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Abstract
At present, epigenetic markers have been extensively studied in various fields and have a high value in forensic medicine due 
to their unique mode of inheritance, which does not involve DNA sequence alterations. As an epigenetic phenomenon that 
plays an important role in gene expression, non-coding RNAs (ncRNAs) act as key factors mediating gene silencing, partici-
pating in cell division, and regulating immune response and other important biological processes. With the development of 
molecular biology, genetics, bioinformatics, and next-generation sequencing (NGS) technology, ncRNAs such as microRNA 
(miRNA), circular RNA (circRNA), long non-coding RNA (lncRNA), and P-element induced wimpy testis (PIWI)-interacting 
RNA (piRNA) are increasingly been shown to have potential in the practice of forensic medicine. NcRNAs, mainly miRNA, 
may provide new strategies and methods for the identification of tissues and body fluids, cause-of-death analysis, time-related 
estimation, age estimation, and the identification of monozygotic twins. In this review, we describe the research progress 
and application status of ncRNAs, mainly miRNA, and other ncRNAs such as circRNA, lncRNA, and piRNA, in forensic 
practice, including the identification of tissues and body fluids, cause-of-death analysis, time-related estimation, age estima-
tion, and the identification of monozygotic twins. The close links between ncRNAs and forensic medicine are presented, and 
their research values and application prospects in forensic medicine are also discussed.

Keywords  ncRNA · miRNA · Identification of tissues and body fluids · Cause-of-death analysis · Time-related estimation · 
Estimation of age · Identification of monozygotic twins

Introduction

Epigenetics is the study of changes in gene expression 
that do not involve alterations in the DNA sequence [1]. 
The study of epigenetic changes is of interest in forensic 
medicine due to their unique mode of inheritance. At pre-
sent, epigenetics has been widely studied, and epigenetic 
phenomena mainly include DNA methylation [2], non-
coding RNA regulation [3], histone modification [4], X 
chromosome inactivation [5], chromatin remodeling [6], 
and genomic imprinting [7]. In these processes, non-coding 
RNAs (ncRNAs) act as key factors mediating gene silenc-
ing, participating in cell division, and regulating immune 
response and other important biological processes. As a 
research hotspot, ncRNAs are currently being extensively 
studied in various fields and have become an essential part 
of cancer research [8]. In addition, novel and extensive 
research has been conducted on ncRNAs in the fields of 
inflammation [9], immunity [10], cardiovascular diseases 
[11], metabolic diseases [12], psychiatric disorders [13], 
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as well as reproduction and development of plants and ani-
mals [14, 15].

Forensic medicine is an applied discipline that uses 
medical and other related knowledge to provide scientific 
basis and evidence for criminal investigations, civil dis-
putes, medical disputes, and other related fields involving 
law, to achieve justice and maintain social harmony and 
stability. It mainly includes forensic pathology, forensic 
clinical science, forensic genetics, forensic toxicology, 
forensic psychiatry, and other sub-disciplines. Although 
DNA genetic markers have led to great success in foren-
sic research and applications, RNA molecules have not 
received much attention in forensic medicine due to their 
instability and susceptibility to degradation [16]. Until 
2011, the European DNA Profiling Group (EDNAP) col-
laborated with many forensic laboratories to explore and 
demonstrate the extraordinary application potential of mes-
senger RNA (mRNA) in the identification of body fluid 
stains [17–23]. Since then, RNA molecules have been 
widely studied in the field of forensic medicine. With the 
development of molecular biology, genetics, and detection 
technology, ncRNAs such as microRNA (miRNA), circu-
lar RNA (circRNA), long non-coding RNA (lncRNA), and 
P-element induced wimpy testis (PIWI)-interacting RNA 
(piRNA) are gradually being shown to have great potentials 
in relation to the practice of forensic medicine. MiRNAs 
provide new strategies and methods for the identification 
of tissues and body fluids, cause-of-death analysis, time-
related estimation, age estimation, and the identification 
of monozygotic twins. Since the discovery of miRNAs 
in 1993, their role in physiological and pathological pro-
cesses has been continuously revealed, and the potential 
of miRNA analysis in forensic medicine has been explored 
in the last decade. In 2010, Courts et al. [24] conducted 
a review on the biological functions and tissue and cell 
specificity of miRNA and the role of miRNA analysis in 
forensic medicine, demonstrating its potential for appli-
cation in forensic medicine. In 2020, Rocchi et al. [25] 
reviewed the application of miRNA in the identification of 
body fluids, wound vitality, drowning, monozygotic twins, 
time of death determination, anti-doping, and sepsis. In 
our review, we will provide more recent advances on the 
application of miRNA in the practice of forensic medicine, 
especially cause-of-death analysis, estimation of time since 
deposition, and age estimation, which have not been previ-
ously reviewed.

To demonstrate the close link between non-coding 
RNAs and forensic medicine, the research progress and 
application status of ncRNAs, mainly miRNA, and other 
ncRNAs such as circRNA, lncRNA, and piRNA, in the 
practice of forensic medicine have been reviewed in this 
article. Moreover, the research value and application pros-
pects of ncRNAs in the identification of tissues and body 

fluids, cause-of-death analysis, time-related estimation, 
age estimation, and identification of monozygotic twins 
have been discussed. The selected articles included in this 
review are original research articles or reviews in English, 
are available in PubMed (https://​pubmed.​ncbi.​nlm.​nih.​
gov/), and that discuss ncRNA as a biomarker in forensic 
practice.

Classification and detection methods 
of non‑coding RNAs

Classification of non‑coding RNAs

Unlike coding RNAs, ncRNAs usually do not have 
the function of encoding proteins, that is, such RNAs 
are not translated into proteins after transcription. Ini-
tially, the biological significance of ncRNAs was not 
well understood [26], unlike mRNAs that have been the 
focus of research [27–29]. It is only after the Human 
Genome Project and the Encyclopedia of DNA Elements 
(ENCODE) project were conducted that ncRNAs started 
gaining interest. Studies have shown that at least 80% of 
the human genome is transcribed into ncRNAs, and as 
research evolves, their important role in biological pro-
cesses is gradually being revealed [30, 31]. In addition, 
the ENCODE project has made remarkable contributions 
to the discovery of ncRNAs, making it attract increasing 
attention [32, 33].

The different types of ncRNAs are continuously being 
discovered due to advances in molecular biology, molecu-
lar genetics, bioinformatics, and detection methods. Gen-
erally, according to the biological functions of ncRNAs, 
they can be classified into housekeeping ncRNAs, which 
are essential for maintaining basic cellular functions, and 
regulatory ncRNAs, which play regulatory roles in cells. 
The former mainly includes ribosomal RNA (rRNA), 
which binds to proteins to generate ribosomes; transfer 
RNA (tRNA), which carries and transports amino acids; 
small nuclear RNA (snRNA), which constitutes splice-
osomes; small nucleolar RNA (snoRNA), which guides 
RNA chemical modification; and telomerase RNA (TR), 
which participates in the synthesis of chromosome ends. 
The latter mainly includes lncRNA, which is involved 
in various cellular regulatory processes; miRNA, which 
regulates gene expression; piRNA, which forms com-
plexes with members of the PIWI protein family to regu-
late gene silencing; circRNA, which is rich in miRNA 
binding sites and acts as miRNA sponges; small interfer-
ing RNA (siRNA), which induces efficient and specific 
degradation of RNA; and enhancer RNA (eRNA), which 
is associated with gene expression near enhancers. In con-
trast, Dahariya et al. [34] divided ncRNAs into structural 

https://pubmed.ncbi.nlm.nih.gov/
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ncRNAs and regulatory RNAs. In addition, according to 
the length of ncRNAs, they can be divided into small 
ncRNAs with less than 200 nucleotides, also known as 
short ncRNAs, and long ncRNAs with more than 200 
nucleotides. Meanwhile, other scholars have also classi-
fied ncRNAs differently based on length [34–36]. In this 
review, ncRNAs are classified according to length into 
short ncRNAs (< 50 nucleotides) such as miRNA, siRNA, 
and piRNA; medium ncRNAs (50–200 nucleotides) such 
as tRNA, snRNA, and snoRNA; and long ncRNAs (> 200 
nucleotides) such as lncRNA. The classification of ncR-
NAs is shown in Fig. 1.

In addition, recent studies have shown that some cir-
cRNAs may be translated. Sun et al. [37] developed the 
CircCode tool to explore the translation potential of cir-
cRNA. Miao et al. [38] summarized relevant studies to 
demonstrate the ability of circRNA in coding proteins. 
The study provided evidence on the direct translation of 
endogenous circRNA. A few circRNAs contain internal 
ribosome entry sites, which give them translation abil-
ity and have been shown to serve as protein templates. 
Focusing on the expression and function of circRNA, 
Misir et al. [39] provided an overview of the progress of 
research on the biogenesis, function, and molecular mech-
anism of circRNA. Thus, it remains unclear whether cir-
cRNA should still be classified as ncRNA. In this review, 
circRNA was classified into ncRNA, which is the gener-
ally accepted view.

Common detection methods of non‑coding RNAs

The development of detection methods has promoted the 
study of the unique molecular and biological characteristics 
and the expression features of ncRNAs, providing a theo-
retical basis for their application in forensic practice. The 
detection methods of ncRNAs can be classified according 
to whether they involve qualitative or quantitative deter-
mination, the throughput size, the dimension of the inter-
action between ncRNAs and DNA, RNA, or protein, and 
other aspects. This review summarizes the common detec-
tion methods of ncRNAs in forensic medicine, and Table 1 
shows the common detection methods of ncRNAs in forensic 
medicine and their advantages and disadvantages.

Quantitative real‑time polymerase chain reaction

Quantitative real-time polymerase chain reaction (qPCR) can 
perform the quantitative analysis of the starting template, and 
monitor the PCR process in real-time through changes in fluo-
rescent signals after the addition of fluorescent substances to 
the PCR reaction system. Moreover, it can sensitively quantify 
low abundance ncRNA molecules expressed and is currently 
the most used technique for detecting RNA expression. The 
fluorescent substances used in qPCR are mainly divided into 
fluorescent probes, which are more specific, and fluorescent 
dyes, which are simpler and easier to use. The main types of 
qPCR include stem-loop qPCR [40], polyadenylation-based 
qPCR [41], and primer extension methods [42].

Fig. 1   The main classification 
methods of non-coding RNAs 
mentioned above based on bio-
logical function and length
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RNA sequencing

RNA sequencing (RNA-seq) is an important tool for tran-
scriptomics research, which can detect the overall tran-
scriptional activity at the single nucleotide level and pro-
vide comprehensive information on the transcriptome by 
analyzing the structure and expression levels of existing 
transcripts and discovering unknown transcripts. Based on 
the principle of sequencing by synthesis or semiconductor 
sequencing, RNA-seq is utilized to investigate transcrip-
tional activity or to detect the expression and abundance of 
certain RNA molecules by massively parallel sequencing 
(MPS) techniques. The current MPS technology platform 
mainly includes Illumina’s Solexa sequencing technology 
[43] and Thermo Scientific’s ion semiconductor sequenc-
ing [44].

Microarray

Microarray is a hybridization-based method for high-
throughput detection of ncRNA expression, which can 
obtain the expression of known loci at the transcriptome 
level in a short time [45]. The microarray can immobilize 
thousands of nucleic acid probes, such as miRNA, cir-
cRNA, and piRNA, on tiny solid-phase vectors and ana-
lyze them by scanning the hybridization signal intensity for 
detection [46]. Microarray is currently a powerful means 
to detect expression abundance within the genome, but it 
depends on known genomic information and can be accom-
panied by false positive results; thus, it is generally used 
for preliminary screening [47, 48].

Non‑coding RNAs in the identification 
of tissues and body fluids

Accurately identifying of source of DNA samples from tis-
sues or body fluids is crucial in the practice of forensic medi-
cine, as it can provide clues and evidence for the investiga-
tion of criminal cases and also reduces the difficulty of the 
inspection work. The identification of tissues and body fluids 
can provide evidence to solve the problem of species and the 
source of the materials, which is conducive for determin-
ing the investigation direction and reconstructing the crime 
scene. The traditional methods of identifying tissues and 
body fluids mostly rely on chemical or physical methods, 
which are sometimes subject to cross-reactivity and false 
positive results and have limited specificity. Blood, saliva, 
semen, and vaginal fluids commonly found at crime scenes 
should be screened and identified using non-destructive and 
precise methods to obtain critical information for the recon-
struction of crime scenes. In recent years, there has been an 
intensified focus on exploring the molecular characteristics 
and functions of ncRNAs, and the application of ncRNAs 
in the identification of tissues and body fluids has become a 
research hotspot in the field of forensic medicine.

Compared with mRNA, miRNAs are not easily degraded 
due to their short length, and have tissue specificity, which 
makes them extremely valuable in the identification of 
degraded materials or complex mixtures. In addition, 
research on the application of ncRNAs such as circRNA 
and piRNA in the identification of tissues and body fluids 
is also being actively conducted, favorably promoting the 
application of ncRNAs as epigenetic markers in the practice 

Table 1   Common detection methods of non-coding RNAs in forensic medicine and their advantages and disadvantages

Non-coding RNAs detection methods Advantages Disadvantages Reference

Quantitative real-time PCR (qPCR) High sensitivity High requirements for primer [40–42]
High specificity Wide variation in reagent kits
Quantitative Mutation leading to missed detection
Easy to perform Low throughput
Cost effective
Small amounts of sample DNA

RNA sequencing (RNA-seq) High throughput Complex procedures [43, 44]
High resolution False positive results
Mutation detection High costs
Quantitative
Detection of unknown genes

Microarray High throughput Qualitative/semiquantitative [46–48]
Automation False positive results
Easy to perform Detection of known genes
Stability Dependence of hybridization probes
Fast run times
Cost effective
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of forensic medicine. The ncRNA markers related to the 
identification of tissues and body fluids mentioned in this 
review are summarized in Table 2.

MicroRNA in the identification of tissues and body 
fluids

Due to its small molecular weight and rich tissue specificity, 
miRNA has become a promising biomarker in the identi-
fication of tissues and body fluids. Recently, Glynn et al. 
[49] assessed the relevant literature to investigate the future 
potential of miRNAs in the identification of tissue and body 
fluids. Unlike their review, we focus on the discovery of 
effective markers, the stability of markers, and the construc-
tion of inferential models for miRNA in the identification 
of tissues and body fluids, presenting new research findings 
from the last 3 years.

In 2009, Hanson et al. [50] examined 452 miRNA mark-
ers in peripheral blood, saliva, semen, vaginal secretions, 
and menstrual blood by reverse transcription-qPCR (RT-
qPCR), and finally screened out differentially expressed 
markers that require as low as 50 pg of total RNA for iden-
tification in body fluids. Among them, miR-451 and miR-
16 were mostly differentially expressed in peripheral blood, 
miR-135b and miR-10b in semen, miR-658 and miR-205 
in saliva, miR-124a and miR-372 in vaginal secretions, and 
miR-412 and miR-451 in menstrual blood. This study is the 
first to explore the value of miRNA in forensic body fluids 
identification, indicating that miRNA is promising for the 
identification of tissues and body fluids in forensic prac-
tice. Then, Hanson et al. [51] provided detailed procedures 
for improving the success of analyzing degraded samples 
using the previously identified nine miRNA markers. Zuba-
kov et al. [52] used the microarray platform to analyze 
718 human miRNAs derived from saliva, semen, vaginal 
secretion, venous blood, and menstrual blood. The result 
revealed that miR-20a, miR-106a, miR-185, and miR-144 
were useful for venous blood distinction, and miR-135a, 
miR-10a, miR-507, miR-943, and miR-891a for semen 
identification. Park et al. [53] examined more than 1700 
miRNAs by microarray and screened for specific mark-
ers using Shannon Entropy and Q-statistics, and identified 
eight miRNAs for the identification of blood (miR-484 and 
miR-182), semen (miR-2392 and miR-3197), saliva (miR-
223 and miR-145), and vaginal secretions (miR-1260b and 
miR-654–5p).

Thereafter, Wang et  al. [54] developed an accurate 
model for the analysis of miRNA expression data to reduce 
the impact of technology platforms and statistical methods 
on the accuracy of miRNA markers for the identification of 
tissues and body fluids. The team analyzed the expression 
abundance of three miRNAs in different body fluids by 
RT-qPCR and the efficiency-calibrated model of relative 

expression ratios, demonstrating that miR-16 is specific in 
venous blood and detectable at 50 pg of total RNA. This 
study suggested that to identify miRNAs in body fluids, 
they should be highly expressed and should have constant 
expression levels in individuals. Future studies should 
focus on finding the best miRNA markers for body fluid 
identification and analyzing the effects of environmental 
factors such as temperature, humidity, contamination, and 
ultraviolet radiation on the stability of miRNAs in vitro. 
The team then used MPS to screen for miRNA biomarkers 
at the genome-wide level and identified 6 and 19 potential 
specific miRNA biomarkers in blood and saliva, respec-
tively [55]. The study demonstrated that miRNA expres-
sion patterns in different body fluids can be measured at 
the genome-wide level for application in forensic practice. 
Seashols-Williams et al. [56] examined the relative lev-
els of miRNA in blood, semen, vaginal fluids, menstrual 
blood, saliva, urine, feces, and sweat using NGS technol-
ogy. The study found that miR-200b, miR-1246, miR-320c, 
miR-10b-5p, miR-26b, and miR-891a had body fluid speci-
ficity, and also identified potentially normalized markers 
including let-7 g and let-7i. Sauer et al. [57] conducted a 
comprehensive study on body fluids to recognize a single 
source sample. This study showed that hsa-miR891a-5p 
could be a potential marker for semen identification, and 
that hsa-miR-144-3p could differentiate between blood 
and non-blood samples. In addition, the combination of 
hsa-miR-144-3p and hsa-miR-203a-3p could be used to 
distinguish between venous and menstrual blood samples, 
and hsa-miR-203a-3p and hsa-miR-124-3p could be used to 
distinguish between saliva and vaginal secretion samples. 
There is still a challenge in distinguishing between venous 
blood and menstrual blood in mixtures, as well as saliva 
and vaginal secretion. Sirker et al. [58] used receiver oper-
ating characteristics to analyze 19 target microRNAs in 
blood, saliva, semen, vaginal secretions, menstrual blood, 
and skin. The most stably expressed genes in samples 
were miR-26b, miR-92, miR-484, and miR-144, which are 
regarded as preselected endogenous controls. In their study, 
they finally confirmed the use of miR-10b, miR-203, miR-
374, miR-451, and miR-943 to identify five forensically 
relevant body fluids and skin. Fujimoto et al. [59] exam-
ined the relative expressions of miR-144-3p, miR-451a-5p, 
miR-888-5p, miR-891a-5p, miR-203a-3p, miR-223-3p, and 
miR-1260b by RT-qPCR and constructed a partial least 
squares discriminant analysis (PLS-DA) model. The results 
showed that the model could be used to identify venous 
blood, saliva, semen, and vaginal secretions. Dorum et al. 
[60] detected miRNA expression in blood, semen, saliva, 
vaginal secretions, menstrual blood, and skin by the miR-
Nome MPS method, and built an optimally performing 
model consisting of nine miRNA markers based on par-
tial least squares (PLS) and linear discriminant analysis. 
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Mayes et al. [61] used RT-qPCR to examine mRNA and 
miRNA in blood and semen under different conditions 
such as heat, humidity, and sunlight, showing that miRNA 
markers are more stable and can be used for the identifica-
tion of body fluids that prove to be challenging. Li et al. 
[62] investigated the stability of mRNA and miRNA in 
blood samples by RT-qPCR and multiplex PCR system to 
detect their expression under different environments such 
as light and dark, humidity, high temperature, and ribonu-
clease A (RNase A). Their study showed that humidity and 
RNase A have a greater effect on stability, and that miRNA 
is more stable than mRNA, which could be used for the 
identification of body fluids in aged and environmentally 
contaminated samples. In addition, Li et al. [63] exam-
ined the expression of 12 miRNAs in peripheral blood, 
menstrual blood, semen, saliva, and vaginal secretions by 
qPCR. The team constructed inferential models using two 
probabilistic methods, Naive Bayes and PLS-DA, showing 
that probabilistic methods have great potential for miRNA-
based identification of body fluids, and that the selection 
of reference genes is important. Iroanya et al. [64] studied 
the stability of miR-451a, miR-10b, and miR-205 in blood, 
semen, and saliva samples under indoor, outdoor, 4 °C stor-
age, and − 80 °C freezing conditions. The study showed 
that the stability of each miRNA marker is highest in the 
freezing group, and miR-451a, miR-10b, and miR-205 were 
reliable biomarkers for the identification of blood, semen, 
and saliva, respectively. In the future, more miRNA mark-
ers can be studied in different populations, diverse environ-
ments, broader age ranges, and multiple body fluids.

Sauer et al. [65] evaluated the differential expressions 
of 15 preselected miRNAs in the skin, skeletal muscle, 
heart muscle, kidney, lung, liver, and brain tissues by a 
methodologically validated qPCR procedure. It was shown 
that miR-206, miR-208b-3p, miR-205-5p, miR-122-5p, and 
miR-219a-5p could identify organ tissues such as skeletal 
muscle, heart, skin, liver, and brain, respectively. This 
study successfully proposed the first method based on 
miRNA biomarkers for organ tissue identification, which is 
compatible and complementary with forensic DNA analy-
sis and can be useful in the identification of forensic field 
samples such as mixtures, aged and degraded samples, or 
trace samples.

As advancements in miRNA marker research continue, 
developing precise and consistent identification models for 
tissues and bodily fluids will greatly enhance the appli-
cability of miRNAs in forensic practices. He et al. [66] 
established a stepwise strategy to discriminate peripheral 
blood from menstrual blood based on Fisher’s discrimi-
nant function, which first discriminates between blood and 
non-blood samples using miR-451, and then discriminates 

between peripheral blood and menstrual blood using miR-
203, miR-205, and miR-214. Subsequently, He et al. [67] 
constructed a mathematical model using the same strategy, 
which consisted of miR-451a, miR-205-5p, miR-203-3p, 
miR-214-3p, miR-1445p, miR-654-5p, miR-888-5p, miR-
891a-5p, and miR-124a-3p. This nine-miRNA-marker 
discriminant analysis model can be used for identifying 
vaginal secretions, saliva, semen, menstrual blood, and 
peripheral blood. The results showed that there is no sig-
nificant difference in the expression of these markers in 
different amounts of total miRNA, which is beneficial for 
the identification of a small number of samples. However, 
the model is only suitable for the identification of sam-
ples from a single component of body fluids and not for 
mixed samples. Liu et al. [68] constructed an identification 
model by combining miRNA markers and kernel density 
estimation (KDE), whose kernel function was a radial basis 
function. By comparing multiple classification algorithms 
and combinations of 10 miRNAs, miR-451a, miR-891a-5p, 
miR-144-5p, and miR-203a-3-3p combined with KDE were 
found to be the most accurate and stable models for iden-
tifying vaginal secretions, saliva, semen, menstrual blood, 
and peripheral blood. This study evaluated the performance 
of different machine learning methods in constructing body 
fluid identification models for the first time and fully dem-
onstrated that identification models constructed by suit-
able classification algorithms can significantly improve 
accuracy. Wang et al. [69] constructed a model to differ-
entiate peripheral blood from menstrual blood samples 
based on the copy number ratio of miR-451a/miR-21-5p, 
which showed high sensitivity and specificity. Bamberg 
et  al. [70] constructed a simultaneous mRNA/miRNA 
detection method to reduce the effects of degradation and 
tissue specificity, and achieved the combined applica-
tion of multiple detections with the two markers. Rhodes 
et al. [71] constructed a ten-fold cross-validated quad-
ratic discriminant analysis model based on let-7 g, let-7i, 
miR-200b, miR-320c, miR-10b, and miR-891a to identify 
vaginal secretions, semen, saliva, urine, feces, menstrual 
secretions, and blood, among which blood and feces were 
identified with 100% accuracy. The study provided a new 
method for model construction of tissues and body fluids 
identification, but the accuracy of identification in mixed 
samples still needed to be improved. Wei et al. [72] exam-
ined and validated miRNA expression levels in peripheral 
blood, menstrual blood, saliva, semen, and vaginal secre-
tions by high-throughput sequencing and RT-qPCR. This 
study screened the most stable endogenous reference gene 
miR-320a-3p by geNorm, NormFinder, BestKeeper, and 
ΔCq algorithms, providing a method for screening endog-
enous reference genes.
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CircRNA in the identification of tissues and body 
fluids

Sequencing studies have shown that circRNA can be abun-
dantly, stably, and conservatively expressed throughout the life 
cycle and are highly tissue-specific and developmental stage-
specific, as well as resistant to degradation by ribonuclease 
R (RNase R)[73, 74]. The closed-loop structure of circRNA 
renders them more stable and less susceptible to degradation, 
making them highly advantageous in the identification of aged 
or degraded samples. Song et al. [75] first explored the cir-
cRNA expression profiles of common samples such as venous 
blood, menstrual blood, saliva, semen, and vaginal secretions 
by Arraystar Human circRNA Array. The study showed that 
circRNA expression profiles were significantly different in 
venous blood, semen, and saliva, while the expression pat-
terns were similar in menstrual blood and vaginal secretions. 
Thus, circRNA is expected to be a biological marker for body 
fluids identification. Zhang et al. [76] improved the sensitivity 
and accuracy of the assay by combining the linear and circu-
lar transcripts of the peripheral blood-specific marker ALAS2 
and the menstrual blood-specific marker MMP7. In this study, 
circRNA was successfully included in mRNA profiling for 
body fluids identification, providing a new idea of circRNA 
application for this forensic practice.

Liu et al. [77] characterized the circRNA expression 
levels of 45 genes specifically expressed in 5 tissues and 
body fluids and further identified 38 circRNA markers from 
14 genes. These biomarkers with circular transcripts have 
been validated in six body fluids, including HBA and ALAS2 
in blood, MMP7 and MMP10 in menstrual blood, HTN3 
in saliva, SPINK5, SERPINB3, ESR1, and CYP2B7P1 in 
vaginal secretions, TGM4, KLK3, and PRM2 in sperm, and 
SLC22A6 and MIOX in urine, all with expression specificity. 
It was shown that the inclusion of circRNA in the mRNA 
profile facilitates the construction of a multiplex analysis 
system for the identification of tissues and body fluids. 
Subsequently, Liu et al. [78] combined 14 tissue-specific 
mRNA markers with circRNA expression, 2 high expres-
sion abundance mRNA markers, and 2 housekeeping genes 
to construct a multiplex analysis system (F18plex system). 
The system was applied to the identification of urine, semen, 
vaginal secretions, saliva, menstrual blood, and peripheral 
blood, and had good sensitivity and specificity in the identi-
fication of mixture, degraded, and aged samples. The team 
also combined the one-step multiplex reverse transcription 
PCR (RT-PCR) method with the F18plex system to complete 
the identification of 0.1 ng total RNA in peripheral blood 
and semen, and 1 ng total RNA in menstrual blood, vaginal 
secretions, saliva, and urine [79]. This provided a reliable 
and cost-effective method for body fluids identification and 
could be used as tissue-specific biomarkers to simplify and 
perform simultaneous analysis.

PIWI‑interacting RNA in the identification of tissues 
and body fluids

piRNA is a class of ncRNAs expressed in a wide range 
of cells, which generally functions by forming specific 
RNA–protein complexes and plays roles in many important 
biological processes, including cell proliferation, differ-
entiation, and survival [80]. In addition, piRNA is closely 
associated with transposon silencing and epigenetics. It is 
not only expressed in a wide range of cells but also has the 
characteristics of short length and tissue-specific expression 
[81, 82]. Studies have shown that its 2'-O-methylated 3'-end 
can stabilize RNA molecules, making piRNA a promis-
ing epigenetic marker [83]. Wang et al. [84] identified the 
expression levels of four piRNAs in vaginal secretions, men-
strual blood, semen, saliva, and venous blood by RT-qPCR 
and determined that piR-55521 is specifically expressed in 
semen. In addition, it was shown that piR-61648, piR-43994, 
and piR-33151 are differentially expressed in at least two 
body fluids, suggesting that piRNA has the potential for tis-
sue and body fluids identification and is expected to become 
a new class of epigenetic markers.

Non‑coding RNAs in cause‑of‑death analysis

The cause of death is the core and first issue to be solved in 
traditional forensic medicine, which is of great significance. 
The analysis of the cause of death is the hot spot and difficult 
point of forensic medicine practice, and accurate judgment 
of the cause of death is crucial for conviction, sentencing, 
and justice, as well as for the fairness of judicial practice. 
At present, the routine methods of the cause-of-death analy-
sis are autopsy and pathological examination. Meanwhile, 
with the continuous development of science and technol-
ogy, molecular techniques are gradually being applied to 
cause-of-death analysis. In the process of human death, 
tissue metabolism varies depending on the cause of death, 
among which the types and expression levels of ncRNAs 
will change in the relevant tissues. Based on these differ-
ences, we can provide valuable information on the cause of 
death. Currently, ncRNAs are widely studied in cause-of-
death analysis, including mechanical asphyxia, sudden car-
diac death (SCD), and suicide, and are expected to be new 
epigenetic markers that can be applied in forensic practice. 
Table 3 summarizes the research and application of ncRNAs 
in the analysis of these causes of death.

MicroRNA in the mechanical asphyxia

Under hypoxia, cell biological processes such as cell cycle 
and repair of DNA damage are markedly altered, thus affect-
ing the expression of miRNAs involved in the metabolic 
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regulation of hypoxia, with the brain and heart being the 
most sensitive to hypoxia. Studies have shown that hypoxia, 
as an important regulator of miRNA biosynthesis and func-
tion, can play a role in important biological processes such 
as transcription initiation, post-transcriptional processing, 
and post-transcriptional modification, thereby affecting the 
expression levels of miRNAs [85]. Schober et al. [86] ana-
lyzed the differences in miRNA expression between frontal 
cortex injury and natural death samples by genome-wide 
analysis and RT-qPCR. Two combinations of miR-138/
miR744 and miR-195/miR-324-5p could completely dis-
tinguish between the two groups of samples and were not 
affected by biological age and postmortem time. It was 
shown that miRNA can be used as a marker of cerebellar 
hypoxia and a forensic marker for determining traumatic 
brain injury. Zeng et al. [87] examined the expression lev-
els of miRNAs in brain and heart samples from mechanical 
asphyxia and compared them with samples from craniocer-
ebral injury and hemorrhagic shock to identify differen-
tially expressed miRNAs. Studies have shown that miR-122 
is significantly downregulated in brain and heart samples 
from mechanical asphyxia and can be used as a biomarker 
of mechanical asphyxia.

Han et al. [88] showed that miR-3185 expression is sig-
nificantly increased in cardiac tissues of deceased persons 
with mechanical asphyxia compared to those with craniocer-
ebral injury, hemorrhagic shock, SCD, and poisoning. MiR-
3185 and its target gene CYP4A11 could be used as markers 
of mechanical asphyxia in cardiac tissues. Subsequently, 
this team screened out markers associated with mechani-
cal asphyxia, including DUSP, KCNJ2, miR-122, and miR-
3185, and constructed a molecular prediction model to pre-
dict mechanical asphyxia [89]. Their study showed that the 
markers are not affected by factors such as age, temperature, 
and time of death, and the prediction model consisting of 
multiple markers could help to accurately infer whether 
mechanical asphyxia is the cause of death.

In addition, circRNAs are more stable and conserved 
than linear RNAs, and there is growing evidence that cir-
cRNAs play important roles in a variety of physiological 
processes [90]. Recently, Huang et al. [91] demonstrated 
new evidence of the interaction between circRNA and 
hypoxia, suggesting that hypoxia-induced circRNA is 
closely linked to cancer, angiogenesis, and energy metab-
olism, which provides a theoretical basis for screening 
suitable specific markers that can be used in mechanical 

Table 3   The summary of non-coding RNA markers in cause of forensic death analysis

Biomarkers Sample source Tissue type Cause of death Reference

miR-138/miR744, miR-195/miR-324-5p Human Cerebellum Traumatic brain injury [86]
miR-122 Human, rat Brain, heart Mechanical asphyxia [87]
miRNA-3185 Human Heart Mechanical asphyxia [88]
miR-122, miR-3185 Human Heart Mechanical asphyxia [89]
miR-221 Human Heart Sudden cardiac death with cardiac hypertrophy [93]
miR-1, miR-499 Human Heart Acute myocardial infarction, sudden cardiac 

death
[94]

miR-3113-5p, miR-223-3p, miR-499a-5p, miR-
133a-3p

Human Heart Sudden cardiac death [95]

miR-126-5p, miR-499a-5p Human Heart Coronary artery disease-induced sudden 
cardiac death

[96]

circSLC8A1, circNFIX Rat Heart Sudden cardiac death caused by acute ischemic 
heart disease

[98]

LINC01268 Human Brain Violent suicide [102, 103]
TCONS_00019174, ENST00000566208, 

NONHSAG045500, ENST00000517573, 
NONHSAT034045, NONHSAT142707

Human Blood Suicide with major depressive disorder [99]

RP11-326I11.3, RP11-273G15.2, CTD-
2647L4.4, CTC-487M23.5, RP1-269M15.3, 
RP11-96D1.10

Human Brain Depressed suicide [104]

miR-152 Human Brain Depressed suicide [106]
miR-19a-3p Human Brain Suicide with major depressive disorder [100]
miR-34c-5p, miR-320c, miR-139-5p, miR-195 Human Brain Depressed suicide [107]
miR-146a-5p, miR-146b-5p, miR-24-3p, miR-

425-3p
Human, mouse Brain Depressed suicide [108]

miR-1, let-7b Human Heart, brainstem Sudden infant death syndrome [109]
miR-706 Mouse Brain Drowning [110]
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asphyxia. However, there remains a gap in the study of 
circRNA as a forensic marker for mechanical asphyxia, and 
more experimental validations are needed.

Non‑coding RNAs in SCD

MicroRNA in SCD

Cardiovascular disease is the leading cause of death world-
wide, and SCD is one of the most common types. Due to the 
sudden and latent characteristics of SCD, it is very difficult for 
forensic pathologists to analyze and infer the cause of death. 
Studies have shown that miRNAs play an important role in 
cardiogenesis, cardiac function, and pathology, and are sta-
bly present in the progression of cardiovascular disease [92]. 
Thus, they have great potential as biomarkers of SCD.

Kakimoto et  al. [93] performed deep sequencing of 
miRNA and RT-qPCR on autopsy samples of cardiac tissue 
from SCD with cardiac hypertrophy (SCH), compensated 
cardiac hypertrophy, and normal controls to determine the 
differences in miRNA expression. It was shown that miR-
221 was significantly increased in SCD with SCH; thus, 
miR-221 could be a potentially useful marker for predicting 
and diagnosing SCH. Pinchi et al. [94] examined the expres-
sion levels of miR-1, miR-133, miR-208, and miR-499 in 
autopsy samples of SCD and acute myocardial infarction 
(AMI), and used samples from deceased patients without 
pathological cardiac involvement as controls. It was shown 
that miR-1 and miR-499 could accurately identify SCD and 
AMI, and different cardiac diseases could be distinguished 
by miRNA expression after autopsy.

Yan et al. [95] examined the expression levels of spe-
cific miRNAs including miR-133a-3p, miR-499a-5p, miR-
223-3p, and miR-3113-5p in cardiac tissue from positive and 
negative autopsy samples of SCD, and used carbon monox-
ide poisoning and lethal injury samples as controls. It was 
shown that miR-133a-3p, miR-499a-5p, miR-223-3p, and 
miR-3113-5p are significantly increased in SCD samples and 
could be used to distinguish SCD from non-cardiac death. In 
addition, the combination of miR-3113-5p and miR-223-3p 
had the highest sensitivity and specificity in identifying 
positive and negative autopsy samples of SCD, and each 
pairwise combination of these miRNAs could effectively 
identify the specific cause of SCD.

Li et al. [96] divided autopsy samples of coronary artery 
disease-induced SCD (CAD-SCD) into two groups with or 
without obvious pathological features and used trauma vic-
tims as the control group to explore the value of specific 
miRNAs in the determination of the cause of death due to 
CAD-SCD. The results showed that miR-126-5p and miR-
499a-5p are significantly downregulated in cardiac tissues 
of CAD-SCD and could be used as sensitive postmortem 
biomarkers for the diagnosis of CAD-SCD. In addition, 

the combined application of miR-126-5p and miR-499a-5p 
has high sensitivity and specificity in identifying whether a 
deceased person had experienced silent myocardial ischemia 
and is a valid marker for inferring the CAD condition.

CircRNA in SCD

CircRNA is widespread and abundant in the cardiovascu-
lar system, playing important roles in a variety of develop-
mental and physiological or pathological processes, and its 
expression levels are tissue-specific and time-specific. Stud-
ies have shown that circRNA is expressed at higher levels 
and is significantly less sensitive to exonuclease activity than 
linear RNA. More importantly, it can be secreted and identi-
fied in cardiac diseases, which makes it a highly promising 
biomarker [97]. Tian et al. [98] explored the role of circN-
FIX and circSLC8A1 in the inference of the cause of death 
in SCD due to acute ischemic heart disease (IHD). The team 
found elevated levels of circSlc8a1 in IHD rat models and 
ischemia-hypoxia H9c2 cell models, while circNfix levels 
were elevated early in ischemia and then downregulated. The 
results suggested a time-dependent nature of both markers. 
The detection results in autopsy samples showed that circ-
SLC8A1 has high sensitivity and specificity for myocardial 
infarction. In addition, decreased circNFIX levels could 
indicate ischemic myocardial injury, and it was negatively 
correlated with the degree of coronary artery stenosis. These 
studies suggested that circSLC8A1 and circNFIX can be 
used as new molecular markers for diagnosing SCD due to 
acute IHD.

Non‑coding RNAs in suicide

Although the influencing factors of suicide are very com-
plex, it has become a common cause of death in modern 
society. NcRNAs are abundantly expressed in the brain and 
are brain region-specific and cell type-specific. The expres-
sion level of ncRNA in the brain influences the development 
of psychiatric disorders, and its role in suicidal behavior is 
gradually being revealed [99, 100], demonstrating the poten-
tial of ncRNA as a biomarker for the analysis of the cause 
of death by suicide.

Long non‑coding RNA in suicide

LncRNA is closely related to brain development and partici-
pates in the proliferation and differentiation of pluripotent 
stem cells. It also has a tissue-specific expression pattern that 
can change with age. At present, the role of lncRNA in psy-
chiatric disorders is a research hot topic, and it also plays an 
important role in suicidal behavior [101]. Punzi et al. [102] 
showed that the expression level of LINC01268 is signifi-
cantly increased in violent suicides compared to non-violent 
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suicides and non-suicide deaths. Subsequently, the team 
used RNA sequencing data to demonstrate that LINC01268 
expression is significantly increased in the dorsolateral pre-
frontal cortex in violent suicide [103]. The Brown-Goodwin 
questionnaire results indicated that the high expression of 
specific long intergenic non-coding RNA (lincRNA) in 
violent suicide is associated with aggressive behavior, and 
weighted gene co-expression network analysis revealed a 
strong correlation between LINC01268 and the immune-
related gene P2RY13. This study suggested that LINC01268 
affects emotion regulation, aggressive behavior, and violent 
suicide, and is a potential marker of violent suicides.

Cui et al. [99] performed microarray analysis and RT-
qPCR on peripheral blood mononuclear cells (PBMC) 
from patients with major depression and normal con-
trols. A total of six differentially expressed lncRNAs 
including NONHSAT142707, NONHSAT034045, 
E N S T 0 0 0 0 0 5 1 7 5 7 3 ,  N O N H S A G 0 4 5 5 0 0 , 
ENST00000566208, and TCONS_00019174 were identified 
as downregulated in patients with major depressive disor-
der (MDD). The study showed that these six downregulated 
lncRNA expression levels are negatively correlated with 
suicide risk in MDD patients and could be used as biomark-
ers of suicidal ideation in MDD patients. By genome-wide 
multiplex testing correction, Zhou et al. [104] screened dif-
ferentially expressed lncRNAs by RNA sequencing in the 
rostral anterior cingulate cortex of 26 depressed suicides and 
24 healthy controls and identified a total of 23 statistically 
significant differentially expressed lncRNAs, with 15 being 
upregulated and 8 being downregulated. Six of these lncR-
NAs (RP11-326I11.3, RP11-273G15.2, CTD-2647L4.4, 
CTC-487M23.5, RP1-269M15.3, and RP11-96D1.10) were 
each significantly associated with the expression of an anti-
sense or overlapping protein-coding gene, which could serve 
as a cis target of the lncRNA. This study showed that lncR-
NAs are differentially expressed in the brains of depressed 
patients who died by suicide and provided new clues for the 
analysis of the cause of death by suicide.

MicroRNA in suicide

Among ncRNAs, miRNA functionality is strongly linked 
to the relevance of psychiatric disorders, and its role in sui-
cidal behavior has been extensively studied. Studies have 
shown that overall miRNA expression is downregulated in 
suicide patients with MDD [105]. The team then screened 
two upregulated miRNAs including miR-376a and miR-625 
and six downregulated miRNAs including miR-152, miR-
34a, miR-330-3p, miR-181a, and miR-133b, which were 
differentially expressed in suicide and non-suicide subjects. 
Among these, miR-152 was found to be closely related to 
suicide according to the significance values [106]. After-
ward, the group focused on how pro-inflammatory cytokine 

genes are regulated in suicidal behavior [100] and found 
increased expression of miR-19a-3p in MDD patients who 
died by suicide and in PBMCs of MDD patients with sui-
cidal ideation, suggesting that miR-19a-3p may contribute 
to cytokine dysregulation in suicidal individuals.

Lopez et al. [107] analyzed miRNA expression in the 
prefrontal cortex of individuals who committed suicide and 
controls by RT-qPCR and found miR-34c-5p, miR-320c, 
miR-139-5p, and miR-195 to be significantly upregulated in 
suicide victims. This study suggested that there is a signifi-
cant correlation between these miRNAs and the expression 
levels of the polyamine genes SAT1 and SMOX, and that the 
dysregulation of these genes in the brains of suicidal individ-
uals may be influenced by post-transcriptional regulation of 
miRNAs to cause suicidal behavior. In another study, Lopez 
et al. [108] detected significant differences in the expression 
of miR-425-3p, miR-24-3p, miR-146a-5p, and miR-146b-5p 
by RT-qPCR in the ventrolateral prefrontal cortex of suicidal 
individuals with MDD and healthy controls, and all these 
miRNAs were upregulated in the brain tissue of suicidal 
individuals. In addition, through bioinformatics and func-
tional in vitro experiments, they found that all four miRNAs 
are also associated with the MAPK/Wnt signaling pathway 
that is closely related to suicidal behavior.

MicroRNA in other causes of death

In addition to the above-mentioned causes of death, miRNAs 
have been explored in the analysis of sudden infant death 
syndrome (SIDS), drowning, and acute spinal cord injury, 
but the relevant studies are few or in an initial stage, and 
more studies are still needed to further validate their roles 
in the analysis of these causes of death.

Courts et al. [109] examined the differential miRNA 
expression in heart and brain tissues from SIDS decedents 
and controls by real-time fluorescence qPCR and success-
fully found significant upregulation of miR-1 in heart tissues 
and let-7b in brain tissues of SIDS decedents. This study 
suggests that organ-specific miRNA dysregulation may be 
related to the pathogenesis of SIDS, and that miR-1 and let-
7b may be used as biomarkers of SIDS to provide a reference 
for the cause-of-death analysis.

Yu et al. [110] conducted experiments in freshwater and 
seawater drowning models of mice and analyzed the expres-
sion of miRNAs in the brain using bioinformatics screen-
ing. In their study, eight specific miRNAs (miR-6394, miR-
706, miR-30c-1-3p, miR-6238, miR-494-3p, miR-669 h-3p, 
miR-135a-1-3p, and miR-5109) were examined, and they all 
showed increased expressions in the freshwater drowning 
model and decreased expressions in the seawater drowning 
model. The expression of miR-706 was higher and statisti-
cally different in the freshwater group than in the seawater 
and control groups. Studies have shown that miR-706 can be 
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used as a potential biomarker of drowning to provide clues 
for crime scene investigation.

Recently miRNAs have attracted considerable interest in the 
field of forensic pathology due to their tissue and body fluid 
specificity, disease specificity, and because miRNA research is 
less costly. These features make miRNAs ideal candidate mark-
ers for forensic practice. Pinchi et al. [111] described specific 
miRNAs that can provide indications for understanding crime 
scene investigation and postmortem pathology processes in 
acute spinal cord injury. The study suggested that the specific-
ity and sensitivity of miRNAs can be utilized during autopsy to 
help determine the cause of death; thus, miRNAs may become 
a reliable forensic biomarker for the diagnosis of acute spinal 
cord injury in the future.

Non‑coding RNAs in time‑related estimation

Time-related estimations such as estimation of time since 
death (TSD), wound age estimation, and estimation of time 
since deposition are of great significance in forensic prac-
tice. It plays an important role in determining the time of 
the crime, judging the sequence of injury, delineating the 
scope of the investigation, analyzing the nature of cases, and 
verifying the alibi, which can provide a scientific basis for 
forensic identification and ensure the justice and fairness of 
judicial practice. Traditional time-related estimation mostly 
relies on physical, chemical, morphological, histological, 
immunohistochemical, and imaging methods, but these 
methods are susceptible to environmental and individual 
differences and are prone to false positive results. In addi-
tion, the lack of standardized protocols and the dependence 
on personnel reduce the reliability of identification results. 
Recently, the role of ncRNA in a variety of physiological and 
pathological processes has been extensively investigated, 
and its potential for application in time-related estimation 
has also attracted the attention of forensic scientists. The 
study of ncRNA in time-related estimation, especially in 
wound age estimation and estimation of time since deposi-
tion, is a relatively new field. Although almost all related 
studies are at an early stage, the combination of multiple 
methods can also provide more reliable results and has great 
potential for application.

Non‑coding RNAs in the estimation of TSD

The inference of the TSD or postmortem interval (PMI) has 
been a major challenge in forensic medicine since ancient 
times, which can be generally classified into early PMI esti-
mation, late PMI estimation, and PMI estimation of skele-
tonized body. Traditional methods are mostly based on phys-
icochemical methods such as body temperature, postmortem 
phenomena, and the condition of stomach contents, and 

forensic anthropology and forensic entomology also provide 
multiple methods. However, these methods are influenced by 
a variety of internal and external factors such as environmen-
tal temperature, humidity, and individual differences. Due 
to the widespread existence of ribonucleases, it is generally 
believed that RNA is more easily degraded postmortem or 
in vitro than DNA. However, studies have shown that some 
ncRNAs such as miRNA and circRNA have high stability. 
Therefore, research on sensitive and specific ncRNA mark-
ers that can be used for the estimation of TSD has attracted 
extensive attention.

MiRNAs have tissue and body fluid specificity and higher 
resistance to degradation compared to mRNAs, which have 
promising applications in the estimation of TSD/ PMI. Wang 
et al. [112] investigated the degradation patterns of miRNAs 
as a way of exploring the potential value of miRNA appli-
cations for PMI estimation. The team explored the changes 
of miR-122, miR-133, miR-150, miR-195, and miR-206 in 
the brain, liver, heart muscle, and skeletal muscle of mice 
within 48 h postmortem. The study showed that miR-133 
and miR-206 start to degrade significantly 24 h after death, 
and miRNAs remain relatively stable in liver tissues within 
24 h postmortem. Lv et al. [113] examined the gene tran-
script abundances in rat spleen tissue by RT-qPCR and 
studied the feasibility of using miRNAs, U6 snRNA, 18S 
rRNA, and mRNAs to determine PMI. The study showed 
by the geNorm algorithm that miRNAs are less affected by 
PMI and temperature and are suitable endogenous control 
markers. GAPDH and ACTB are more suitable for early PMI 
estimation due to their rapid degradation after death, while 
18S rRNA has a unique degradation pattern and is suitable 
for estimating PMI over a longer period. Thereafter, the 
team constructed mathematical models for PMI determina-
tion using the transcript levels of lung and muscle tissue 
samples from rats and humans at three different temperatures 
from 0 to 144 h postmortem [114]. In their study, RPS29, 
U6 snRNA, 5S rRNA, miR200c, and miR-195 were selected 
as reference markers for lung tissue, and RPS29, 5S rRNA, 
miR-206, and miR-1 were selected as reference markers for 
muscle tissue. In addition, ACTB and GAPDH were signifi-
cantly correlated with PMI. The mathematical model had 
multi-temperature and multi-indicator characteristics and 
was validated in human samples, which greatly improved the 
accuracy and reliability of the model and provided a practi-
cal tool for forensic practice. Lv et al. [115] screened PMI 
markers in samples collected from the heart, liver, and brain 
of human cadavers as well as in mouse heart and liver sam-
ples. 5S rRNA, miR-1, and miR-133a were selected as the 
best reference markers because they showed high stability 
over 5 days or more. In contrast, miR-122, which is a liver-
specific marker, started to degrade at higher temperatures; 
thus, only 5S rRNA was selected as an endogenous control 
marker for the liver. They concluded that ncRNA can be 
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used as an epigenetic marker to accurately determine PMI in 
human samples, but for very short PMI more sensitive mark-
ers are needed for estimation. In addition, Pasaribu et al. 
[116] provided a strategy to screen the literature for miRNA 
related to PMI research and demonstrated the potential value 
of miRNA in PMI.

The high stability, abundance, and tissue specificity of cir-
cRNA makes it potentially valuable in late PMI estimation. 
The short hairpin structure of snRNA and its lack of nuclease 
degradation make snRNA highly correlated with late PMI. 
In the quantitative detection of ncRNAs, reference genes 
facilitate the standardization and normalization of data, and 
genes with stable expression levels are often the better choice. 
Tu et al. [117] performed a stability assessment of tissue-
specific reference genes by geNorm and NormFinder algo-
rithms. Reference genes suitable for the estimation of PMI 
were screened out from 11 candidate genes, including miR-
133a, circ-AFF1, and LC-LRP6 in skeletal muscle tissues, 
miR-122, circ-AFF1, and LC-Ogdh in liver tissues, and 18S 
rRNA, miR-122, and miR-133a in heart tissues. The study 
demonstrated that miRNA and circRNA are more stable than 
other types of RNAs as reference genes for the estimation of 
PMI. Subsequently, Tu et al. [118] constructed mathemati-
cal models applicable to the three tissues by studying PMI 
estimation markers in postmortem skeletal muscle, liver, and 
heart tissues of mice. Among them, miR-133a and circ-AFF1 
were used as reference markers for skeletal muscle tissues, 
miR-122, circ-AFF1, and LC-Ogdh for liver tissues, and 18S 
rRNA, miR-122, and miR-133a for heart tissues. It was shown 
that both U6 snRNA and Rps18 are suitable biomarkers for 
heart and liver tissues, while both U6 snRNA and ACTB are 
suitable biomarkers for skeletal muscle tissues.

It is challenging to apply appropriate ncRNA mark-
ers for PMI estimation when decomposing or destructive 
cadavers and skeletonized bodies are involved. Na et al. 

[119] detected miRNA levels in patella samples collected 
from cadavers, and the expressions of let-7e and miR-16 
decreased with the increase in PMI. Studies have shown that 
let-7e and miR-16 could be used as specific markers for PMI 
estimation, and their expression levels could be used to esti-
mate PMI over several months. In addition, the differences 
in ncRNA marker expression levels in postmortem samples 
may be related to sampling sites. Kim et al. [120] examined 
the effect of sampling sites on miRNA levels by measur-
ing miRNA expression in blood from different collection 
points of cardiac and non-cardiac death samples, such as 
the external iliac vein, inferior vena cava, and coronary 
sinus. It was shown that the cardiac-specific miR-208b and 
miR-1 markers in postmortem blood differ depending on 
the sampling sites and are not related to PMI. Therefore, it 
is important to consider the tissue specificity of miRNAs in 
forensic applications and to pay attentions to the differences 
in sampling sites.

Currently, ncRNAs show potential for application in the 
estimation of PMI, but there are still many challenges to 
overcome before they can be effectively applied in foren-
sic practice. Table 4 summarizes the available research on 
ncRNAs for TSD estimation. It is important to identify the 
ideal endogenous reference gene, which should have a stable 
expression level and not be affected by the cause of death, 
health status, PMI, and other individual parameters. How-
ever, the expression level and specificity of ncRNAs are dif-
ferent between animal models and human models, and many 
death factors are more difficult to replicate in the models. 
Therefore, the lack of human data is one of the biggest limi-
tations for the application of ncRNAs in PMI estimation. 
With the discovery of more effective epigenetic markers and 
the comprehensive consideration of various factors, the com-
bination of various tissues and multiple ncRNA markers will 
provide a powerful forensic tool for PMI estimation.

Table 4   The summary of non-coding RNA markers related to the estimation of time since death

a Hyphen indicates a marker that was not studied

Biomarkers Time since death Reference genea Sample source Tissue type Reference

miR-133, miR-206 24 h–48 h - Mouse Brain, liver, heart 
muscle, and skeletal 
muscle

[112]

18S rRNA 0–144 h miR-125b, miR-143 Rat Spleen [113]
GAPDH, ACTB 0–144 h miR-195, miR200c, 5S rRNA, U6 snRNA Rat, human Lung [114]
GAPDH, ACTB 0–144 h miR-1, miR-206, 5S rRNA Rat, human Muscle [114]
ACTB 0–144 h miR-1, miR-133a, 5S rRNA Rat, human Myocardium [115]
ACTB 0–144 h 5S rRNA Rat, human Liver [115]
U6 snRNA, Rps18 0–192 h miR-122, miR-133a, 18S rRNA Mouse Heart [117, 118]
U6 snRNA, Rps18 0–192 h LC-Ogdh, circ-AFF1, miR-122 Mouse Liver [117, 118]
U6 snRNA, ACTB 0–192 h miR-133a, circ-AFF1 Mouse Skeletal muscle [117, 118]
let-7e, miR-16 1 d–2 y Ce_miR-39_1 Human Patella [119]
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MicroRNA in wound age estimation

The time of injury occurrence is an important issue in foren-
sic medicine, which can provide a scientific basis for the 
practice of forensic medicine, such as the time of the crime, 
the sequence of injury, the analysis of the nature of the case, 
and the reconstruction of the crime scene. Traditional meth-
ods of wound age estimation such as morphology, histol-
ogy, and immunohistochemistry have limited the accuracy of 
wound age estimation due to the lack of standardization and 
dependence on personnel. Therefore, it is still a challenge 
to make accurate wound age estimation. Generally, wound 
age estimation can be divided into wound age estimation of 
cadavers and wound age estimation of living bodies, and 
current research on wound age estimation involves organs 
and tissues such as the skin, brain, muscle, and bone.

Since miRNAs are involved in the physiological and 
pathological processes from injury to wound healing, 
wound age estimation has become an innovative applica-
tion area of miRNAs [121, 122]. Neri et al. [123] inves-
tigated the expression of miRNA in skin samples from 
the site of hanging and revealed the difference in miRNA 
expression in wounds before and after death. Compared 
with the control group, miR-214a-3p, miR-103a-3p, and 
miR-92a-3p were significantly upregulated in samples of 
subjects who died by hanging. In addition, studies have 
shown that miRNAs are differentially expressed over time 
in wounds, showing potential for application in wound age 
estimation [124]. Bertero et al. [125] showed that miR-
483-3p starts to increase at 3 days after wound forma-
tion and peaks at 6 to 7 days. Wang et al. [126] detected 
miRNA expression profiles in granulation tissue on the 
7th day of wound healing by microarray analysis and 
RT-qPCR. It was found that the expressions of miR-203, 
miR-21, and miR-31 are upregulated by 2.5, 3.1, and 17.2 
times, respectively, while the expression of miR-249 is 
downregulated by 2 times. Etich et  al. [127] revealed 
changes in expression levels of miRNA during skin wound 

healing by RT-qPCR and bioinformatics tools. Among 
them, the expression levels of miR-204 and miR-205 were 
downregulated from day 5 to day 10 and day 1 to day 
7, respectively, while the expression level of miR-31 was 
significantly upregulated after day 5. Chang et al. [128] 
investigated the role of miR-126 in human skin wound 
healing and detected the expression of miR-126 in skin 
wounds by RT-qPCR. The results showed that miR-126 
expression significantly increases with time on day 1 after 
injury (inflammatory phase) and day 7 after injury (prolif-
erative phase), respectively.

In a study on wound age estimation of burns, Lyu et al. 
[129] analyzed 24 differentially expressed miRNAs in a 
mouse model of antemortem burn skin through microar-
ray analysis, among which 19 miRNAs were significantly 
upregulated and 5 miRNAs were significantly down-
regulated. Zhang et al. [130] investigated miR-711 and 
miR-183-3p expression levels in mouse and postmortem 
human burned skin by RT-qPCR. The study showed that 
miR-711 and miR-183-3p levels in antemortem burn areas 
were elevated until 120 h after death, and that postmortem 
burns do not induce changes in miR-711 and miR-183-3p 
expression levels in mouse skin, suggesting that these two 
miRNAs are potential biomarkers for distinguishing ante-
mortem from postmortem burns. In contrast, the levels 
of these two miRNAs were also elevated in human burn 
skin at 48 h of autopsy and correlated with the severity of 
burns. In addition, since miRNAs play an important role 
in the process of fracture healing, they may provide a new 
approach for determining the wound age of fracture injury 
[131, 132].

Current miRNA-related studies have opened up new 
directions and promising prospects for their use as wound 
age estimation markers [133]. Table 5 summarizes the 
research on miRNA in wound age estimation. However, 
few studies have been conducted, and almost all of them 
are in the early stages. The challenge lies in how to select 
standardized samples to obtain reliable experimental data, 

Table 5   The summary of 
miRNA markers related to 
wound age estimation

Biomarkers Wound age Expression level Sample source Injured tissue Reference

miR214a-3p, miR103a-3p, 
miR92a-3p

12 h–24 h Upregulation Human Skin [123]

miR-483-3p 3 d–7 d Upregulation Human, Mouse Human 
keratino-
cytes, skin

[125]

miR-31, miR-21, miR-203 7 d Upregulation Mouse Skin [126]
miR-249 7 d Downregulation Mouse Skin [126]
miR-204 5 d–10 d Downregulation Mouse Skin [127]
miR-205 1 d–7 d Downregulation Mouse Skin [127]
miR-31 5 d–14 d Upregulation Mouse Skin [127]
miR-126 1 d, 7 d Upregulation Human Skin [128]
miR-711, miR-183-3p 0–120 h Upregulation Human, Mouse Burned skin [130]
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so as to improve the feasibility, effectiveness, and accuracy 
of miRNA as a tool for wound age estimation. In addition, 
one method alone is unlikely to provide the credibility 
required for forensic cases, and combining histological, 
immunohistochemical, and genetic analysis may become 
a new tool for precise diagnosis.

Non‑coding RNAs in the estimation of time 
since deposition

Estimating the time since deposition (TsD) of a crime 
scene and determining the biological traces formed before 
and after the crime event is one of the challenges faced 
by forensic investigators. A more accurate estimate of 
the time of the crime can provide valuable information 
for verifying witness statements, identifying the number 
of suspects, and assessing the suspects’ alibis. Estimating 
the TsD is helpful in determining the time of the crime 
and has great value in the practice of forensic medicine. 
At present, there are several methods to determine the 
deposition time of body fluids, including physical, chemi-
cal, and biological methods, among which research on 
the deposition time of bloodstains is relatively abundant. 
NcRNA has the characteristics of body fluid specific-
ity and relative stability; thus, it has a good application 
prospect in the estimation of time since deposition. At 
present, there are relatively few studies on the application 
of ncRNA markers to estimate the TsD, and more relevant 
studies are still needed.

In 2005, Anderson et al. [134] used RT-qPCR to exam-
ine the expression of ACTB and 18 s rRNA in eight human 
dried blood samples and constructed linear functions that 
could be used to infer the time since deposition of blood 
traces over 150 days. Lech et al. [135] evaluated whether 
miRNA-142-5p and miRNA-541, two significant diurnal 
expression patterns in the vitreous humor, could be used 
to estimate the deposition time of bloodstains. Although 
the results showed that these markers cannot be applied 
to the estimation of bloodstain deposition time, they pro-
vide insights regarding the methods and experience for 
such studies. Alshehhi et al.[136] examined the relative 
expression ratio of saliva-specific markers and semen-
specific markers by RT-qPCR and developed a method 
to estimate the deposition time of body fluids, in which 
miRNA and U6 snRNA could be used as reference genes. 
Wei et al. [137] detected the relative expression levels of 
bloodstains in indoor and outdoor environments by RT-
qPCR and constructed a mathematical model based on 
circ-0001445, ALAS2, and HBB markers. Their study 
showed that the relative expression levels of circ-0001445 
varied over time and that circRNA could be used as a 
potential marker for TsD estimation. In addition, different 
environments significantly affect the relative expression 

levels of some blood markers, but sex differences do not 
affect the estimation of bloodstain deposition time. This 
study was the first to use circRNA for TsD estimation 
and initially explored the practical value of circRNA in 
estimating the deposition time of bloodstains.

Non‑coding RNAs in age estimation

Estimation of age is widely used in forensic practice and 
plays an important role in the identification of corpse 
sources, conviction and sentencing, and the determina-
tion of criminal capacity. Age estimation initially relied 
on bones and teeth, then based on biomolecular alterations 
of DNA or proteins such as Signal joint T-cells receptor 
excision DNA circles, telomere shortening, mitochondrial 
DNA deletion, aspartic acid racemization, and advanced 
glycation end-products, which developed the molecu-
lar framework of forensic estimation of age [138]. With 
the development of epigenetics, DNA methylation also 
provides a powerful marker for forensic applications in 
age estimation [139]. Currently, forensic anthropology 
methods are the main methods used for age estimation, 
but they are often affected by individual nutritional dif-
ferences, environment, disability, and other factors. More 
importantly, they are often confounded by trace detection. 
Currently, age-associated ncRNAs as an epigenetic marker 
for age estimation may provide a new direction and idea to 
meet the practice of forensic medicine.

MicroRNA in age estimation

As early as 2010, Noren Hooten et al. [140] evaluated 
more than 800 miRNAs by RT-qPCR, and the expres-
sion abundance of most miRNAs decreased with age. The 
investigators screened miR-103, miR-107, miR-128, miR-
130a, miR-155, miR-24, miR-221, miR-496, and miR-
1538, a total of nine miRNAs that are significantly reduced 
in older adults, and showed that the reduction of miRNAs 
is independent of race and sex. Their study revealed that 
the expression of miRNAs is closely related to human age, 
and miRNAs are expected to be epigenetic markers for age 
estimation. Rubie et al. [141] revealed that miR-486 and 
mechanistic target of rapamycin (mTOR) protein levels are 
negatively correlated in PBMCs, and miR-486 levels are 
higher in older individuals than in younger individuals. It 
was shown that miR-496 is involved in aging regulation 
through the insulin/mTOR pathway and that the expres-
sion levels of miRNAs are correlated with increasing age. 
Huan et al.[142] identified 127 miRNAs that are differ-
entially expressed with age in 5221 adult samples and 
constructed a linear age prediction model based on the 
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expression levels of 80 miRNAs. The team used the dif-
ferences between the predicted and actual age of miRNAs 
as indicators of biological aging, which predict all-cause 
mortality and correlate with coronary heart disease and 
hypertension. The study showed that cell type has little 
effect on the correlation between miRNA expression and 
age, and that age prediction models could be constructed 
based on a large sample size and a wide age range of 
whole-blood miRNA expression profiles.

CircRNA in age estimation

Wang et al. [143] screened age-associated circRNAs by 
false discovery rate, lasso regression, and support vector 
machine analysis, and their analysis revealed that circRNA 
levels were upregulated with age. Twenty-eight circRNAs 
were validated by RT-qPCR, and five circRNAs were finally 
selected to construct age prediction models. By comparing 
with five modeling methods, the regression tree model and 
random forest regression model had the best mean aver-
age error, reaching 8.767 and 9.126 years, respectively. In 
addition, it was shown that the mean average error of the 
age prediction model is significantly smaller in male age 
prediction than that in females, showing the influence of 
sex factors on circRNA markers. Their study is the first to 
construct age prediction models using circRNAs as biologi-
cal markers, showing that circRNA as an epigenetic marker 
with potential application in age estimation has promising 
research prospects.

Recently, the role of ncRNAs in the aging process has 
been revealed and is continuously being studied. Moreo-
ver, ncRNAs are involved in various key cellular processes 
and are closely associated with age [144, 145]. At present, 
the expression levels of ncRNAs show age specificity and 
have great potential for application in the practice of forensic 
medicine. However, there are few relevant studies, and more 
questions need to be addressed. The variation of ncRNAs in 
the life cycle of individuals, the influence of gender factors 
on markers, the number and age range of study samples, and 
the methods of constructing prediction models are the key 
elements that need to be further explored.

MicroRNA in the identification 
of monozygotic twins

Currently, forensic genetics mainly applies short tandem 
repeat, single nucleotide polymorphism, and insertion/
deletion genetic markers for identification, such as genetic 
relationship and personal identification. However, monozy-
gotic (MZ) twins are two embryos derived from the same 
zygote through cleavage, having the same DNA sequence. 
Thus, conventional methods cannot distinguish MZ twins. 

Ensuring the identification of potential offenders and obtain-
ing accurate identification results in criminal cases or parent-
age testing is an urgent problem for forensic scientists. As a 
type of ncRNA widely existing in eukaryotic cells, miRNA 
participates in a variety of biological processes and has the 
characteristics of low molecular weight, relative stability, 
abundant quantity, and tissue specificity. In recent years, 
many studies have shown that disease-related miRNAs are 
differentially expressed in MZ twins, which provides a theo-
retical basis for the application of miRNAs as an epigenetic 
marker in identifying MZ twins [146–148].

Fang et al. [149] performed a genome-wide analysis of 
miRNAs in the blood of four pairs of MZ twins by MPS, 
but only 14% of the examined miRNAs were differentially 
expressed. Moreover, RT-qPCR was used to verify the six 
most abundant differentially expressed miRNAs, and only 
miR-451a was differentially expressed among all MZ twins. 
Xiao et al. [150] analyzed the miRNA expression profiles 
in the blood of seven pairs of MZ twins by microarray. A 
total of 545 miRNAs were differentially expressed, and only 
miR-142-3p and miR-3653-3p were differentially expressed 
in six pairs of MZ twins. The authors further validated 10 
differentially expressed miRNAs using RT-qPCR in 18 pairs 
of MZ twins, demonstrating their application value in the 
identification of MZ twins.

At present, research on miRNA applications in forensic 
practice is insufficient, and most studies have relatively small 
sample sizes. Moreover, the tissue specificity of miRNAs 
makes it necessary for researchers to explore the related 
markers for different kinds of materials, and it is not yet 
possible to provide miRNA markers for the identification of 
MZ twins. Therefore, the application potential of miRNAs 
in the identification of MZ twins remains to be explored.

Conclusions

As an epigenetic phenomenon that plays an important role in 
gene expression, the function and mechanism of ncRNAs in 
the physiological and pathological processes of different sys-
tems, organs, tissues, and cells are constantly being revealed. 
Moreover, with the development of molecular biology, 
molecular genetics, and bioinformatics, the advantages of 
low molecular weight, relative stability, abundant quantity, 
and tissue specificity possessed by ncRNAs are gradually 
revealed. This provides a richer theoretical basis and more 
promising research direction for the application of ncRNAs 
in the practice of forensic medicine, among which ncRNAs 
show great potential and a good prospect in the identifi-
cation of tissues and body fluids, cause-of-death analysis, 
time-related estimation, estimation of age, and identification 
of monozygotic twins. Figure 2 illustrates the research on 
ncRNAs and their application in forensic practices.
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In addition, the development of detection technologies 
such as NGS also provides a powerful tool for the study and 
exploration of ncRNAs. Notably, single-cell RNA sequenc-
ing (scRNA-seq) has been widely used to detect the expres-
sion patterns of ncRNAs in cells with different tissue types, 
disease states, and samples from different periods. Recent 
studies comparing the differences between scRNA-seq and 
single-nucleus RNA sequencing (snRNA-seq) for vari-
ous tissues and disease types have shown that snRNA-seq 
is more advantageous in frozen and difficult-to-dissociate 
samples [151–153]. Moreover, snRNA-seq can reduce the 
effects of enzymatic digestion and mechanical stress. Thus, 
we can obviously obtain more molecular numbers through 
scRNA-seq. Due to their advantages in the study of cell het-
erogeneity, they may provide new tools and methods for the 
application of ncRNAs in forensic practice, especially in 
the identification of monozygotic twins, the identification 
of tissues and body fluids, and age estimation.

Currently, miRNA has achieved significant results in 
related research, but some emerging ncRNAs such as cir-
cRNA, piRNA, and lncRNA are still in the exploratory stage 
for forensic applications. The ideal ncRNA markers should 
be specific, sensitive, stable, non-destructive, universal, and 
efficient. However, changes in biological processes, age, 
sex differences, population differences, health status, and 
other factors will affect the expression levels of ncRNAs. 
To exploit the application potential of ncRNAs in forensic 

practice, it is crucial to establish stable identification models. 
Moreover, the development of methods with short identifi-
cation time and strong identification ability is still a highly 
valuable research direction for application.

There are still many studies on non-coding RNAs rely-
ing mainly on animal models, and studies with large sam-
ples are limited by ethical and moral factors. However, 
there are differences in the expression level and specificity 
of ncRNAs between animal models and humans. Thus, 
the lack of human data is one of the biggest limitations 
for the application of ncRNAs in the practice of foren-
sic medicine. The development of ncRNA databases such 
as miRNA and circRNA databases may provide a basis 
for the discovery of specific markers and the exploration 
of modeling methods. In addition, with the continuous 
development of biological technology, the functions of 
ncRNA in different organs, tissues, and cells will be fur-
ther revealed, which will provide a richer theoretical basis 
and a more promising research direction for their applica-
tion in the practice of forensic medicine.

At present, ncRNAs are closely connected with forensic 
medicine, which provides powerful tools and methods for 
the practice of forensic medicine. It has unique advantages 
and extremely high application value in solving problems 
such as the identification of tissues and body fluids, cause-
of-death analysis, time-related estimation, age estimation, 
and the identification of monozygotic twins. It is believed 

Fig. 2   Various research and potential applications of microRNA (miRNA), circRNA, long non-coding RNA (lncRNA), and PIWI-interacting 
RNA in the practice of forensic medicine
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that the application potential of ncRNAs in forensic medi-
cine will be explored more in-depth, providing more novel 
and effective means for the practice of forensic medicine.
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