exceptionally high 
R-squared values reflect the model’s strong predictive power 
and robustness in estimating the age of puparia under above-
ground outdoor conditions (Fig. 5).

Age estimation of empty puparia placed indoor

The model was optimized with 50 Boosting Rounds, a Maxi-
mum Tree Depth of 6, and a Learning Rate of 0.1. The cross-
validation results demonstrated an average training RMSE of 
9.2. For the test dataset, the model achieved an RMSE of 10.32 
and an MAE of 8.54.

 The R-squared values further emphasize the model’s accu-
racy, with the training data showing an R-squared value of 
0.902 and the test data an R-squared value of 0.922. These 
high R-squared values also confirm the model’s effectiveness 
and reliability in indoor conditions (Fig. 6).

Further results and details about the XGBoost model and 
interpretation are provided in Supplementary file S7.

Discussion

The investigation into the CHC profiles of empty puparia of 
Calliphora vicina across burial, above-ground, and indoor 
conditions over 90 days yielded valuable insights into 
the nuanced responses of these hydrocarbons to diverse 

environmental settings. Burial conditions revealed signifi-
cant decreases in CHC concentrations, particularly notable 
for hydrocarbons such as n-C27 and n-C29. This decline 
suggests a pronounced response of CHCs to soil burial, 
likely driven by microbial degradation and chemical inter-
actions with the soil matrix. Microbial activity in the soil, 
including the metabolism of organic compounds by bacteria 
and fungi, likely contributed to the degradation of longer-
chain hydrocarbons [30–35]. Moreover, chemical processes 
such as oxidation and hydrolysis, facilitated by soil moisture 
and pH levels, may have further contributed to CHC degra-
dation [36, 37].

In contrast, above-ground conditions exhibited uniform 
decreases in CHC concentrations across all hydrocarbons, 
indicating a consistent environmental influence on CHC 
degradation. Exposure to stressors like UV radiation, tem-
perature fluctuations, and atmospheric pollutants likely 
accelerated hydrocarbon degradation processes. UV radia-
tion, in particular, can induce photodegradation of CHCs, 
while temperature fluctuations and atmospheric pollutants 
can catalyze oxidative processes [3, 38–40]. Conversely, 
indoor conditions demonstrated relative stability in CHC 
concentrations over the observation period, suggesting a 
lesser impact of indoor environments on CHC degradation. 
Protection from environmental stressors like UV radiation 
and temperature fluctuations likely slowed down CHC deg-
radation processes indoors. The weak correlations between 
weathering time and CHC concentrations in indoor condi-
tions underscore the limited associations between environ-
mental factors and CHC dynamics indoors. Understanding 
these influences is pivotal for accurate age estimation and 
forensic applications in entomology, and further research 
into the specific mechanisms driving CHC degradation in 

Fig. 4  Illustrating the predicted age versus the actual age of puparia 
based on hydrocarbon concentrations in buried conditions. The robust 
5-fold cross-validation methodology and hyperparameter optimi-
zation through grid search led to optimized parameters (Boosting 
Rounds: 100, Maximum Tree Depth: 6, Learning Rate: 0.1). Cross-

validation results showed an average training RMSE of 5.36 and 
MAE 4.05, while the model achieved an RMSE of 5.54 and an MAE 
of 3.57 on a test dataset. The R-squared values further emphasize the 
model’s accuracy, with a value of 0.9737 for the training data (A) and 
0.9719 for the test data (B)
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varied environments will enhance our comprehension of 
CHC dynamics and their forensic utility.

In our laboratory-based investigation, we assessed the 
changes in CHCs of empty puparia placed in two different 
storage media: soil (representing outdoor conditions) and 
paper towels (representing indoor conditions) [4]. After 
eight weeks, notable degradation was observed for all the 
CHCs studied in the soil medium. However, in the current 

study, only two of the four investigated CHCs showed deg-
radation in buried conditions, while all CHCs exhibited a 
decline in concentration over time when puparia were placed 
above ground, resembling the effects of outdoor conditions. 
In contrast, the paper-towel medium, simulating indoor 
conditions, displayed a slower degradation pattern. Spe-
cifically, after 120 days, significant degradation was noted 
for n-C25 and n-C28, while concentrations of n-C27 and 

Fig. 5  The predicted age versus the actual age of puparia based on 
hydrocarbon concentrations in above-ground outdoor conditions with 
key insights into the model’s performance. Cross-validation results 
(Boosting Rounds: 50, Maximum Tree Depth: 3, Learning Rate: 0.3) 
showed an average training RMSE of 0.03, while the model achieved 

an RMSE of 0.05 and a mean absolute error (MAE) of 0.04 on a test 
dataset. The R-squared values further emphasize the model’s accu-
racy, with a value of 0.9999 for the training data (A) and 0.999 for the 
test data (B)

Fig. 6  Illustrating the predicted age versus the actual age of puparia 
based on hydrocarbon concentrations with key insights into the 
model’s performance in Indoor conditions. Cross-validation results 
(Boosting Rounds: 50, Maximum Tree Depth: 6, Learning Rate: 0.1) 
showed an average training RMSE of 9.2, while the model achieved 

an RMSE of 10.32 and a mean absolute error (MAE) of 8.54 on an 
independent test dataset. The R-squared values further emphasize the 
model’s accuracy, with a value of 0.902 for the training data (A) and 
0.922 for the test data (B)
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n-C29 increased [4]. In the current indoor investigation, no 
significant variations were noted. Indeed, while laboratory 
conditions attempt to mimic real-world environments, there 
can still be variations in degradation patterns between labo-
ratory and actual outdoor conditions. Factors such as tem-
perature fluctuations, humidity levels, microbial activity, and 
exposure to sunlight may influence the degradation rates of 
organic materials, including insect remains, in natural set-
tings compared to controlled laboratory environments. These 
environmental variables create dynamic conditions that can 
significantly impact the decomposition process.

In a notable study, the degradation of CHCs in empty 
puparia of Chrysomya rufifacies Macquart, 1842 (Diptera: 
Calliphoridae) was investigated in laboratory and field con-
ditions. The findings revealed a stark contrast in the rate 
of hydrocarbon weathering between the two settings, with 
much more rapid degradation observed in the field [26, 41]. 
This disparity underscores the profound influence of envi-
ronmental conditions on the degradation kinetics of puparial 
hydrocarbons. The accelerated weathering observed in the 
field suggests a complex interplay of factors such as tem-
perature fluctuations, exposure to UV radiation, microbial 
activity, and moisture levels, all of which contribute to the 
breakdown of organic compounds [33, 38, 39, 42]. Another 
study compared the differences in hydrocarbon and fatty 
acid esters, as well as transesterified waxes, between lab-
preserved old puparia and fresh ones of Hydrotaea aene-
scens (Diptera: Muscidae) over a 15-year period [43]. The 
comparison between recent (2012) and older (1997) puparia 
contents has revealed significant differences in composition. 
Specifically, there is an observed general decrease in the 
chain length of the n-alkane distribution pattern, coupled 
with an increase in the length of ester chains. Both extracts 
also contain traces of three hopane hydrocarbon conge-
ners. Furthermore, differences in hydrocarbon and fatty 
acid esters from transesterified waxes are clearly discern-
ible. Their distribution patterns exhibit similarities to those 
reported by Zhu et al. for puparia exposed to weathering 
over 90 days [26, 41]. A recent study utilized multivariate 
analysis to investigate the weathering and aging of empty 
puparial cases from two blow fly species over nine months 
[44]. Quantifying the weathering time of these insect traces 
could significantly aid in narrowing down longer PMI.

While laboratory studies offer controlled environments con-
ducive to systematic experimentation and observation, they 
may not fully capture the intricacies of real-world degradation 
processes. Consequently, extrapolating findings from laboratory 
experiments to natural scenarios requires careful consideration 
of potential differences and limitations. Field experiments or 
observational studies play a crucial role in complementing 
laboratory research by providing insights into the complexities 
of decomposition dynamics in diverse environmental contexts. 
The current study is an attempt in this direction.

Also, a relevant study investigated temporal variations 
in the reflection spectrum of Chrysomya megacephala 
Fabricius, 1794 (Diptera: Calliphoridae) pupa using hyper-
spectral imaging (HIS), along with proposing the eXtreme 
Gradient Boosting Regression (XGBR) model as an opti-
mal approach for estimating pupa development time based 
on HSI data [45]. Their findings shed light on the dynamic 
changes occurring during pupa development and the poten-
tial of HSI in monitoring such changes non-invasively. 
Moreover, the introduction of the XGBR model represents 
a promising advancement in accurately estimating pupa age, 
which is crucial in forensic entomology for determining 
PMImin [45]. Previous research has employed artificial neu-
ral networks (ANN) to identify fly maggots based on images 
of spiracles, predict the age of adult flies, and estimate the 
weathering time of empty puparia in other forensically sig-
nificant fly species [46–48]. Our recent study focused on the 
weathering patterns of empty puparia of another forensically 
important blowfly Lucilia sericata, various machine learn-
ing models, including ANN, support vector machine (SVM), 
and XGBoost, was employed to predict the age of empty 
puparia. Our first approach was regression analyses (detailed 
in Supplementary file S6), which yielded moderate  R2 val-
ues of 0.78 for buried conditions and 0.89 for above-ground 
conditions. We sought to enhance accuracy and predictive 
performance, particularly in discerning age groups based on 
CHCs, so we turned to CDA. However, to achieve superior 
results, we implemented XGBoost. XGBoost is versatile and 
can be applied to various supervised learning tasks, includ-
ing regression, classification, and ranking problems. The 
study reported that XGBoost demonstrated superior perfor-
mance to the other models, achieving higher accuracy in 
age prediction. This highlights the effectiveness of advanced 
machine learning techniques, particularly XGBoost, in 
forensic entomology research for accurately estimating late 
PMI. A review study highlights the challenges in estimating 
PMI in highly decomposed bodies and skeletal remains, cit-
ing environmental factors and the scarcity of reliable time 
since death markers as key obstacles [49]. It emphasizes 
the need for a multidisciplinary approach, combining tapho-
nomic, morphological, and entomological assessments and 
advanced techniques like fluorescence and proteomics [11, 
49–55]. The study underscores the variability in decomposi-
tion rates and the importance of using multiple methods to 
enhance accuracy tailored to each case’s specifics and avail-
able resources. Understanding the limitations and varying 
reliability of these methods is crucial for forensic practi-
tioners aiming to achieve accurate PMI estimations in cases 
involving severe decomposition.

Limitations of the study include the fact that it did not 
investigate other influential environmental factors such as 
microbial activity, UV exposure, moisture levels, and geo-
graphical variations. While these factors are known to likely 
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impact the degradation of CHCs, their specific contributions 
require further empirical validation through subsequent 
research efforts. This study establishes a foundational base-
line for future investigations in this direction.

Furthermore, enhancing the machine learning models 
used in this study by incorporating additional variables 
(as it was beyond the logistic and time frame of the cur-
rent study), such as a broader range of CHCs and a more 
extensive dataset, is essential for advancing the accuracy 
and reliability of age estimation models based on CHC pro-
files. These enhancements represent critical steps towards 
refining forensic entomology methodologies to achieve more 
precise estimations of PMI. However, before these methods 
can be reliably applied in practical forensic settings, fur-
ther research is needed to confirm and expand upon these 
findings.

Conclusion

The study provides valuable insights into the intricate 
dynamics of CHC profiles in empty puparia of Calliphora 
vicina across diverse environmental conditions. The find-
ings reveal distinct degradation patterns, with burial and 
above-ground settings showing significant declines in CHC 
concentrations over time, while indoor conditions exhibit 
relative stability. These results highlight the complex inter-
play between environmental factors, microbial activity, and 
chemical processes influencing CHC degradation. The study 
emphasizes the importance of considering environmental 
variables in forensic entomology and ecological research, 
particularly for age estimation and environmental monitor-
ing purposes. However, the study’s limitations include its 
focus solely on selected environmental variables. Factors 
like microbial activity, UV exposure variations, moisture 
levels, and geographical influences, known to impact CHC 
degradation, were not comprehensively investigated. Future 
research should validate findings across broader environ-
mental contexts, expand datasets, and incorporate additional 
variables to refine CHC dynamics understanding. Moreover, 
the integration of machine learning techniques with ento-
mological expertise holds potential for standardized meth-
odologies for age determination, enhancing the reliability 
of entomological evidence in legal contexts and opening 
avenues for future research and development.
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