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Abstract
The accurate age at death assessment of unidentified adult skeletal individuals is a critical research task in forensic anthro-
pology, being a key feature for the determination of biological profiles of individual skeletal remains. We have previously 
shown that the age-related decrease of bone mineral density (BMD) in the proximal femur could be used to assess age at death 
in women (Navega et al., J Forensic Sci 63:497–503, 2018). The present study aims to generate models for age estimation 
in both sexes through bone densitometry of the femur and radiogrammetry of the second metacarpal. The training sample 
comprised 224 adults (120 females, 104 males) from the “Coimbra Identified Skeletal Collection,” and different models 
were generated through least squares regression and general regression neural networks (GRNN). The models were opera-
tionalized in a user-friendly online interface at https://​osteo​mics.​com/​DXAGE2/. The mean absolute difference between the 
known and estimated age at death ranges from 9.39 to 13.18 years among women and from 10.33 to 15.76 among men with 
the least squares regression models. For the GRNN models, the mean absolute difference between documented and projected 
age ranges from 8.44 to 12.58 years in women and from 10.56 to 16.18 years in men. DXAGE 2.0 enables age estimation in 
incomplete and/or fragmentary skeletal remains, using alternative skeletal regions, with reliable results.
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Introduction

The accurate age at death estimate of unknown skeletons 
of adult individuals is a crucial research task in both bio-
archeology and forensic anthropology, being a key feature 
for the determination of population demographic structures 
and biological profiles of individual remains [2, 3]. Current 
adult aging routines are traditionally based on macroscopic 

observations of the degenerative (“wear and tear”) changes 
in four skeletal regions: the pubic symphysis [4–8], the 
auricular surface [9–12], cranial sutures [13, 14], and ster-
nal rib ends [15–17]. However, a plethora of other skeletal 
regions and methods are also used — in combination with 
long-standing reference methods, or independently — to 
estimate age at death in adults. These encompass, among 
others, molecular clocks in ancient proteins [18], the degen-
eration of the acetabulum [19, 20], amino acid racemiza-
tion in dental tissues [21, 22], tooth-root translucency [23], 
dental attrition [24, 25], the ratio of the pulp/tooth area in 
canines [26], and bone histology [27, 28].

Unfortunately, most skeletal indicators are unreliable, 
showing weak and irregular associations with age, echoing 
the complexity of the aging process [29, 30]. Individual and 
population differences during biological senescence stem from 
a reticulate of factors and interactions at the genetic, sociocul-
tural, and environmental levels [29, 31, 32]. Moreover, exist-
ing age estimation techniques often present methodological 
problems, such as the subjective nature of user-observation and 
subsequent lower reproducibility [4, 33] and the application of 
inappropriate sampling and statistical procedures [3, 34, 35]. 
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Scientific organizations and individual researchers alike have 
been advocating for more objective, less observer-dependent, 
age estimation methods, with a concomitant exploration of 
innovative statistical approaches [3, 33, 36–38]. New method-
ologies for age estimation in skeletal remains are thus needed 
to address these concerns.

Bone mass decrease with age is a universal phenomenon 
— in individuals of both sexes from different populations, 
e.g., [39–43]. Age affects bone loss through direct and indi-
rect mechanisms, including remodeling imbalance, second-
ary hyperparathyroidism, decline in the intestinal produc-
tion of the active metabolite of vitamin D, and reduction in 
bone tissue repair [44–46]. Age-specific bone remodeling 
occurs in different skeletal regions and types of bone tis-
sue — i.e., trabecular and cortical — at dissimilar rates, and 
macroscopically observable features of bone loss have long 
been used to develop aging standards in adults, e.g., [47–54]. 
Recently, bone densitometry has been used to develop and 
test methods for age at death estimation based on the associ-
ation between bone mineral density (BMD) and age [55–58].

We have previously shown that the age-associated 
decrease of bone mineral density (BMD) at the proximal 
extremity of the femur could be considered to estimate age at 
death in women of Portuguese descent [1]. Published results 
emphasized the potential of dual-energy X-ray absorptiom-
etry (DXA), data modeling through artificial neural networks 
(ANN), and a user-friendly online interface named DXAGE 
(http://​osteo​mics.​com/​DXAGE/), to attain accurate and 
reproducible estimates of age at death in skeletal remains 
of adults. Nevertheless, DXAGE was only designed for age 
estimation of adult women. As such, the present study aims 
to provide models for age estimation of both sexes through 
bone densitometry at the proximal femur. Also, age-related 
cortical bone loss at the second metacarpal is well estab-
lished in both modern and archeological samples [59–65] 
— but, except for Kimura’s (1992) method, cortical bone 
loss with age at the second metacarpal has not been used for 
age estimation in skeletal remains of adults. Accordingly, 
another objective of this study is to assess the potential of 
bone loss at the second metacarpal to estimate age at death 
in adult individuals. The development of an online applica-
tion (DXAGE 2.0) featuring different statistical models for 
age estimation using BMD at the proximal femur and sec-
ond metacarpal cortical index (MCI) constituted an ancillary 
objective.

Materials and methods

Sample

The training study base comprised 224 adults (120 females 
and 104 males) from the “Coimbra Identified Skeletal 

Collection” (CISC; Cunha and Wasterlain, [66]). Docu-
mented ages at death ranged from 20 to 96  years old 
(Table 1). Sampled individuals were Portuguese nationals 
and for the most part were non-specialized manual work-
ers with low socioeconomic status. They were buried for at 
least 5 years — as a rule, after that period, the bodies were 
exhumed — in earth-cut shallow graves at the Conchada 
Municipal Cemetery (Coimbra, Portugal).

Data collection

The left femur and left second metacarpal of each individual 
were evaluated through dual X-ray absorptiometry and con-
ventional radiogrammetry, respectively. Individuals without 
gross post-depositional modifications and/or obvious disease 
modifications at the skeletal sites of interest were the only 
ones included in the sample.

Osteodensitometry (also identified as bone densitometry) 
was attained with a Hologic QDR 4500C Elite densitometer 
(available issued formulae should be used to convert BMD 
values measured on a densitometer from other manufactur-
ers, e.g., GE Healthcare or Nordland). Femora were placed 
anteroposteriorly, aligning the diaphysis to the densitom-
eter’s central axis, on a low-density cardboard box, on top 
of 10 cm of rice (see [1, 68]). Regarding osteodensitometry, 
the proximal extremity of the femur is usually separated 
into distinctive regions of interest (ROI): total hip, tro-
chanteric and intertrochanteric/proximal diaphysis regions, 
femoral neck, and Ward’s area. The total hip area of the 
femur (also identified in the medical literature as the total 
proximal femur region) stems from the aggregate of three 
specific parts: trochanteric region, intertrochanteric/proxi-
mal diaphysis regions, and neck (Fig. 1) [67]. In this study, 
bone area (cm2), bone mineral content (BMC, g), and bone 
mineral density (BMD, g/cm2) were determined through a 
semi-automatic procedure in three of the ROI: femoral neck, 
Ward’s area, and total hip. BMD at these sites was used to 
construct the models for the prediction of age at death.

Table 1   Age and sex 
distribution of the study sample 
of the Coimbra Identified 
Skeletal Collection (CISC)

Sample size, N; percentage, %

Age class Females Males

N % N %

20–29 15 12.5 14 13.5
30–39 18 15.0 15 14.4
40–49 21 17.5 15 14.4
50–59 19 15.8 14 13.5
60–69 14 11.7 18 17.3
70–79 18 15.0 21 20.2
80 +  15 12.5 7 6.7

1484 International Journal of Legal Medicine (2022) 136:1483–1494

http://osteomics.com/DXAGE/


1 3

Conventional radiogrammetry was employed to deter-
mine the cortical index (MCI) at the mid-diaphysis of the 
second metacarpal, according to [69]:

Radiographs were acquired in a Senographe DS digital 
radiographic device (GE Healthcare; focal length 50 cm, 
Kv 27–30 and mAseg 14–20, according to the features of 
each individual metacarpal), and all measurements were 
accomplished through the Centricity DICOM Viewer 3.1.1 
software.

The data that sustain the results of this study are attain-
able from the corresponding author upon reasonable request.

Statistical analysis

Descriptive statistics, namely group means, standard devia-
tion, and 95% confidence intervals for the mean, were 
assessed. Conventional least squares regression analysis [70] 
and an adapted General Regression Neural Network [71] 
were employed to assign the different variables (i.e., BMD 
Total, BMD Neck, BMD Ward, and MCI) toward a model 
of age at death estimation.

The plainest arrangement of regression (i.e., single linear 
regression) presupposes a linear association between two 
variables that can be denoted by the ensuing equation:

in which X indicates the independent variable, Y the 
dependent variable, α the value of Y when X corresponds to 
zero, β the slope in Y with X, and ϵ features the non-system-
atic error in Y [38, 72]. The model assumes that Y shows sta-
tistical uncertainty, and errors present a normal distribution 
around the real values with constant variance, whereas X is 

MCI =
Diaphysis total width − Medullary width

Diaphysis tota lwidth

Y = � + �X + �

error-exempted or virtually error-exempted [73]. Predictive 
variables selection was performed with a stepwise approach, 
and collinear attributes, if any, were removed from the final 
models.

A general regression neural network (GRNN) was also 
used to model BMD and MCI variables as predictors of 
age at death. This ANN aims to simulate the associative 
memory, comprising distinct layers: input, pattern, summa-
tion, and output [71, 74]. The input layer matches the BMD 
and MCI vectors to predict age, while in the pattern layer, 
the input is equated with additional instances stored at the 
network’s memory. Each instance, or pattern, present in the 
network is operated in the same way as an artificial neuron 
initiated by a radial basis function. The layers summation 
and output provide a regression surface and an assessment 
of age at death employing the pondered average of memory 
stockpiled examples. The activation values of the radial basis 
function linked to the artificial neurons support the factors 
of ponderation. Considering a matrix of predictors X and an 
outcome variable Y, the estimate of the network Y(X)’ can 
be depicted as follows:

in which D2

i
 is the distance between the vector of the input 

layer and the ith example pre-deposited in the pattern layer’s 
memory, and �2 is a smoothing parameter controlling the 
projected density and regulating the information volume sur-
rounding the artificial neurons.

The preparation of these models was implemented with 
Brent’s algorithm, in combination with an arrangement of 
cross-validation ( K = n − 1 ) and used the entire sample. 
The probabilistic estimation of age at death is considered 
the most appropriate [75, 76]; thus, the ANN employed 

Y(X) =

∑n

i=1
Yie

−
D2
i

2�2

∑n

i=1
e
−

D2
i

2�2

Fig. 1   Densitometry report 
featuring, among others, bone 
mineral density values, T-scores 
and Z-scores at the femoral 
neck, Ward’s area, and total hip
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was adapted to produce, not only the conditional mean, 
but also an estimate of the a posteriori distribution. By 
adopting a probabilistic framework, the estimation of age 
at death can be mathematically expressed as follows:

The third and fourth layers of the artificial neural 
network have to be altered to obtain f(y|x) and to allow 
for the assessment of f(x|y) through a kernel function of 
Gaussian type. The concluding age at death prediction is 
attained by the quantile estimation related to the a poste-
riori distribution.

f (y|x) = f (x|y)f (y)
f (x)

=
f (x|y)f (y)

∫ b

a
f (x|y)f (y)dy

Results

BMD shows a graded decrease with increasing age at 
all sites. Results by sex and age class are summarized in 
Table 2, Table 3 Table 4. In women, BMD Total exhibits a 
negative and moderate linear association with age at death 
(Pearson’s r =  − 0.696; p < 0.001), whereas both BMD at 
the neck of the femur (Pearson’s r =  − 0.743; p < 0.001) and 
BMD at the Ward’s area (Pearson’s r =  − 0.765; p < 0.001) 
present a negative and strong correlation with age (Fig. 2). 
Relative change between the first age class (20–29 years) 
and the oldest age group (80 + years) oscillates between 
39.0% (BMD Total) and 56.9% (BMD Ward). Among men, 
BMD Total (Pearson’s r =  − 0.543; p < 0.001) and BMD 
Neck (Pearson’s r =  − 0.660; p < 0.001) decline moderately 
with age, while BMD Ward shows a strong and negative 
linear correlation with age (Pearson’s r =  − 0.718; p < 0.001; 

Table 2   Mean values of bone 
mineral density at the total hip 
(BMDTotal) according to sex and 
age class (CISC)

Age class Females Males

Mean SD 95% CI N Mean SD 95% CI N

20–29 0.916 0.11 0.855–0.977 15 1.045 0.09 0.991–1.097 14
30–39 0.931 0.10 0.882–0.981 18 0.948 0.14 0.869–1.027 15
40–49 0.843 0.12 0.786–0.899 21 0.895 0.17 0.802–0.988 15
50–59 0.781 0.12 0.721–0.840 19 0.872 0.13 0.796–0.947 14
60–69 0.746 0.12 0.675–0.817 14 0.840 0.11 0.784–0.894 18
70–79 0.708 0.09 0.662–0.755 18 0.764 0.13 0.703–0.824 21
80 +  0.559 0.16 0.504–0.614 15 0.804 0.16 0.654–0.955 7

Table 3   Mean values of bone 
mineral density at the femoral 
neck (BMDNeck) according to 
sex and age class (CISC)

Age class Females Males

Mean SD 95% CI N Mean SD 95% CI N

20–29 0.813 0.12 0.746–0.880 15 0.953 0.07 0.912–0.996 14
30–39 0.842 0.10 0.790–0.893 18 0.851 0.12 0.785–0.918 15
40–49 0.734 0.12 0.680–0.788 21 0.757 0.15 0.673–0.841 15
50–59 0.674 0.09 0.629–0.720 19 0.720 0.11 0.659–0.780 14
60–69 0.611 0.11 0.549–0.672 14 0.707 0.11 0.651–0.763 18
70–79 0.596 0.08 0.558–0.634 18 0.630 0.10 0.590–0.671 21
80 +  0.474 0.07 0.433–0.515 15 0.661 0.13 0.544–0.781 7

Table 4   Mean values of bone 
mineral density at Ward’s area 
(BMDWard) according to sex and 
age class (CISC)

Age class Females Males

Mean SD 95% CI N Mean SD 95% CI N

20–29 0.744 0.21 0.627–0.861 15 0.794 0.10 0.734–0.853 14
30–39 0.738 0.13 0.674–0.802 18 0.691 0.15 0.606–0.776 15
40–49 0.609 0.12 0.555–0.664 21 0.584 0.14 0.506–0.662 15
50–59 0.491 0.12 0.433–0.550 19 0.524 0.09 0.471–0.578 14
60–69 0.429 0.13 0.355–0.503 14 0.499 0.09 0.456–0.542 18
70–79 0.398 0.06 0.367–0.429 18 0.430 0.08 0.391–0.468 21
80 +  0.321 0.08 0.280–0.363 15 0.445 0.05 0.324–0.566 7
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Fig. 3). BMD variation between the youngest and oldest age 
classes is lesser than in women, fluctuating between 23.1% 
(BMD Total) and 44.0% (BMD Ward). MCI also decreases 
with increasing age at death in both sexes (Table 5), with 
a negative and moderate linear association in the wom-
en’s group (Pearson’s r =  − 0.582; p < 0.001), and a weak, 
negative, correlation among men (Pearson’s r =  − 0.202; 
p = 0.040). Relative variation between the youngest and old-
est age classes is 39.9% in women and 21.0% in men.

A conventional least squares regression analysis was 
conducted, and three age estimation models — tailored for 
each sex and also for individuals whose biological sex is 
not known — were generated (Table 6). Goodness-of-fit 
statistics for the different linear regression models used to 
predict adult age at death are summarized in Table 7. The 
mean absolute difference between the known and predicted 
age at death ranges from 9.39 to 13.18 years among women 
and 10.33 to 15.76 among men. The best linear regression 
models combine BMD Ward with MCI, while those that 
employ only the metacarpal cortical index present the poorer 
performance.

A modified general regression neural network was 
employed to generate different models for age estimation. 
A total of 15 models for each sex — and for individuals 
with unknown sex — were created. Measures of prediction 
accuracy for the age at death predicting method are sum-
marized in Table 8. In women, the mean absolute difference 
between documented and projected age ranges from 8.44 to 
12.58 years, while in men, the difference ranges from 10.56 
and 16.18 years, contingent to the variables employed to 
generate the models. As a rule, models relying on BMD 
variables show increased accuracy: a model with BMD at 
the neck and BMD Ward exhibits the best performance in 
women, and the model that uses only BMD measured at 
Ward’s is superlative in men. The least efficient models 
include those that only use the metacarpal cortical index, 
followed by those that employ BMD Total in isolation.

All models were contrived as a new online application 
— DXAGE 2.0, freely available at http://​osteo​mics.​com/​
DXAGE2/ — that enables a user-friendly and interactive 
routine for age estimation with BMD and MCI values. In 

Fig. 2   Strong negative association between bone mineral density at 
Ward’s area (g/cm.3) and age at death in females (CISC)

Fig. 3   Strong negative association between bone mineral density at 
Ward’s area (g/cm.3) and age at death in males (CISC)

Table 5   Mean values of 
metacarpal cortical index (MCI) 
according to sex and age class 
(CISC)

Age class Females Males

Mean SD 95% CI N Mean SD 95% CI N

20–29 53.99 10.01 48.44–59.54 15 55.66 12.90 48.22–63.11 14
30–39 52.56 9.19 47.98–57.13 18 59.95 12.14 53.23–66.68 15
40–49 56.54 11.60 51.26–61.82 21 55.30 11.15 49.12–61.47 15
50–59 50.48 7.77 46.74–54.23 19 60.09 13.95 52.03–68.14 14
60–69 41.77 9.77 36.13–47.42 14 53.53 13.95 52.04–68.14 18
70–79 43.01 6.45 39.80–46.22 18 52.67 11.18 47.58–57.75 21
80 +  32.45 7.11 28.51–36.38 15 43.95 6.55 37.89–50.00 7
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Table 6   Age estimation models 
with least squares regression

F females, M males, U unknown sex, BMD Ward bone mineral density at Ward’s area, MCI metacarpal 
cortical index, SEE standard error of the estimate, R Pearson correlation coefficient, N sample size

Model Regression equation SEE R N

F1 AGE = 109.70 − (63.69 × BMDWard) − (0.45 ×MCI)   11.79 0.800 120
F2 AGE = 95.32 − (77.11 × BMDWard)   12.66 0.765 120
F3 AGE = 100.44 − (0.97 ×MCI) 15.99 0.582 120
M1 AGE = 109.54 − (81.38 × BMDWard) − (0.18 ×MCI) 13.07 0.727 104
M2 AGE = 100.81 − (83.03 × BMDWard) 13.24 0.718 104
M3 18.64 0.202 104
U1 AGE = 106.38 − (73.42 × BMDWard) − (0.24 ×MCI) 12.66 0.756 224
U2 AGE = 97.32 − (78.93 × BMDWard) 12.96 0.742 224
U3 17.99 0.387 224

Table 7   Statistical metrics for different linear regression models used to estimate age at death through bone mineral density (BMD Ward) and 
metacarpal cortical index (MCI)

MAE mean absolute error, RMAE relative mean absolute error, MAPE mean absolute percent error, RMSE root of mean square error, RRMSE 
relative root of mean square error, ARSQ pseudo-coefficient of determination (adjusted R.2)

Model Females Males

MAE RMAE MAPE RMSE RRMSE ARSQ MAE RMAE MAPE RMSE RRMSE ARSQ

Ward 10.06 0.60 23.47 12.61 0.64 0.58 10.38 0.64 23.65 13.18 0.70 0.51
MCI 13.18 0.78 31.64 15.93 0.81 0.33 15.76 0.97 39.13 18.54 0.98 0.03
Ward, MCI 9.39 0.56 21.99 11.74 0.60 0.63 10.33 0.64 23.78 13.00 0.69 0.52

Table 8   Statistical metrics for different artificial neural network models used to estimate age at death through bone mineral density (BMD Total, 
Neck, and Ward) and metacarpal cortical index (MCI)

MAE mean absolute error, RMAE relative mean absolute error, MAPE mean absolute percent error, RMSE root of mean square error, RRMSE 
relative root of mean square error, ARSQ pseudo-coefficient of determination (adjusted R.2)

Model Females Males

MAE RMAE MAPE RMSE RRMSE ARSQ MAE RMAE MAPE RMSE RRMSE ARSQ

Total 11.20 0.67 25.23 14.25 0.72 0.47 13.54 0.84 31.79 16.42 0.86 0.25
Neck 10.02 0.60 22.69 12.70 0.65 0.58 11.42 0.70 26.14 14.59 0.77 0.41
Ward 8.88 0.53 19.56 11.38 0.58 0.66 10.56 0.65 23.92 13.33 0.70 0.50
MCI 12.58 0.75 29.63 15.46 0.79 0.38 16.18 1.00 40.14 19.09 1.00 0.02
Total, Neck 10.48 0.62 23.93 13.25 0.67 0.54 12.06 0.74 27.77 14.93 0.78 0.37
Total, Ward 8.79 0.52 19.31 11.31 0.57 0.66 10.90 0.67 24.13 14.24 0.75 0.43
Total, MCI 9.95 0.59 23.25 12.67 0.64 0.58 13.79 0.85 32.36 16.75 0.88 0.21
Total, Neck, Ward 8.63 0.51 19.26 11.11 0.56 0.67 10.97 0.68 24.55 13.85 0.73 0.45
Total, Neck, MCI 9.61 0.57 22.60 12.29 0.62 0.60 12.39 0.76 29.13 15.13 0.80 0.35
Total, Ward, MCI 8.65 0.51 20.05 11.17 0.57 0.67 11.29 0.70 26.49 14.05 0.74 0.44
Neck, Ward 8.44 0.50 18.25 10.61 0.54 0.70 10.78 0.66 24.28 13.62 0.72 0.48
Neck, MCI 9.61 0.57 22.53 12.35 0.63 0.60 11.91 0.73 27.72 14.88 0.78 0.38
Neck, Ward, MCI 8.62 0.51 19.95 11.15 0.57 0.67 11.00 0.68 25.55 13.86 0.73 0.45
Ward, MCI 8.70 0.52 20.11 11.19 0.57 0.67 10.87 0.67 25.38 13.65 0.72 0.48
All variables 8.57 0.51 19.91 11.26 0.57 0.66 11.24 0.69 26.07 13.99 0.73 0.44

AGE = 71.19 − (0.31 ×MCI)

AGE = 84.53 − (0.60 ×MCI)
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the case of GRNN models, DXAGE 2.0 displays the most 
probable point estimate for age at death, as well as a cred-
ible interval featuring the lowest and highest values of age 
predicted (Fig. 4). The application facilitates the exclusion 
of any of the variables when appropriate. The least squares 
regression module (GLM) features a map of data points that 
supports measurement validation.

Discussion

This study elaborates a previous method [1] by extending its 
application to adult males, introducing metacarpal cortical 
bone loss features to the age estimation models, and adding 
least squares regression analysis to the statistical models. 
Bone mineral density declines with age, a general pattern 
identified in epidemiological and anthropological samples, 
e.g., [39, 40, 42, 43, 68, 77–80]. Age-related cortical bone 
decline at the second metacarpal has been also observed 
in both contemporary and historical assemblages, e.g., [59, 
61–63, 81]. Bone loss continues even during old age [41, 
82], a feature that is useful for the assessment of age in older 
individuals.

Bone decline with age seems more evident in women and 
in the proximal femur — and that explains the better results 
found in the models designed for females and in those using 
BMD features instead of MCI. Before puberty, there are no 
consistent differences in bone mass between women and 
men [83, 84] with sex heterogeneity in bone morphology 
and mass resulting from the later onset and prolonged extent 
of puberty in males [85]. After the attainment of peak bone 
mass, age-related bone loss occurs in both sexes, indepen-
dently of gonadal hormonal levels, involving both trabecu-
lar and cortical bone. Of course, sex-specific age-related 

variation in bone mass is expected since bone loss acceler-
ates during perimenopausal and postmenopausal years, as 
estrogen withdrawal around and after menopause promotes 
bone remodeling [86, 87]. This acceleration in bone loss 
around menopause is a leading determinant of the sex differ-
ences in the age-related patterns of bone loss [88].

Age estimation models based on BMD measured at the 
proximal femur are more accurate than those that rely in the 
metacarpal cortical index, individually or in conjugation. In 
sharp contrast with the proximal femur, the second meta-
carpal diaphysis is primarily composed by cortical bone, 
which is subjected to a slower remodeling due to its lower 
surface-area-to-volume ratio [86]. Interestingly, the best 
model (a GRNN model) to predict age at death in females 
employs both a predominantly cortical (femoral neck) and 
a mostly trabecular (Ward’s area) ROI. In males, the best 
model is based upon Ward’s area only (a GRNN model). 
Diagenesis (namely macrostructural, microstructural, or 
chemical variations of the bone) can influence the densito-
metric analyses. Hence, a previous evaluation of the possible 
effect of taphonomic factors on the densitometry readings is 
warranted. A mounting body of evidence suggests that, even 
in bones showing different degrees of diagenetic change, 
bone mineral content is not significantly modified [89, 90]. 
Direct and indirect evidence (macroscopical examination, 
lack of bone erosion caused by soil as shown on conven-
tional radiographs, microradiography, and an epidemiologi-
cally expected pattern of bone loss) indicate that the studied 
sample presents a good state of preservation [1, 68, 91].

It is important to note that DXA is a more precise tech-
nique, while the sensitivity of conventional radiogrammetry 
regarding bone loss is restricted, as it can only detect a bone 
mass reduction of more than 30–50% [92]. It was noted in 
a French study that the cortical index shows a significant, 

Fig. 4   DXAGE 2.0 is freely  
available at http://​osteo​mics.​
com/​DXAGE2/. DXAGE 2.0 
displays the most probable point 
estimate for age at death, as well 
as a credible interval for the 
estimation
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but poor, association with age in non-adults — in contrast, 
measurements of the epiphyseal-metaphyseal ratio (REM) 
presented a good correlation with age [65]. Notwithstanding, 
we have decided to maintain the models based on MCI, pri-
oritizing applicability instead of accuracy, since, in certain 
circumstances, the second metacarpal may be the only bone 
available to estimate age at death.

Overall, GRNN models perform better than least squares 
regression models. By comparing similar models (i.e., 
models that feature the same variables), it is obvious that 
GRNN models present better goodness-of-fit statistics. For 
example, the mean absolute error in GRNN models ranges 
from 8.70 years (BMD Ward + MCI) to 12.58 years (MCI) 
in women, while in linear regression models, it varies from 
9.39 years (BMD Ward + MCI) to 13.18 years (MCI). The 
difference is not impressive, but while least squares regres-
sion is a powerful and interpretable methodology, it shows 
some caveats — namely a detrimental effect by outliers and 
bias [93]. In fact, a well-recognized problem in adult age 
estimation — particularly when the dependent variable in 
linear regression is the age at death — is expressed by the 
“attraction of the middle,” i.e., the systematic trend towards 
age overestimation in younger adults and age underestima-
tion in older persons [34, 72, 94]. This trend has been rec-
ognized in different validation studies [95], including in an 
earlier method based in bone mineral density values [55]. 
The “age mimicry,” specifically whereby age can be under-
estimated [94], can be magnified if the demographic compo-
sition of the reference sample does not include a large num-
ber of older individuals — and that is possibly the case for 
the males’ sample in this study, particularly in the older age 
class (80 + years) that features only seven individuals. Dif-
ferent statistical approaches (e.g., Bayesian statistics, transi-
tion analysis or probabilistic models) have been employed to 
counteract estimation bias, e.g., [36, 37, 96–102].

Artificial neural networks are adaptative models that emu-
late the architecture of the brain [103, 104] and have been 
used to solve a plethora of generic tasks, being appropriate 
for modeling multifaceted and nonlinear phenomena [105]. 
ANN have been occasionally exploited in bioarcheology and 
forensic anthropology, but have shown their usefulness in 
applied purposes, such as sex estimation [106–109] and age 
prediction [35, 37, 98]. General regression neural networks 
are based on the general regression theory but operate as 
a black-box (however see Navega and Cunha, 2020), pro-
ducing highly nonlinear functions with no interpretability 
constrains [111]. With the GRNN implementation, age at 
death is not simply estimated as a point value, but rather as 
a likely age interval.

A significant improvement of DXAGE 2.0 stems from 
the type of bones used to generate models for age estima-
tion. The femur is among the strongest skeletal elements 
and one of the most abundant and well-preserved bones in 

archeological assemblages or forensic settings. The second 
metacarpal is less well represented in archeological contexts 
but tends to be well preserved and complete when present 
[112, 113]. This is particularly relevant since it is not always 
possible to use classic aging methods due to taphonomic 
factors [76, 114]. The pubic symphysis, for example, is 
extremely fragile and often does not resist to post-deposi-
tional processes [19]. Also, in the case of comingled and/
or scattered remains, or mass disasters, individuals are usu-
ally represented by a subset of bones, or fragments of bone, 
severely limiting age at death assessment [115]. The study of 
commingled remains demands a larger degree of flexibility 
in the assessment of demographic features, such as age at 
death [116].

DXAGE 2.0 enables age estimation in incomplete or 
fragmentary skeletal remains — providing an additional 
tool to reconstruct the biological profile in different mortu-
ary contexts, such as ossuaries, secondary burials, or mass 
graves. For example, crania and long bones compose the 
bulk of skeletal remains in ossuaries from protohistoric 
North America, characterized by multiple ritual steps dur-
ing the mortuary treatment of the dead, or collective burials 
from the Late Neolithic in the Iberian Peninsula [117, 118]. 
Furthermore, techniques based in medical imaging modali-
ties, including DXA, are non-invasive and suitable for age 
assessment in fleshed or partially fleshed cadaveric remains 
[56–58, 100, 119–124]. These are frequently recovered in 
forensic contexts and often skeletal preparation is not fea-
sible, practical, or culturally acceptable. A DXA analysis 
of the proximal femur can also be used to estimate sex in 
skeletal remains [125–127]. Hence, an isolated femur has the 
potential to convey essential data about the major parameters 
of a biological profile, viz. age at death, sex, and stature.

Final remarks

Age at death estimation techniques have increasingly relied 
on more objective evaluations of the aging process combined 
with unconventional statistical approaches. Nevertheless, 
age estimation in adult skeletons is still fraught with dif-
ficulties, with individual and population factors influencing 
remodeling and degeneration of the skeleton and biological 
age. Accordingly, it is necessary to use different indicators 
to provide a more detailed and nuanced view of skeletal 
aging. DXAGE 2.0 yields comparable age estimates to those 
obtained by conventional methods, employing alternative 
skeletal regions, an objective analytic procedure, and provid-
ing an easy online platform for age prediction in adult skel-
etal remains. The proposed models show some limitations, 
particularly the fact that only individuals of south European 
ancestry were included in the training sample. Likewise, the 
relatively smaller sample of older males features a potential 
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methodological shortcoming. The addition of densitometric 
and radiogrammetric data from other populations, as well as 
from older individuals, to the current database of DXAGE 
2.0 is thus desirable in future refinements.
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