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Abstract
Objectives  Disturbances of the central nervous system and immune system are thought to play a role in sudden infant death 
syndrome (SIDS). Dysregulated expression of sodium (Na+)/hydrogen (H+) exchanger 3 (NHE3) in the brainstem and of 
interleukin 13 (IL13) in the lungs has been observed in SIDS. An association of single-nucleotide polymorphisms (SNPs) 
in NHE3 and IL13 with SIDS has been proposed, but controversial results were reported. Therefore, there is a need to revisit 
the association of SNPs in NHE3 and IL13 with SIDS.
Methods  Genotyping of rs71597645 (G1131A) and rs2247114 (C2405T) in NHE3 and rs20541 (+ 4464A/G) in IL13 was 
performed in 201 SIDS cases and 338 controls. A meta-analysis was performed after merging our data with previously 
published data (all from European populations).
Results  Polymorphisms rs2247114 (NHE3) and rs20541 (IL13) were significantly associated with SIDS overall and in 
multiple subgroups, but no association was found for rs71597645 (NHE3). After combining our data with previously pub-
lished data, a fixed-effect meta-analysis showed that rs2247114 in NHE3 retained a significant association with SIDS under 
a recessive model (OR 2.78, 95%CI 1.53 to 5.06; p = 0.0008).
Conclusion  Our findings suggest an association of NHE3 variant rs2247114 (C2405T), though not rs71597645 (NHE3), 
with SIDS. A potential role of rs20541 (IL13) still has to be elucidated. Especially NHE3 seems to be an interesting topic 
for future SIDS research.

Keywords  Interleukin 13 (IL13) · Sodium/hydrogen exchanger 3 (NHE3/SLC9A3) · Sudden infant death syndrome 
(SIDS) · Single-nucleotide polymorphism (SNP)

Introduction

Sudden infant death syndrome (SIDS), the leading cause of 
death of infants in developed countries, refers to the sudden 
and unexpected death of infants aged younger than 1 year 
old for that no specific cause of death could be established 
after autopsy and death scene investigation [1]. The triple-
risk hypothesis was put forward to aid in interpreting the 
role of interconnected risk factors of SIDS such as vulner-
able infants (e.g., genetic impact and preterm birth), critical 

developmental period (e.g., 2 to 4 months), and extrinsic 
factors (e.g., infection and co-sleeping). Nevertheless, the 
concrete pathogenesis of SIDS is still unknown [2].

Among other hypotheses, it has been proposed that SIDS 
might at least in part be attributed to a disturbed homeosta-
sis in the central nervous system (CNS). Neurotransmitter 
imbalances in brainstem and hypothalamic areas that are 
involved in the control of cardiovascular and respiratory 
functions and might trigger SIDS by induced respiratory or 
cardiac arrest, have been associated with SIDS [3–5]. The 
sodium (Na+)/hydrogen (H+) exchanger 3 (NHE3), as a vital 
Na+/H+ antiporter, was reported to be highly expressed in 
the brainstem of SIDS, which might lead to altered breath-
ing control and subsequently SIDS [6]. Moreover, the same 
research group identified three single-nucleotide polymor-
phisms (SNPs) from NHE3 (missense variant: C2405T; pro-
moter variants: G1131A and C1197T) that were significantly 
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associated with SIDS [7] and might explain the previously 
reported overexpression of NHE3 in the brainstem. How-
ever, a subsequent study failed to confirm these results [8].

Another hypothesis suggests an imbalanced immune 
response, e.g., hyper- or hypo-inflammatory reactions and 
hypersensitivity, might contribute to SIDS [9–14]. Interleu-
kin 13 (IL13) as a T helper 2 (Th2) cell-related inflamma-
tory mediator was linked to anti-inflammation response and 
allergic inflammation [15]. We previously reported that IL13 
was decreased in the lung lysate of SIDS, but increased in 
the thymus, suggesting that IL13 might be involved in a pro-
posed impaired immune status of SIDS [16, 17]. Moreover, 
one Norwegian study investigating the role of cytokine SNPs 
in SIDS found that the missense polymorphism IL13 + 4464 
(A/G) was not relevant to SIDS, but its genotype GG was 
associated with infectious infant deaths [18]. Interestingly, 
IL13 + 4464 (rs20541) was suggested to impact the expres-
sion of IL13 [19]. Thus, we argue that the IL13 + 4464 
polymorphism might be linked to the observed differently 
expressed IL13 levels in SIDS and thus be a polymorphism 
of interest in SIDS.

As mentioned above, several studies in SIDS with par-
tially inconsistent findings investigated potential abnor-
malities of NHE3 and IL13. We argue that further data are 
needed to be able to corroborate or refute a role in the etiol-
ogy of SIDS. Therefore, we hypothesized that revisiting the 
potential associations between SIDS and SNPs from IL13 
and NHE3 in an independent case–control study might aid in 
understanding possible mechanisms of SIDS from a genetic 
viewpoint. To this end, genotyping of three SNPs in NHE3 
and IL13 was performed in an independent cohort from Han-
nover, and a meta-analysis combined with other published 
results was carried out.

Materials and methods

Samples

Samples from 201 SIDS and 338 control cases from Lower 
Saxony, Germany, were collected at the Institute of Legal 
Medicine, Hannover Medical School, between 2003 and 
2020 (with the exception of 2 cases from 1989). The enroll-
ment criteria of the SIDS cohort (n = 201) conformed to 
the San Diego definition of SIDS. The SIDS cases in this 
study have not been previously shared with the other SIDS-
related papers included in the meta-analysis. The sex ratio 
(male:female) in the SIDS group is 58.7%:41.3%. The age 
range of SIDS cases was 5 ~ 342 days, with an average of 
131 days. The control cohort (n = 338) was comprised of 305 
adults who had survived from the risk age range of SIDS and 
33 infants died of specific causes rather than SIDS within the 

1st year of their life. The local ethics committee of Hannover 
Medical School approved this study.

Candidate SNPs and genotyping

The rsID number of three reported NHE3 SNPs was con-
firmed based on the primer sequence provided in the article 
by Poetsch et al. [7] using the Basic Local Alignment Search 
Tool (BLAST) (https://​blast.​ncbi.​nlm.​nih.​gov/​Blast.​cgi). 
The rsID numbers were rs2247114 (C2405T), rs71597645 
(G1131A), and rs187829972 (C1197T). Minor allele fre-
quency (MAF) data of the SNPs in the European popula-
tion of the 1000G database were compared to the corre-
sponding MAF calculated from the published data. Variant 
rs187829972 (C1197T) had a MAF lower than 0.05 in the 
European population (0.003) so we had insufficient power 
for this variant in our study. Thus, only rs2247114 (C2405T) 
and rs71597645 (G1131A) were included for NHE3. NHE3 
rs2247114 (A/G) in this study and NHE3 C2405T in previ-
ous studies describe the same variant, but the effect allele is 
termed A in the present study to conform with NCBI refer-
ence nomenclature. In the IL13 gene, the rsID number of 
IL13 + 4464 (A/G) was mentioned to be rs20541 by Ferrante 
et al. [18].

Genomic DNA was isolated from the SIDS cases and 
controls following the manufacturer’s instructions for 
the QIAamp DNA Mini Kit (Qiagen, Hilden, Germany). 
Details of the genotyping procedure using 192.24 Genotyp-
ing Dynamic Arrays and the Biomark EP1 platform were 
described in our previous article [20]. The detailed infor-
mation of probes and primers are listed in Supplementary 
Material S1.

Statistical analysis

Hardy–Weinberg equilibrium (HWE) in controls was 
checked using an online HWE calculator (https://​wpcalc.​
com/​en/​equil​ibrium-​hardy-​weinb​erg/). A 2 × 2 Fisher’s exact 
test was employed to test the association of SNPs and SIDS 
using dominant as well as recessive models, and a linear-
by-linear model of the χ2 test was used under the additive 
model. Odds ratios (ORs), 95% confidence intervals (CIs), 
and corresponding p values were calculated. In order to 
achieve a combined analysis of our data and published data, 
the statistical analysis of alleles/genotypes was unified and 
re-performed based on the genotype distribution of pub-
lished results. A fixed (common)-effects meta-analysis with 
Mantel–Haenszel odds ratios was performed using the meta 
package (version 6.5–0) in R (version 4.3.0). Forest plots of 
all the fixed-effects meta-analyses are given in Supplemen-
tary Material S2.

To estimate the possible functional relevance of gene 
expression, cis-eQTL target gene expression was checked 
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using online data from the Genotype-Tissue Expression 
(GTEx) project (https://​www.​gtexp​ortal.​org/​home/).

In all statistical analyses, a two-sided p value < 0.05 was 
considered to indicate statistical significance. All statistical 
analyses were performed using SPSS 24.0 software (SPSS 
Inc. Chicago, IL, USA) or R (version 4.3.0).

Results

In this study, a total of 539 samples (SIDS = 201, con-
trols = 338) were successfully genotyped for 3 SNPs, 
having a 99.32% call rate and a 96.77% concordance rate 
within 31 replications. All results were in accordance with 
Hardy–Weinberg expectations.

NHE3

Regarding rs71597645 (G1131A), no significant association 
with SIDS was found in the genotyping data of either this 
study or in the combined analysis (Table 1). Also, no sig-
nificant findings were observed after the stratified analyses 
of this study.

For rs2247114 (C2405T), an association of this locus 
with SIDS was unveiled under the recessive model (risk 
genotype: AA, p = 0.03, OR = 3.45, 95%CI 1.16–10.25) 
(Table  1). The strength of this association was further 
increased after merging data from this study with previously 
published ones (risk genotype: AA, p = 0.0008, OR = 2.78, 
95%CI 1.53–5.06) (Table 1 and Fig. 1). For the stratified 
analysis in this study (Table 3), genotype AA of rs2247114 
was found to be also associated with increased risk in SIDS 
subgroups such as male infants, infants aged 4–8 months, 
and deaths occurring in autumn and winter.

IL13

With regard to rs20541 (IL13 + 4464), genotypes AA/GA 
were found to be associated with SIDS at the overall level 
(p = 0.04; OR = 0.68, 95%CI 0.47–0.97) (Table 2). However, 
statistical significance was no longer reached after pooling 
our data with previously published ones (Table 2). In the 
stratified analysis of this study (Table 3), rs20541 was asso-
ciated with risk in multiple SIDS subgroups (e.g., female, 
age 0–4 months, age 2–4 months, and non-prone sleeping 
positions).

Discussion

In this study, two variants of NHE3 and one of IL13 were 
genotyped in 201 SIDS and 338 control cases to further 
investigate previously reported associations with SIDS. 

Statistical analyses after genotyping showed evidence for 
two positive associations with risk (NHE3, rs2247114 
(C2405T), AA, p = 0.03; IL13, rs20541 (IL13 + 4464), AA/
GA, p = 0.04) while NHE3 rs71597645 (G1131A) was not 
associated at the overall level. In the stratified analysis, the 
two significant variants (rs2247114 (C2405T) from NHE3 
and rs20541 (IL13 + 4464) from IL13) were also linked to 
multiple subgroups of SIDS. In regard to multiple testing, 
these results would not remain formally significant after 
Bonferroni correction, but it is noteworthy that two out 
of three previously reported variants were replicated. We 
performed a meta-analysis with the data from this study 
and previous articles and found that the NHE3 variant 
rs2247114 (C2405T) reached statistical significance at a 
level of p < 0.001, lending strong support to its role in SIDS 
susceptibility.

NHE3

NHE3 plays a vital role in maintaining adequate respiratory 
function, and increased levels of NHE3 in the brainstem 
of rabbits cause maladaptive hyperventilation [21]. NHE3 
is one of several mechanisms involved in the water trans-
port that might be involved in the etiology of SIDS, others 
being, e.g., aquaporins and sulfonylurea receptor 1 (SUR1)-
transient receptor potential melastatin 4 (TRPM4) [20, 22]. 
In the brainstem of SIDS, increased NHE3 expression was 
detected [6], which might lead to respiratory maladaptation 
and subsequently trigger SIDS. Three SNPs (rs71597645 
(G1131A), rs2247114 (C2405T), and rs187829972 
(C1197T)) that may explain the overexpression of NHE3 
were reported to be associated with SIDS [7]. However, 
conflicting results showing a lack of association of these 
three variants with SIDS were reported in a validation study 
[8]. In our study, no significant association of rs71597645 
with SIDS was observed, even after meta-analyses. How-
ever, the genotype AA of rs2247114 (C2405T) was observed 
to be more frequent in SIDS (SIDS: 5.0%, controls: 1.5%, 
p = 0.03), which is in line with results reported by Poetsch 
et al. (p = 0.008; OR 2.83, 95%CI 1.30–6.15; SIDS: 10.8%, 
controls: 4.1%) [7]. The only other study in this context 
reported nonsignificant findings that, however, showed a 
trend in the same direction (SIDS: 1.3%, controls: 1.0%) [8]. 
As explained above, the nomenclature used by these earlier 
studies differs from ours as we typed the different strands, 
meaning that allele T in the other studies corresponds to 
allele A in ours. Interestingly, after a meta-analysis using all 
three datasets, genotype AA of SNP rs2247114 (C2405T) 
was highly associated with SIDS (p = 0.0008, SIDS: 6.4%, 
controls: 2.1%), suggesting that NHE3 might indeed be 
involved in the etiology of SIDS.

When the previous studies by Poetsch et al. [7] and Studer 
et al. [8] were published, no data on the possible functional 

https://www.gtexportal.org/home/
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consequences of these SNPs were available. At present, the 
question of the biological function of rs2247114 (C2405T) 
is still not finally resolved: One in vitro study reported that 
allele A of rs2247114 (C2405T) causes a lower expression 
of NHE3 [23]. However, another study argued that this lower 
total NHE3 expression indeed existed, but higher surface 
expression and increased sensitivity to ligands of NHE3 
might compensate for this effect [24]. In human tissues, 
based on the results from the GTEx database, the geno-
type AA of rs2247114 (C2405T) is linked to a lower NHE3 
expression in multiple brain subregions (the same is valid 

for other NHE3 SNPs highly linked (R2 > 0.8) to rs2247114). 
Thus, it is difficult to reconcile the enrichment of the AA 
genotype in SIDS with the increased NHE3 expression in 
the brainstem of SIDS [6]. As SIDS is regarded as a poly-
genic disease, NHE3 overexpression in SIDS might be the 
consequence of other genetic variants (from NHE3 or other 
genes) or the consequence of other mechanisms, e.g., as part 
of a network of seriously imbalanced neurotransmitters, with 
some decreased and others elevated. Nevertheless, our find-
ings further emphasize that NHE3 might be an important 
factor in the etiology of SIDS, whose specific functional role 
should be studied in depth.

IL13

As mediators of the immune system, cytokines play a vital 
role in regulating inflammatory responses against infections 
that are reckoned as one of the underlying risk factors for 
SIDS. Several studies investigating the role of infections 
and the immune status in SIDS showed diverse findings on 
cytokines at gene and gene expression levels [14, 16, 25–28].

Among other cytokines, IL13, one of the Th2-related 
cytokines, and the gene coding for it have been studied in 
cytokine-related SIDS studies [16–18]. It has been reported 
that the pulmonary IL13 level is decreased in SIDS, which 
seems to suggest a locally impaired immune status [16]. 
From the genetic point of view, the IL13 polymorphism 
rs20541 (IL13 + 4464) has been linked to altered plasma 
IL13 levels [19]. However, in the only prior study on SIDS, 
this variant has not been associated with SIDS [18]. Nev-
ertheless, we postulated that rs20541 might nevertheless 
participate in the complicated and potentially impaired 
immunological process in SIDS and decided to re-assess 
the association of rs20541 with SIDS in our independent 
SIDS cohort.

Fig. 1   Forest plot from a fixed-effect meta-analysis of NHE3 
rs2247114 (C2405T) genotype AA in SIDS cases and controls in 
combination with available case–control studies. OR: Mantel–Haen-
szel odds ratio from fixed-effects meta-analyses. CI: confidence inter-
val. I-square and p values characterize the degree of heterogeneity 
among studies

Table 2   Analysis on the association between rs20541 in IL13 and SIDS

Note: The SIDS# cohort was composed of SIDS and boardline SIDS cases. The p value and OR (95%CI)* were re-calculated according to the 
original genotype/allele distribution data. SIDS Sudden infant death syndrome; OR Odds ratio; CI Confident interval

Genotypes/Alleles or p value This study Ferrante et al. Meta-analysis

Control SIDS Control SIDS# Control SIDS

GG 195 134 80 113 275 247
GA 127 55 46 78 173 133
AA 15 11 5 9 20 20
p value&OR 

(95%CI)*
Dominant (AA/GA vs. 

GG)
p: 0.04, 0.68 (0.47−0.97) p: 0.43, 1.21 (0.78−1.90) p: 0.27, 0.85 (0.64−3.13)

Recessive (AA vs. GA/
GG)

p: 0.68, 1.25 (0.56−2.78) p: 0.99, 1.19 (0.39−3.63) p: 0.54, 1.23 (0.64−2.35)

G 517 323 206 304 723 627
A 157 77 56 96 213 173
p value&OR (95%CI)* p: 0.13, 0.79 (0.58−1.07) p: 0.45, 1.16 (0.80−1.70) p: 0.48, 0.92 (0.73−1.16)
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Genotypes AA/GA of IL13 rs20541 were found to be less 
frequent in SIDS (p = 0.04, SIDS: 33.0%, control: 42.1%). 
This variant is of some impact on the immune system, as it 
was reported to be associated not only with elevated IL13 
levels [19] but also IgE levels [29] and lymphocyte counts 
[30]. Thus, a decreased proportion of rs20541 genotypes 
AA/GA in SIDS might be associated with the altered IL13 
level observed earlier by our group [16, 17]. However, as 
no significant results were retained after meta-analyses, we 
propose no substantial or, at best, a weak association of IL13 
SNP rs20541 with SIDS.

Conclusion

In summary, this study re-evaluated the association between 
SIDS and three SNPs from NHE3 and IL13 previously 
reported to be associated with SIDS. In our study, this 
association could be replicated for two of these three SNPs 
(rs2247114 in NHE3 and rs20541 in IL13). However, after 
combining published data with our data, only the NHE3 SNP 
rs2247114 remained associated with SIDS. This association, 
however, was strong (p = 0.0008). NHE3 is reported to be 
overexpressed in SIDS, though the AA genotype that we 
found accumulated in SIDS seems to be rather associated 
with a lower expression of NHE3 than with an overexpres-
sion. Although our data thus further corroborate that NHE3 
might be an important risk factor for SIDS, the specific role 

of NHE3 overexpression and rs2247114 requires further 
investigation. Furthermore, our study underlines that the 
validity of gene-association studies greatly depends on sam-
ple size and replication studies to allow for meta-analyses on 
published suspected gene variants.
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Table 3   Selected associations of polymorphisms with SIDS subgroups

p value < 0.05 marked in bold. OR* and p values* in the additive model were calculated using the linear-by-linear association of the chi-square 
test. Alleles X and Y represent major and minor alleles, respectively. OR values marked with † were the Woolf logit method when an empty cell 
existing in chi-square tables

Stratum Gene SNP Genotype distri-
bution

Additive (Y vs. X alleles) Dominant (YY/XY vs. 
XX genotypes)

Recessive (YY vs. XX/XY 
genotypes)

Case no. 
in SIDS 
(XX:XY:YY)

OR (95%CI)* p value* OR (95%CI) p value OR (95%CI) p value

Male NHE3 rs2247114 96:14:08 1.052 
(0.663 ~ 1.630)

0.835 0.775 
(0.457 ~ 1.325)

0.344 4.594 
(1.539 ~ 13.72)

0.007

Age 4–8 months rs2247114 32:02:03 0.875 
(0.416 ~ 1.827)

0.852 0.528 
(0.217 ~ 1.355)

0.293 6.059 
(1.516 ~ 24.21)

0.036

Autumn + win-
ter

rs2247114 71:09:05 0.910 
(0.539 ~ 1.529)

0.792 0.667 
(0.364 ~ 1.250)

0.238 4.081 
(1.221 ~ 13.64)

0.033

Female IL13 rs20541 60:21:01 0.521 
(0.319 ~ 0.848)

0.008 0.504 
(0.295·0.859)

0.011 0.265 
(0.035 ~ 2.037)

0.295

Age 0–4 months rs20541 74:22:06 1.519 
(1.007 ~ 2.292)

0.045 0.520 
(0.320 ~ 0.844)

0.008 1.342 
(0.507 ~ 3.559)

0.553

Age 2–4 months rs20541 52:18:04 1.436 
(0.902 ~ 2.286)

0.126 0.581 
(0.337 ~ 1.000)

0.048 1.227 
(0.395 ~ 3.802)

0.723

Other sleep 
positions

rs20541 13:2:0 4.478 
(1.037 ~ 19.324)

0.029 0.211 
(0.047 ~ 0.951)

0.026 0.521 
(0.028 ~ 9.843)†

0.856
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