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Abstract
Probabilistic genotyping permits a comparison of forensic evidence given hypotheses regarding the origin of observed short 
tandem repeat alleles in a mixed DNA profile. Using the publicly available R package forensim, it has been proposed that 
mixtures with non-contributors from low genetic diversity populations are more likely to be mistakenly identified as contribu-
tors to a mixture than non-contributors from high genetic diversity populations. We hypothesized that these observations are 
attributed to the unique distribution of alleles in the reference population and may not generalize to other samplings of the 
same population. We used forensim to simulate 200 US populations (50 each of self-reported African-American, Asian-
American, European-American, and Hispanic descent). We compared likelihood ratios for 2400 mixtures to those derived 
from published data and identified stark differences. A minimum of ten population replicates were required to reduce observed 
differences relative to published data. Deviations from Hardy–Weinberg equilibrium and allele frequency distributions sug-
gest that simulated populations should be sufficiently evaluated for expectations of population genetic parameters prior to 
use in DNA mixture modeling experiments. Overall, our findings support the utility of forensim and further describe 
its suitability to model population genetic parameters but suggest that a single population replicate (directly ascertained or 
simulated) may be insufficient to make conclusions about a given DNA mixture.
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Introduction

Statistical tools for the interpretation of forensic DNA mix-
tures are common. While some tools are open-source and 
freely available to the forensic community, others may be 
prohibitively costly to the forensic genetics researcher. The 
R package, forensim, is a statistical tool dedicated to 
forensic DNA evidence interpretation (1). The forensim 

package allows for the simulation of DNA data routinely 
encountered in forensic genetic casework based on prior 
knowledge of population STR data. Additionally, foren-
sim allows users to compute common statistical calcula-
tions for evaluating the weight of the DNA evidence in ques-
tion: probabilities of exclusion, random match probabilities, 
likelihood ratios (LRs), and conditional profile probabilities 
(2). One primary limitation to open-source software in a 
forensic context is validation (1), including the repeatabil-
ity of data and reports generated from such tools. Indeed, 
the stochasticity of Markov chain Monte Carlo algorithms 
common to many probabilistic genotypic platforms produces 
minor, yet in some cases statistically and legally meaning-
ful, differences in match statistics (3), 4, 5). It is unclear if 
forensim produces similar variability and to what extent.

Of tangential importance to the rapid development of 
improved genotyping and sequencing technologies, it is 
fundamental to develop tools for simulating largescale 
genomic data under realistic scenarios (i.e., routine forensic 
casework) that incorporate complex demographic and envi-
ronmental factors (6, 7). It was recently demonstrated that 
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non-contributors from low genetic diversity populations may 
be over-represented as contributors to DNA mixtures relative 
to non-contributors from high genetic diversity populations 
(8). It is unclear whether this conclusion reflects a generaliz-
able trend. We hypothesize that this observation is an artifact 
of (i) the mixtures generated or (ii) the population allele 
frequencies used to calculate match statistics.

Simulation studies in forensic genetics play a vital role in 
establishing interpretation thresholds, statistical parameters, 
and varying expectations when interpreting and applying 
statistical support to forensic biological evidence of varying 
quantity and quality (9, 10, 11, 12, 13). When simulating 
data, it is important to verify that the modeled data appro-
priately represent the input data. This becomes especially 
important considering the ethical and legal consequences of 
match statistics reported for individuals of highly admixed 
backgrounds (an important topic studied extensively by 
Ceberio et al.) (8). There is much data demonstrating that 
using inappropriate or mismatched population allele fre-
quencies bias match statistics (14), but it is unclear whether 
this bias exists among repeated samplings of the same popu-
lation. We hypothesize that this within-population variation 
per locus may have large implications for match statistic 
stability.

In this study, we used forensim genotype simulations 
and DNA mixture modeling to compare locus heterozygosi-
ties and other population genetic parameters between rep-
licate outputs of forensim back to Novroski et al. allele 
frequency data for four major population groups in the USA 
(15). We demonstrate a wide range of allele frequencies in 
simulated population data, used to create mock mixtures, 
that translates to appreciable differences in minor contribu-
tor match statistics relative to the published population fre-
quencies. This variation suggests that mixture simulation 
studies can better present minor contribute match rates by 
using a range of population frequencies rather than a single 
sampling.

Methods and materials

Data description

STR length–based allele frequencies for this study were 
borrowed from Novroski et  al. with respect to major 
population groups in the USA: European-Americans 
(EUA; Nindividuals = 210), African-Americans (AFA; 
Nindividuals = 200), Asian-Americans (ASA; Nindividuals = 169), 
and Hispanic-Americans (HIS; Nindividuals = 198) (15). DNA 
sequencing was performed for STR amplicons using the 
ForenSeq™ DNA Signature Prep Kit (Verogen, San Diego, 
CA) and the MiSeq FGx® platform (Verogen), as described 

in Novroski et al. (15). Sample sizes were matched for all 
simulated populations modeled by forensim.

Forensim R package

Simulated populations were generated with the R package 
forensim, a statistical package designed to analyze and 
interpret forensic DNA mixtures (1, 2). The forensim 
package permits the generation of genetic data commonly 
encountered in forensic DNA casework including population 
statistics and DNA mixtures (1). Forensim is freely avail-
able from: https://​foren​sim.r-​forge.r-​proje​ct.​org.

Simulated population genetic parameters

To assess the reliability of forensim to model population 
genetic information from the original (i.e., “truth”) data, we 
produced 50 iterations of each of four US populations (i.e., 
N = 200 total populations and N = 155,400 individuals). Our 
random number seed in R was set to 1,234,567. Population 
genetic parameters were compared to those from the original 
parameter from Novroski et al. (15). Allele frequencies were 
defined as p =

n

2N
 , where n is the number of times each allele 

was observed, and N is the population sample size. Because 
this study aimed to quantify the variability in match statistics 
following population simulation, no minor allele frequency 
adjustments were applied to STR loci.
Forensim constructs genotypes by randomly combin-

ing sampled alleles with replacement such that the result-
ing population should satisfy Hardy–Weinberg equilibrium 
(HWE) expectations; however, it is common to assess this 
feature of a population prior to using it for statistical analy-
ses (16). For each STR with alleles {1…n}, the ith of which 
observed at frequency pi in a given population, expected 
heterozygosity of that locus was defined as He = 1 −

∑n

i=1
p2
i
 . 

Hardy–Weinberg equilibrium p-values were computed using 
χ2 goodness of fit tests.

Mixed DNA profiles

Matched ancestry mixtures (e.g., > 1 EUA individuals mixed 
together) with two (Nmixtures = 200), three (Nmixtures = 200), 
and four contributors (Nmixtures = 200) were created with 
forensim. Using these profiles, we evaluated LR distribu-
tions using (i) “truth” allele frequencies from Novroski et al. 
(15) and (ii) allele frequencies observed across simulated 
populations.

All LRs were calculated using defense (Hd) and prosecu-
tion (Hp) hypotheses of simple mixture events such that the 
observed alleles at a locus are best represented by the con-
tribution of one known contributor (i.e., a victim) and N 
other contributors. Here, LR =

Pr(E|Hp)
Pr(E|Hd)

 , where the probabil-
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ity of the evidence under Hp (numerator) is fixed at one 
assuming all contributors are known. No assumptions were 
made in this study regarding drop-in, drop-out, or theta cor-
rection. In forensim, these parameters were set to zero.

Statistical considerations

To better capture the magnitude of LR differences across 
analyses, we present standardized mean differences (SMD) 
which quantify effect sizes in measurements of unit differ-
ence. SMDs were used to compare the distribution of 
log10(LRs) across 200 mixtures calculated with allele fre-
quencies from one simulated population and Novroski et al. 
(15). Here, SMD =

Xi−Xj

�ij

 , where xi and xj are the mean 

log10(LR) for 200 mixtures calculated using allele frequen-
cies from populations i and j, respectively, and σij is the 
pooled standard deviation of log10(LR) across populations i 
and j.

We applied false discovery rate (FDR < 0.05) multiple 
testing correction to all statistical tests to account for the 
potential lack of independence of each statistic (e.g., com-
paring population N LRs to Novroski et al. population LRs) 
(15).

Results

Forensim population genetic modeling

Across 200 simulated populations, population genetic 
parameters modestly varied relative to those reported by 
Novroski et al. (15). Allele frequencies for all 27 STRs 
of interest fell within the 95% confidence intervals of the 
Novroski et al. estimate (Figure S1; Tables S1–S2) (15).

We observed a total of 289 deviations from HWE expec-
tations (p < 0.05) where every STR evaluated had at least 
one deviation from expectations in at least one simulated 
population (Fig. 1; Table S3). Overall, 32% (ASA) to 50% 
(HIS) of the simulated population data had more HWE 
deviations than expected by chance alone (~ two observa-
tions in population data for 27 loci). There was no sin-
gle locus driving the observed deviations from HWE, but 
after multiple testing correction per profile (p < 0.0018), 
we identified ten loci violating HWE expectations in at 
least one simulated population dataset.

Fig. 1   Hardy–Weinberg equilibrium (HWE) results. A Density 
plots of HWE p-values from 50 simulated populations per “truth” 
population (AFA, African-American; ASA, Asian-American; EUA, 
European-American; HIS, Hispanic). Vertical dashed lines mark the 
nominal significance p-value (p = 0.05). (B) Locus-specific HWE 

information (simulated population unadjusted p-values in left panel 
and multiple-testing corrected p-values in middle panel) compared 
to the loci deviating from HWE expectations in Novroski et al. (15) 
(right panel, in black)
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Single ancestry mixtures

A total of 2400 mixed DNA profiles (800 each of two-, 
three-, and four-person mixtures; 200 mixtures per ances-
try group) were generated. Consistent with other simulation 
studies, based on the number of alleles observed in each 
mixture, higher contributor mixtures were more frequently 
predicted to be the result of an incorrect number of contribu-
tors (Fig. 2) (14, 17, 18). LRs for all 2400 mixtures were cal-
culated relative to allele frequencies of the true contributor 
population and all three non-contributor populations. With 
few exceptions, the true contributor population log10(LR) 
was consistently less prejudicial than those estimated using 
non-contributor population allele frequencies (Fig. 3). Taken 
together, the LR observations indicate that the simulated 
DNA mixtures from forensim perform as expected.

Using simulated mixtures, we assessed how LRs change 
in the context of the observed within-ancestry allele fre-
quency spectra (e.g., those observed in Figure S1). LRs were 
calculated for each mixture using allele frequencies from 50 
simulated versions of the contributors’ origin population and 
compared to LRs generated from frequency data reported in 
Novroski et al. (15). The mean log10(LR) across two-person 
mixtures significantly differed from expected values in all 
four population groups with 34/50 AFA, 18/50 ASA, 26/50 
EUA, and 41/50 HIS populations exhibiting significantly 
different mean LRs relative to Novroski et al. (Fig. 4) (15). 
Among two-person mixtures, log10(LRs) tended to be larger 
than expected as evidenced by negative standardized mean 
differences relative to Novroski et al. (15). In three outlier 
EUA populations, log10(LR) was 1.14- to 1.16-fold greater 
than expected.

Among three- and four-person mixtures, the same effect 
was observed. The log10(LR) distributions of three- and 
four-person mixtures were significantly different from 
those derived from Novroski et al. population data for 26 

and one AFA simulated populations, respectively; 27 and 
44 ASA simulated populations respectively; 23 and 13 EUA 
simulated populations, respectively; and 24 and seven HIS 
simulated populations, respectively (15). The log10(LRs) 
of three-person mixtures derived from replicate population 
allele frequencies were up to 1.10-fold (AFA), 1.05-fold 
(ASA), 1.22-fold (EUA), and 1.06-fold (HIS) greater than 
those calculated using Novroski et al. allele frequencies. The 
log10(LRs) of four-person mixtures derived from replicate 
population allele frequencies were up to 1.04-fold (AFA), 
1.04-fold (ASA), 1.27-fold (EUA), and 1.02-fold (HIS) 
greater than those calculated using Novroski et al. allele 
frequencies (15).

Mixture‑specific observations

To test if population differences in LR per mixture category 
were due to mixture-specific features (i.e., an abundance of 
mixtures with low frequency alleles), we performed Z-tests 
between the distribution of mixture LRs across all 200 simu-
lated population datasets and their matched LRs calculated 
with Novroski et al. allele frequencies (15).

Observations among population replicates were not 
attributed to a select few mixtures. A total of 54/200 AFA, 
46/200 ASA, 36/200 EUA, and 56/200 HIS log10(LRs) 
from two-person mixtures were significantly (FDR < 5%; 
Table S4) different from the corresponding expected esti-
mates using Novroski et al. population data (15). In three-
person mixtures, there were 62/200 AFA, 64/200 ASA, 
28/200 EUA, and 45/200 HIS significant differences, and in 
four-person mixtures, there were 26/200 AFA, 77/200 ASA, 
32/200 EUA, and 30/200 HIS significant differences. These 
deviations are substantially larger than expected by chance 
(~ 10/200 significant differences per mixture per population). 
Among the significant differences from Novroski et al. popu-
lation data (15), 100% of two-person, 73.4% of three-person, 

Fig. 2   Estimated contributors per mixture type. True versus estimated 
contributor N based on forensim allele-frequency aware contribu-
tor prediction algorithm for African-American (AFA), Asian-Amer-
ican (ASA), European-American (EUA), and Hispanic (HIS) same-

ancestry DNA mixtures created using allele frequency population 
data from Novroski et al. (15). The true contributor (N) varied from 
two to four component contributors in a total of 200 simulated mix-
tures per mixture type per population (total N = 2400)
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and 79.5% of four-person mixture log10(LRs) were overesti-
mated in the simulated population data.

Replicate count required to converge match 
statistics

Given the wide distribution of allele frequencies observed 
across STR loci, we tested how many replicate populations 
were required to converge on the “truth” match statistics 
derived from Novroski et al. For each mixture, we calculated 
the mean log10(LR) difference between Novroski et al. (15) 
with sequentially increasing and randomly selecting numbers 
of population replicates. Among two-person same-ancestry 
mixtures (N = 200 per population) of AFA (p = 1.09 × 10−15), 
EUA (p = 4.98 × 10−50), and HIS (p = 0.003) ancestries, we 
detected a significant effect of number of replicates on pro-
ducing log10(LRs) more similar to those derived from Nov-
roski et al. (15). There was no significant difference in mean 
log10(LR) among ASA population replicates (p = 0.370).

Post hoc pairwise comparisons of each number of popu-
lation replicates (Fig. 5; Figure S4) support the use of a 
larger number of replicates both statistically and visually 

presented by narrower distribution of mean difference in 
log10(LR) per mixture. For AFA and EUA two-person 
mixtures, the sequential increase in replicates signifi-
cantly reduced the difference in log10(LR) relative to the 
Novroski et al. estimate (15). After multiple testing cor-
rection, the data support the use of at least 10 replicates 
of AFA-AFA two-person mixtures (1 replicate versus 10 
replicates Wilcox p = 0.0073; F-test F = 4.69, df = 199, 
p < 2.2 × 10−16) and EUA-EUA two-person mixtures (1 
replicate versus 10 replicates Wilcox p = 9.70 × 10−4; 
F-test F = 4.40, df = 199, p < 2.2 × 10−16). There was no 
significant effect of replicate count with respect to mean 
difference in log10(LR) for HIS-HIS mixtures; however, 30 
population replicates produced the most significant reduc-
tion in log10(LR) variance relative to a single replicate 
(1 replicate versus 30 replicates F-test F = 9.65, df = 199, 
p < 2.2 × 10−16). Finally, among ASA-ASA mixtures, no 
differences in mean difference in log10(LR) were observed; 
however, 50 population replicates produced the most sig-
nificant reduction in log10(LR) variance relative to a single 
replicate (1 replicate versus 50 replicates F-test F = 13.84, 
df = 199, p < 2.2 × 10−16).

Fig. 3   Two-, three-, and four-
person mixture likelihood ratios 
(LRs) derived from Novroski 
et al. “truth” data. LRs for three 
types of same-population mix-
tures (N = 2400 mixtures; 200 
per population per mixture type) 
derived from the Novroski et al. 
(15) population allele frequen-
cies demonstrating suitability 
of simulated mixture data to 
appropriately model mixture 
statistics
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In three-person mixtures from AFA (p = 1.10 × 10−15), 
EUA (p = 2.20 × 10−16), and HIS (p = 0.003) populations, 
we detected a significant effect of replicate number on mean 
log10(LR) difference relative to Novroski et al. (15). In AFA 
and EUA populations, we recapitulate the requirement for a 
minimum of 10 replicate populations (Table S5; Figure S5). 
Though a significant effect was detected in the HIS population, 
we could not verify an appropriate number of replicates using 
the data presented here. In four-person mixtures from AFA 
(p = 8.30 × 10−5), EUA (p = 2.20 × 10−16), and HIS (p = 0.007) 
populations, we detected a significant effect of replicate num-
ber on mean log10(LR) difference relative to Novroski et al. 
(15). In four-person mixtures, between 10 (EUA) and 20 (AFA 
and HIS) replicates significantly reduced the differences in 
log10(LR) estimates (Table S5; Figure S6).

Discussion and conclusions

It is well understood that DNA match statistics, which rely 
on allele frequencies, are affected by sampling variation of 
those frequencies from their respective populations (19). 

As published allele frequencies reflect relatively small sam-
plings of large populations, we hypothesized that reports 
of minor contributor matches from low genetic diversity 
populations may be biased by the sampling of those popu-
lations. We used major US population groups to quantify 
how variable these match statistics may be when the popula-
tion is randomly sampled many times. Our findings confirm 
the wide range of allele frequencies captured by population 
samplings and translate this into match statistics distribu-
tion across samplings. We demonstrated that this variation 
in allele frequency may bias the most conservative match 
statistic for a mixture away from its true population origin.
Forensim is a fast and efficient way to simulate mock 

forensic genotypes and DNA mixtures, and the data gener-
ated here demonstrates a broad range of allele frequencies 
across simulated populations and a relatively high chance of 
generating population data with at least one significant HWE 
event. Because populations are generated in forensim 
using a random sampling of alleles with replacement, these 
observations are most likely attributed to noise; however, 
their detection is pertinent to the use of each population for 
statistical considerations. Because of the random sampling 

Fig. 4   Significant effects of 
population replicate selection of 
two-person mixture likelihood 
ratios (LR) across populations. 
Each data point represents the 
standardized mean differ-
ence (SMD) of LRs (N = 200 
mixtures per data point) in each 
simulated population (African-
American (AFA); Asian-Ameri-
can (ASA); European-American 
(EUA); and Hispanic (HIS)) 
relative to that of the corre-
sponding LR derived from Nov-
roski et al. truth data (15). The 
EUA subplot highlights three 
EUA populations with large 
changes in log10(LR). Statisti-
cal weight of SMD estimates 
was determined using two-sided 
paired T-tests
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of alleles, it is less likely that these HWE deviations rep-
resent the induction of residual population substructure 
in the simulated populations. It is, of course, important to 
understand when these events occur in the context of rela-
tively admixed populations such as those from low diversity 
populations.

In the context of variable allele frequencies across simu-
lated populations, we tested the extent to which match sta-
tistics varied. While allele frequencies generally fell within 
the 95% confidence interval of the Novroski et al. reported 
allele frequency, LRs were highly variable across population 
replicate indicating that small, largely insignificant, changes 
in allele frequency can have drastic effects on match statis-
tics. In two-, three-, and four-person mixtures, we identified 
a significant effect of replicate number on reducing the vari-
ance of STR match statistics. Importantly, these effects were 
not driven but a single population nor a single profile and 
recapitulate more systemic variability of allele frequencies 
across population replicates. In nearly all cases, the LR from 
a sampled population was stronger than that from the truth 
population. This finding highlights how variability across 
populations, even those sampled from the same reference, 
can influence conclusions about minor contributors to a mix-
ture. Our data suggest a different minimum number of rep-
licates based on population but clearly highlighted a neces-
sity for at least 10 population replicates (e.g., for questions 

related to two-person mixtures of contributors with matched 
ancestry) regardless of population. It is important to note 
that the observed effects reflect same-ancestry mixtures only, 
and we hypothesize that these consequences may be more 
profound when the major and minor contributor represent 
discordant prominent ancestry proportions. In other words, 
observations from Ceberio et al. (8) are likely real but the 
magnitude of this effect requires careful consideration for 
the genetic ancestry proportion of each contributor to a given 
mixture.

While contextualizing the effects of allele frequency 
variation on mixture match statistics in a novel manner, our 
study has three limitations to consider. First, we assumed 
optimal scenarios for all mixtures: no stutter events, no drop-
in or drop-out events, and simple LR hypotheses. We recog-
nize that these assumptions do not reflect the reality of DNA 
casework, and future research will build upon our results to 
systematically assess the nuances of each parameter in the 
context of within- and between-population mixtures. Sec-
ond, we exclusively consider length-based STR data with 
no consideration for capillary electrophoretic peak heights 
or sequence-based read depths. We expect that sequence-
based STR data will demonstrate similar observations as 
length-based tests but may permit better resolution of mix-
ture events in the presence of loci with greater sequence-
based heterozygosity (15, 20, 21) and/or the presence of 

Fig. 5   Estimated appropriate 
number of population replicates 
to minimize noise in two-person 
mixture likelihood ratio (LR) 
estimates. Violin halves (right) 
represent data distribution while 
dot-plot halves (left) represent 
individual observations. Each 
data point in the dot plots rep-
resents a single mixture assayed 
in N population replicates 
(x-axis) for four population 
groups (African-American 
(AFA); Asian-American (ASA); 
European-American (EUA); and 
Hispanic (HIS)). The position 
on the y-axis corresponds to 
the difference between mean 
log10(LR) and Novroski et al. 
log10(LR) (15). Significant dif-
ferences were observed among 
AFA (p = 1.09 × 10−15), EUA 
(p = 4.98 × 10−50), and HIS 
(p = 0.003) populations but not 
ASA (p = 0.37); pairwise sig-
nificant differences are shown in 
supplementary material. Figure 
S4 shows replicate pairwise 
comparison p-values
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STR sequence level diversity that sheds light on potential 
population-specific origins of an allele (22). Third, this study 
only considered within-population mixtures. Mixed-ances-
try profiles have demonstrated that populations with lower 
genetic diversity can be overrepresented in mixture decon-
volution match statistics (23). In the context of the findings 
presented herein, future studies with appropriate replicates 
must focus on how genetic diversity among mixture con-
tributors exacerbates social and legal injustices associated 
with race, ethnicity, and genetically determined ancestry.

The data presented herein highlight the feasibility of stud-
ying mixtures with freely available resources and published 
STR allele frequency data. We described how variation in 
random sampling from a reference population contributes to 
variation in DNA match statistics. Depending on the pattern 
of random sampling, this match statistic variation may have 
considerable societal implications in populations with low 
genetic diversity and/or scenarios of partial DNA matches 
[20]. These data form the groundwork for future controlled 
mixture simulation studies, including multi-ancestry mix-
tures, and contribute suggested best practices for simulated 
data reliability and reproducibility.
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