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Abstract
Human pigmentation is a complex trait, probably involving more than 100 genes. Predicting phenotypes using SNPs present 
in those genes is important for forensic purpose. For this, the HIrisPlex tool was developed for eye and hair color predic-
tion, with both models achieving high accuracy among Europeans. Its evaluation in admixed populations is important, since 
they present a higher frequency of intermediate phenotypes, and HIrisPlex has demonstrated limitations in such predictions; 
therefore, the performance of this tool may be impaired in such populations. Here, we evaluate the set of 24 markers from the 
HIrisPlex system in 328 individuals from Ribeirão Preto (SP) region, predicting eye and hair color and comparing the predic-
tions with their real phenotypes. We used the HaloPlex Target Enrichment System and MiSeq Personal Sequencer platform 
for massively parallel sequencing. The prediction of eye and hair color was accomplished by the HIrisPlex online tool, using 
the default prediction settings. Ancestry was estimated using the SNPforID 34-plex to observe if and how an individual’s 
ancestry background would affect predictions in this admixed sample. Our sample presented major European ancestry (70.5%), 
followed by African (21.1%) and Native American/East Asian (8.4%). HIrisPlex presented an overall sensitivity of 0.691 
for hair color prediction, with sensitivities ranging from 0.547 to 0.782. The lowest sensitivity was observed for individuals 
with black hair, who present a reduced European contribution (48.4%). For eye color prediction, the overall sensitivity was 
0.741, with sensitivities higher than 0.85 for blue and brown eyes, although it failed in predicting intermediate eye color. 
Such struggle in predicting this phenotype category is in accordance with what has been seen in previous studies involving 
HIrisPlex. Individuals with brown eye color are more admixed, with European ancestry decreasing to 62.6%; notwithstanding 
that, sensitivity for brown eyes was almost 100%. Overall sensitivity increases to 0.791 when a 0.7 threshold is set, though 
12.5% of the individuals become undefined. When combining eye and hair prediction, hit rates between 51.3 and 68.9% were 
achieved. Despite the difficulties with intermediate phenotypes, we have shown that HIrisPlex results can be very helpful 
when interpreted with caution.
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Introduction

Human pigmentation is a polygenic trait [1] that is primar-
ily determined by the presence of melanin in the epidermis, 
iris, and hair [2]. Among the many different genes involved 
in pigmentation, TYR​, TYRP1, OCA2, SLC45A2, SLC24A5, 
MC1R, ASIP, KITLG, HERC2, SLC24A4, IRF4, TPNC2, 
and BNC2 have been widely studied [1–11]. Many studies 
investigating associations between SNPs and pigmentation 
phenotypes have been done in admixed populations [12–25], 
including the Brazilian one. It has already been reported 
that some polymorphic sites in SLC24A5, SLC45A2, OCA2, 
and HERC2 may influence pigmentation of Brazilians and 
can be considered for forensic applications [21–24].

Eye color was the first characteristic to have a validated 
prediction method. The IrisPlex system is composed of six 
SNPs highly correlated with the human iris color [26, 27]. 
According to the IrisPlex developers, accuracy to deter-
mine blue and brown eyes is above 90%. However, the tool 
presents some limitations regarding intermediate eye color 
predictions, possibly due to imprecise phenotype charac-
terization as well as unidentified SNPs that may influence 
this phenotype [26–28]. Various studies have evaluated the 
IrisPlex system in populations from Europe (Italy, Portugal, 
and Slovenia) and other countries/continents (Asia, Brazil, 
USA, and Venezuela) [29–35], corroborating that IrisPlex is 
not suitable to predict intermediate eyes. This issue is par-
ticularly critical in admixed populations since they present 
a higher frequency of intermediate eye phenotypes due to 
the genetic contribution of Europeans (with eye color vari-
ation) and non-Europeans (with little eye color variation).

In 2013, the HIrisPlex system was developed aiming for 
the simultaneous prediction of hair (based on 22 markers) 
and eye colors (based on the earlier published IrisPlex 
system) [36, 37]. One limitation for predicting hair color 
is the age-dependent changes in hair color; i.e., sometimes 
hair becomes darker from childhood to adulthood. The 
molecular basis of hair darkening is not clear yet, and the 
HIrisPlex model is expected to predict the individual’s 
hair color from early childhood instead of the darker hair 
color of advanced childhood [38]. However, it should be 
emphasized that many of the individuals who were blond 
as a child remain blond as an adult [36, 37]. Moreover, 
additional markers are necessary in order to improve the 
prediction and raise the performance of the system.

Other predictive tools for pigmentation traits have been 
proposed. The HIrisPlex-S system was developed to pre-
dict skin color based on 36 SNPs, in addition to the previ-
ous models for eye and hair color prediction [39, 40].

Hart et al. proposed models consisting of eight SNPs for 
eye and skin color prediction. These models were devel-
oped with North-American volunteers and presented an 

error rate of approximately 5% for eye color prediction, 
while no errors were observed for skin color prediction, 
although 38% of the results were inconclusive (i.e., they 
were not light or not dark) [41]. Allwood et al. also pro-
posed a model for eye color prediction using classification 
trees. This tool was developed aiming to be useful in New 
Zealand, which includes European descendants and other 
minority groups, such as indigenous people, Polynesians, 
and multiple groups of Asian ancestry. The overall accu-
racy for the Allwood model was 79% [42]. There are also 
the Snipper sets for eye, skin, and hair color prediction 
[43–45]. Although these tools were developed from Euro-
pean association studies, the sets for eye color prediction 
were evaluated in samples from Northeastern Brazil and 
Venezuela [34]. A better performance was observed for 
brown and blue eyes, but the tools presented difficulties 
in predicting intermediate eyes, achieving low sensitivity 
levels [34].

HIrisPlex remains as the most widely studied Forensic 
DNA Phenotyping (FDP) tool so far. However, HIrisPlex 
sensitivity in admixed populations needs to be deeper eval-
uated. Admixed American populations present particular 
genetic and demographic histories, and therefore, the evalu-
ation of the informativeness of this tool in admixed urban 
samples is necessary to verify the overall amplitude and reli-
ability of its use in the forensic practice.

The Brazilian urban population is characterized by dif-
ferent levels of African, European, and Amerindian admix-
ture proportions [46] and provides an ideal setting to evalu-
ate HIrisPlex sensitivity in admixed samples. Thus, here 
we have sampled 328 Brazilian individuals with different 
phenotypes, called genotypes using NGS (next-generation 
sequencing) and predicted phenotypes using the HIrisPlex 
online tool. Then, we compared the predictions and the real 
phenotypes to assess HIrisPlex performance in admixed 
samples. We have also calculated ancestry proportions for 
each individual, in order to evaluate if the admixed nature 
of this Brazilian sample could somehow interfere with the 
predictions performed.

Materials and methods

Population sample

This study was approved in its ethical aspects by the research 
ethics committee of this institution (Comitê de Ética em 
Pesquisa, FFCLRP-USP), according to protocol CAAE # 
25696413.7.0000.5407.

We collected blood samples from 328 volunteers from 
the city of Ribeirão Preto and proximities, Southeastern 
Brazil, consisting of 159 women and 169 men with ages 
ranging from 18 to 72 years. Of those, 197 individuals were 
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randomly sampled, while the remaining 131 were invited 
because they present phenotypes that are not common in 
Brazil. At least two independent observers (members of our 
research group) assigned each volunteer in groups concern-
ing three categories of eye color (blue, intermediate [green/
hazel], and brown), and four categories of hair color (red, 
blond, brown, and black). These data were used to com-
pare HIrisPlex predictions with actual phenotypes from 
volunteers.

In order to evaluate the effect of age-dependent hair color 
changes in HIrisPlex predictions, the volunteers indicated 
whether or not their hair color changed from childhood to 
adulthood, what kind of change have happened, and the esti-
mated age in which this change has occurred.

Laboratory analysis

DNA was extracted using the salting-out protocol [47]. We 
assessed genomic DNA quality using agarose gel electropho-
resis for integrity, NanoDrop spectrophotometry (Thermo 
Fisher Scientific Inc.) for purity, and Qubit™ dsDNA BR 
fluorimetric assay (Thermo Fisher Scientific Inc.) for con-
centration. We also normalized DNA samples to 5 ng/μL 
to achieve an ideal concentration for the DNA sequencing 
library preparation.

We prepared sequencing libraries using a customized 
HaloPlex Target Enrichment System (Agilent Technologies, 
Inc.) protocol that included probes to capture the exonic and 
regulatory regions of various genes involved in pigmenta-
tion, including the 24 HIrisPlex markers and the 34 SNP-
forID 34-plex Ancestry-Informative Markers (AIMs) [48, 
49]. The probe panel was designed using the SureDesign 
tool (Agilent Technologies, Inc.) and the hg19/GRCh37 
human genome as reference.

Following the manufacturer instructions, 5 μL of each 
sample were digested by eight different pairs of enzymes to 
create libraries of DNA fragments. These fragments were 
captured using HaloPlex biotinylated probes, and indices 
were incorporated for sample identification. Lastly, the cap-
tured fragments were amplified by PCR using the Herculase 
II Fusion polymerase in the SureCycle 8800 thermocycler 
(Agilent Technologies, Inc.). The amplified fragments were 
purified using AMPure XP magnetic beads (Beckman Coul-
ter) and resuspended in Tris–HCL buffer (pH 8.0). Each 
sample library was kept at − 20 °C until sequencing. DNA 
libraries were quantified before sequencing using Qubit® 
2.0 Fluorometer (Thermo Fisher Scientific) and 2100 Bio-
analyzer (Agilent Technologies, Inc.). A pool of DNA 
libraries, consisting of up to 96 samples (4 nmol/L–Sup-
plementary Table 1), is then diluted to 16 pM as recom-
mended by the manufacturer (protocol available on https​
://suppo​rt.illum​ina.com/conte​nt/dam/illum​ina-suppo​rt/
docum​ents/docum​entat​ion/syste​m_docum​entat​ion/miseq​

/miseq​-denat​ure-dilut​e-libra​ries-guide​-15039​740-10.pdf) 
and inserted as input for paired-end sequencing using the 
MiSeq Reagent kit V3 (600 cycles), in the MiSeq Personal 
Sequencer (Illumina Inc.) [50].

Genotype calling

Sequencing adaptors were trimmed using the cutadapt 
software [51]. We aligned sequencing reads using the 
BWA-MEM algorithm (Burrows-Wheeler) [52] and the 
human reference genome GRCh37/hg19. Genotyping was 
performed using the GATK HaplotypeCaller in the GVCF 
mode [53]. VCF files were further processed by vcfx checkpl 
(version 2.0b, available at www.caste​lli-lab.net/apps/vcfx) 
to introduce missing alleles when the genotype likelihood 
was under 99%, assuring that only high-quality genotypes 
are used for prediction purposes. It was not possible to use 
HaplotypeCaller to call the InDel rs312262906, which is 
rare in our population. However, the Integrative Genom-
ics Viewer (IGV) software [54] allows the user to visual-
ize the NGS data in a base-to-base resolution. Thus, it was 
possible to view the InDel locus and determine whether 
the individuals had this polymorphism or not. Only one 
individual presented this allele, in heterozygous form. As 
two markers (rs16891982 and rs1805009) have C > G muta-
tions, genotype calls were made evaluating surrounding 
sequence information and the human reference genome. 
We also compare the frequency of their alleles with global 
frequencies from the 1000 Genomes dataset [55] (Supple-
mentary Table 2). Due to Brazil’s historic and demographic 
backgrounds, and to ancestry analysis performed in this 
sample [56, 57], it is expected that allele frequencies will 
be closer to European’s frequencies than to those of other 
populations. Since the number of samples differed in the 
five sequencing runs performed (Supplementary Table 1), 
we calculate a weighted average considering the total num-
ber of reads and the number of samples for each run to 
determine the read depth.

 1000 genomes population data

For comparisons, allele frequencies were calculated for the 
five super population groups from the 1000 Genomes Project 
dataset [55]. Sample sizes and names of the subpopulations 
that compose each group can be found in Supplementary 
Table 3.

Statistical analysis

The GENEPOP 4.51 software [58] was used to estimate 
allele and genotype frequencies, observed and expected 
heterozygosity, and Hardy–Weinberg equilibrium (HWE).
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The ancestry proportions of each individual were 
inferred using the SNPforID 34-plex AIMs [48, 49] and 
the STRU​CTU​RE 2.3.4 program [59], as published else-
where [56]. For this purpose, it was applied the admixture 
model with correlated allele frequencies, 100,000 burn-
in steps followed by 100,000 Markov Chain Monte Carlo 
interactions, three clusters (k = 3) representing the three 
main Brazilian ancestral components, in 100 independent 
runs. A total of 1,412 individuals were used to represent the 
parental populations: 404 Europeans (TSI, FIN, GBR, IBS), 
504 Africans (YRI, LWK, GWD, MSL, ESN), and 504 East 
Asians (CHB, JPT, CHS, CDX, KHV). Since there is not a 
Native American population in the 1000 Genomes dataset, 
we used the East Asian population in order to replace it.

Eye and hair color phenotype predictions were performed 
by the HIrisPlex online tool (available on https​://hiris​plex.
erasm​usmc.nl/). Based on the six markers from the origi-
nal IrisPlex system, the tool estimates probabilities for 
each eye color phenotype: blue, intermediate, and brown. 
For eye color, we performed predictions in two levels: with 
no threshold, i.e., the phenotype with higher probability is 
assumed to be the actual individual’s phenotype, and apply-
ing a 0.7 threshold, in which a given eye color is assumed 
only when it is estimated with a probability equal or higher 
than 0.7 [26, 27]. Based on 22 markers, hair color (blond, 
brown, red, and black) and shade (light and dark) were also 
predicted. The prediction results were compared with actual 
phenotypic data from each volunteer, which was obtained 
based on observations made while sampling. Parameters 
such as AUC, sensitivity, specificity, positive predictive 
value (PPV), and negative predictive value (NPV) were cal-
culated for each phenotypic characteristic. SPSS 20.0 (IBM) 
software was used to draw receiver operating characteris-
tic (ROC) curves and to calculate the associated AUC. The 
overall sensitivity (hit rate of combined eye and hair predic-
tion) of HIrisPlex system was also obtained.

Results

Table 1 presents the allele frequencies of the 24 HIrisPlex 
markers in a sample of 197 randomly chosen Brazilian 
individuals. The rs28777 marker is the only one not fitting 
Hardy–Weinberg expectations (p = 0.0305, Table 1). The 
Supplementary Table 2 presents the allele frequencies for 
the entire sample and for the five super populations of the 
1000 Genomes dataset.

Regarding hair color, we excluded eight individuals 
because they were bald or presented grey hair, making it 
impossible to verify their real hair color. Assuming four 
hair categories (blond, brown, black, and red) and that the 
highest probability value determines the actual hair color of 
the individual, the comparison of predicted outcomes with 

actual phenotypic data revealed an overall sensitivity rate 
of 0.691. Tables 2 and 3 present the results of hair color 
classification and the corresponding statistical values for 
AUC, sensitivity, specificity, PPV, and NPV for each phe-
notypic category. HIrisPlex predicted brown and red hair 
with higher sensitivity, showing values below 0.620 for the 
other two categories. Notwithstanding that, all AUCs values 
were above 0.700.

As mentioned before, the HIrisPlex system may present 
some difficulties in predicting individuals of blond/brown 
hair due to age-dependent changes in hair color. Sixty-six out 
of the 320 volunteers declared that their hair has darkened 
over the years. While this process was not strong enough to 
change hair color category of 35 individuals (23 with blond 
and 12 with brown hair), 25 individuals with blond hair in 
childhood turned into brown-haired adults, while 6 adults 
with black hair used to have blond (1) or brown (5) hair 
while young. Figure 1 provides a detailed description of the 
66 cases of age-dependent changes in hair color, showing the 
individual hair color in childhood, the current phenotype of 
these individuals, the predictions by HIrisPlex, and whether 
or not the prediction is in agreement with the childhood and/
or adulthood phenotype.

For eye color, we compared predictions with or without 
using a probability threshold level of 0.7 to verify which 
one provides better results, as described in the Materials and 
Methods section. Tables 4 and 5 present the results of eye 
color classification obtained using the six IrisPlex markers 
from the HIrisPlex system and the corresponding statistical 
values for AUC, sensitivity, specificity, PPV, and NPV for 
each phenotypic category. Predictions without using the 0.7 
threshold revealed an overall sensitivity of 0.741. By estab-
lishing a 0.7 threshold, overall sensitivity achieves 0.791, 
but 12.5% of the individuals become undefined. In both 
analyses, no individual presented the highest probability for 
intermediate eyes category, so none of them was classified 
as having intermediate eyes. As expected, HIrisPlex reveals 
a better performance when predicting extreme phenotypes 
(blue and brown).

Results of HIrisPlex prediction for eye (using the two 
approaches evaluated) and hair color (following the guide 
or not) for each individual were considered together for 
determination of overall combined prediction sensitivity. 
When the 0.7 threshold was not applied, the total hit rate 
was only 51.3%. When applying the 0.7 threshold, the hit 
rate increased for 63.9%.

In order to evaluate the impact of ancestry on the sen-
sitivities presented above, the SNPforID 34-plex AIMs 
was used to infer individual heritage. Our total sample 
presents European ancestry as major contributor (70.5%), 
followed by African (21.1%) and Native American/East 
Asian (8.4%) contributions. Ancestry proportions for indi-
viduals stratified according to eye and hair phenotypes are 
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depicted in Table 6. The admixed nature of this Brazilian 
sample is evident even in individuals with blue eyes and 
blond hair. European ancestry decreases among darker 
phenotypes, being as low as 48.4% among individuals 
with black hair.

Discussion

The analysis of the HIrisPlex set of markers was proposed 
using the SNaPshot Multiplex (Thermo Fisher Scientific) 
minisequencing procedure [37]. However, here we have 

Table 1   Description of the 24 
markers from the HIrisPlex 
System surveyed in a random 
sample of 197 individuals from 
Ribeirão Preto, Brazil, and 
probabilities of adherence to the 
Hardy–Weinberg equilibrium 
(pHWE) 

Values in boldface indicate significant deviations from equilibrium expectations
a Number of individuals successfully genotyped
b Weighted average of the number of reads obtained for 328 samples split in five sequencing assays (Sup-
plementary Table 1)
c Frequency of the reference allele in the reference genome hg19

SNP na Read depth 
(weighted average) b

Reference allele 
(frequency) c

Observed het-
erozygosity

Expected het-
erozygosity

pHWE

rs16891982 197 482.9 C (0.383) 0.4112 0.4739 0.0710
rs28777 196 113.4 C (0.314) 0.3622 0.4317 0.0305
rs12203592 197 284.4 C (0.939) 0.1015 0.1147 0.1491
rs4959270 196 269.5 C (0.569) 0.4439 0.4918 0.1910
rs683 194 131.5 C (0.466) 0.5000 0.4990 1.0000
rs1042602 197 402.7 C (0.668) 0.4112 0.4450 0.3350
rs1393350 197 549.6 G (0.817) 0.2741 0.2995 0.2368
rs12821256 197 352.0 T (0.959) 0.0711 0.0781 0.2718
rs12896399 197 147.5 G (0.713) 0.3807 0.4101 0.3827
rs2402130 197 251.4 G (0.269) 0.3959 0.3943 1.0000
rs1800407 197 238.4 C (0.942) 0.1168 0.1102 1.0000
rs12913832 197 184.1 A (0.637) 0.4315 0.4636 0.3566
rs312262906 197 419.4 C (1.000) 0.0000 0.0000 -
rs1805005 196 545.8 G (0.903) 0.1837 0.1755 1.0000
rs1805006 196 310.5 C (0.992) 0.0153 0.0152 1.0000
rs2228479 197 312.3 G (0.952) 0.0964 0.0920 1.0000
rs11547464 197 621.2 G (0.997) 0.0051 0.0051 -
rs1805007 197 623.5 C (0.992) 0.0152 0.0152 1.0000
rs1110400 197 623.4 T (0.997) 0.0051 0.0051 -
rs1805008 197 635.5 C (0.980) 0.0406 0.0399 1.0000
rs885479 197 628.9 G (0.934) 0.1117 0.1236 0.1955
rs1805009 197 624.9 G (0.980) 0.0406 0.0399 1.0000
rs201326893 197 623.7 C (1.000) 0.0000 0.0000 -
rs2378249 197 293.0 G (0.104) 0.1878 0.1869 1.0000

Table 2   HIrisPlex classification for each different hair color category, 
based on the analysis of 320 individuals from a Brazilian admixed 
population sample

True hair phenotype Predicted hair phenotype (%)

Red Blond Brown Black

Red (n = 11) 72.7 0.00 27.3 0.0
Blond (n = 49) 4.1 61.2 32.6 2.1
Brown (n = 174) 0.0 7.5 78.2 14.4
Black (n = 86) 0.0 0.0 45.4 54.7

Table 3   HIrisPlex summary statistics (AUC, sensitivity, specificity, 
PPV, and NPV) for each different hair color category, based on the anal-
ysis of 320 individuals from a Brazilian admixed population sample

Hair color 
category

Summary statistics

AUC​ Sensitivity Specificity PPV NPV

Red 0.992 0.727 0.994 0.800 0.990
Blond 0.888 0.612 0.952 0.698 0.931
Brown 0.700 0.782 0.603 0.701 0.698
Black 0.841 0.547 0.889 0.644 0.842
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evaluated these 24 markers using an NGS platform (Illu-
mina Inc.), which provides high accuracy for genotype 
calls [57, 60]. Since we aimed for sequencing with a high 
depth of coverage, we achieve averages ranging from 113.4 
to 635.5 reads (Table 1). Therefore, we successfully called 
17 out of 24 loci in all samples, with complete profiles 
for 320 out of the 328 individuals. Overall, there were 
only 10 missing genotypes, spread across eight samples 
(seven samples presented only one missing genotype, 
while one sample presented three missing genotypes). 
Moreover, the high depth of coverage allowed the call of 
reliable genotypes. We observed only one deviation from 
Hardy–Weinberg equilibrium (Table 1), which can be 

attributed to chance. However, it should be noted that this 
marker also presents HWE deviations in TSI and MSL 
populations from the 1000 Genomes Project. It is impor-
tant to emphasize that the allelic frequencies obtained in 
this study are, on average, more similar to those of AMR 
and EUR groups from the 1000 Genomes Project. Except 
for two markers (rs1805009 and rs2378249), allele fre-
quencies are always placed between the values observed 
in EUR and AFR/EAS/SAS, being usually closer to EUR 
(Supplementary Table 2).

The HIrisPlex website displays the AUC, sensitivity, 
specificity, PPV, and NPV values, associated with their 
standard deviations of 1000 cross-validation tests using a 

Fig. 1   HIrisPlex predictions for 
the individuals who reported 
age-dependent changes in hair 
color. (a) Prediction compatible 
with both childhood and adult-
hood phenotype; (b) prediction 
compatible only with child-
hood phenotype; (c) prediction 
compatible only with adult-
hood phenotype; (d) predic-
tion incompatible with either 
childhood or adulthood

Table 4   HIrisPlex classification for each different eye color category, 
with or without the 0.7 probability threshold, based on the analysis of 
328 individuals from a Brazilian admixed population sample

True eye phenotype Predicted eye phenotype (%)
Blue Intermediate Brown Undefined

  Blue (n = 37) 86.5 - 13.5 -
  Intermediate (n = 78) 57.7 0.0 42.3 -
  Brown (n = 213) 0.9 - 99.1 - 

True eye phenotype Predicted eye phenotype (%) (0.7 threshold)
Blue Intermediate Brown Undefined

  Blue (n = 37) 81.1 - 8.1 10.8
  Intermediate (n = 78) 44.9 0.0 25.6 29.5
  Brown (n = 213) 0.9 - 92.5 6.6

Table 5   HIrisPlex summary statistics (AUC, sensitivity, specificity, 
PPV, and NPV) for each different eye color category, based on the anal-
ysis of 328 individuals from a Brazilian admixed population sample

Eye color category
No threshold

Summary Statistics
AUC​ Sensitivity Specificity PPV NPV

  Blue 0.891 0.865 0.838 0.405 0.980
  Intermediate 0.751 0.000 1.000 - 0.762
  Brown 0.933 0.991 0.670 0.847 0.975 

Eye color category
0.7 threshold

Summary Statistics
AUC​ Sensitivity Specificity PPV NPV

  Blue 0.891 0.909 0.854 0.448 0.986
  Intermediate 0.751 0.000 1.000 - 0.808
  Brown 0.933 0.990 0.739 0.895 0.970
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database with more than 1500 global individuals for the four 
hair color categories (Supplementary Table 4). Although 
no statistical test was performed, it is noteworthy that blond 
and red hair present higher AUC, specificity, PPV, and NPV 
values in the present study. Red hair also presented higher 
sensitivity. Brown hair presented here higher sensitivity and 
PPV, while black hair also presents higher AUC and sensi-
tivity, in spite of lower specificity and NPV. Despite these 
interesting findings, the overall system sensitivity for hair 
color prediction is much lower among Brazilian admixed 
samples (0.691) than in Europeans (0.790) [36]. We must 
emphasize that our sample size is much lower than the one 
used by HIrisPlex, with a larger proportion of intermediate 
phenotypes and a small number of samples for some pheno-
typic categories (such as red hair). Moreover, no admixed 
populations were used to estimate those parameters available 
in the HIrisPlex website. We can also observe that when 
individuals with blond and red hair are incorrectly predicted, 
the prediction result was always brown. Although it is sur-
prising, this cannot be attributed to incorrect phenotype 
assessment by the observers, since the individuals have also 
self-reported as red hair. Notwithstanding that, most of red 
haired people were predicted correctly. Again, the low num-
ber of red hairs in our sample (n = 11) may represent a limi-
tation in the results analysis. Erroneous predictions involv-
ing individuals with brown hair results resulted in black hair 
and vice versa (Table 2). This may be because sometimes it 
is difficult to distinguish dark brown from black hair.

Although our total sample has a major European con-
tribution, when we analyze only the subset of individuals 
with black hair, the European ancestry decreases to a much 
lower proportion. It is expected that samples with higher 
non-European proportions will present higher probabilities 
for dark hair, since light derived alleles from Europeans may 
be less common in such samples [36]. We can observe that 
the highest admixture rate is associated with the category 
with lower sensitivity. Notwithstanding, this is consistent 

with the idea that admixture introduces African and East 
Asian/Native American alleles that are associated with 
darker phenotypes, increasing considerably black hair sen-
sitivity when compared to the developer’s values (0.547 vs. 
0.333–Supplementary Table 4).

Regarding HIrisPlex application in forensics practice, we 
can observe that, except for red hair, all the categories pre-
sented low PPV values (Table 3), which means that the prob-
ability of a prediction outcome be correct is around 64–70%. 
However, some considerations may minimize the impact of 
these PPV values and optimize HIrisPlex’s predictions in a 
police investigation. For instance, blond outcome is assigned 
to 13 individuals with brown hair (Table 2), and most (10) 
of them presented light brown phenotype. Therefore, when 
a blond prediction is obtained, it is important to expand the 
search to individuals with light brown hair too. Similar can 
be done for black hair. Twenty-five out of the 26 individuals 
wrongly assigned as black hair actually present brown hair, 
and specifically dark brown for most (24) of them. Thus, 
when a black outcome is obtained, the police search should 
include individuals with dark brown hair as well. Red hair 
is the most accurate color predicted, and only two blond 
individuals were incorrectly assigned with this phenotype. 
Finally, brown hair is the most complex category, because 
it was wrongly assigned to all other hair colors (Table 2). 
Thereby, if a brown prediction is made, it is important to 
keep in mind that the suspect could have hair color varying 
from dark blond to black.

Investigating the impact of age-dependent changes in hair 
color on prediction (Fig. 1), we notice that many individuals 
that were blond in childhood remained blond in adulthood, 
not influencing the prediction results. Regarding the indi-
viduals that had their hair changed from blond to brown/
black color, 76% of them had their predictions compatible 
with their current hair color, and only 20% had blond hair 
color prediction. We can also observe that most of the indi-
viduals with brown hair in childhood still present it today. 
From the five individuals remaining (~ 30%) in which brown 
hair darkened to black, four of them were predicted as brown 
(80%), compatible with childhood and one of them was pre-
dicted as black hair (20%), compatible with adulthood. From 
these data, we can conclude that there is not an expressive 
influence of age-dependent changes on the results, because: 
(a) only a few individuals (31 out of 320, i.e., 9.69%) expe-
rienced hair color changes that were strong enough to lead 
them to another category, and (b) when a change to another 
category occurs, most of them (20 out of 31, i.e., 64.52%) 
had predictions compatible with what is observed during 
adulthood.

The HIrisPlex website also displays the AUC, sensitiv-
ity, specificity, PPV, and NPV values for the three eye color 
categories, based on 1000 cross-validation tests using a data-
base with more than 9000 individuals from around the world 

Table 6   Overall ancestry proportions inferred for individuals strati-
fied in phenotypic groups

Phenotypic category Ancestry proportions (%)

European African East Asian/
Native 
American

Blue eyes (n = 37) 88.0 7.9 4.1
Intermediate eyes (n = 78) 83.9 11.4 4.7
Brown eyes (n = 213) 62.6 26.9 10.5
Red hair (n = 11) 85.9 9.8 4.3
Blond hair (n = 49) 89.0 7.8 3.2
Brown hair (n = 174) 75.4 16.3 8.4
Black hair (n = 86) 48.4 39.4 12.2
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(Supplementary Table 4). Regarding blue eyes, except for 
NPV, the remaining parameters (AUC, sensitivity, specific-
ity, and PPV) obtained in the Brazilian sample are lower 
than those presented on the website. This finding could be 
partly due to the limited number of blue eyes in our sam-
ple (n = 37). HIrisPlex did not predict any individual with 
intermediate eyes, leading to a sensitivity zero, specificity 
one, and the impossibility of estimating PPV. It has also led 
to a much lower NPV. This is not an unforeseen outcome, 
given the previous knowledge of the difficulties in predicting 
this phenotype. Finally, regarding brown eyes, it is interest-
ing to highlight that in our study, the tool presented higher 
sensitivity, PPV, and NPV values, together with lower AUC 
and specificity.

An in-depth analysis of these parameters (Table 5) reveals 
that when the tool classifies an individual as having brown 
eyes, this prediction is reliable (PPV = 0.847). This param-
eter, as well as specificity, is not strongly affected by the 
fact that 33 individuals with intermediate eyes are wrongly 
classified with brown eyes (Table 4) since the number of 
sampled individuals with brown eyes is large (n = 213). On 
the other hand, HIrisPlex shows low reliability when pre-
dicting blue eyes (PPV = 0.405) (Table 5). This is because 
45 out of the 78 individuals with intermediate eye color are 
predicted as having a blue eye (Table 4), and the number of 
sampled individuals with blue eyes is very small (n = 37) 
compared to other categories. As there was no intermediate 
eye prediction, all individuals with blue eyes wrongly clas-
sified by HIrisPlex are assigned to the brown eye category 
and vice versa (Table 4). Because of HIrisPlex’s difficulty in 
predicting intermediate eyes, overall sensitivity for eye color 
prediction (0.741) is rather low.

Following the same reasoning presented for black hair, 
it is expected that samples with higher levels of non-
European ancestry present higher probabilities for dark 
eye color, since they are more likely to have the majority 
of causal genotypes displaying a pair of ancestral alleles 
[36]. In fact, when we analyze the ancestry of the subset 
of individuals with brown eyes, they present lower Euro-
pean contribution and higher levels of African and Native 
American/East Asian ancestry. The sensitivity for brown 
eyes is improved by this admixed pattern, since the higher 
African and East Asian/Native American contributions 
within this group provide alleles associated with eumela-
nin production, boosting sensitivity for this category when 
compared to the observation among Europeans (0.991 vs. 
0.935–Supplementary Table 4). When applying the 0.7 
probability threshold, although there is a slight increase 
in values of most of the parameters (Table 5), there are 
no expressive changes in comparison with the develop-
ers’ values. However, the sensitivities obtained for blue 
and brown eyes can be considered satisfactory. A 6.75% 
increase was observed for overall sensitivity (from 0.741 

to 0.791). The use of this threshold seems to be a good 
choice since it increases blue eyes prediction sensitivity 
(5.1%), and only 12.5% of individuals are set as undefined 
(Table 5).

In our sample, there were 78 individuals with intermedi-
ate eyes: 18 of them presented hazel eyes, which is a little 
lighter than brown, while the remaining 60 presented green 
eyes, which can vary from light to dark green. Fifteen out 
of the 18 hazel eyes and only 18 out of 60 green eyes were 
predicted as brown. Most of these individuals had darker 
tones. Thinking about forensic practice, according to these 
results, we could suggest that, when a brown eye is pre-
dicted, authorities should keep in mind that it could be a 
hazel or a dark green eye as well. The same can be stated 
for blue eyes, since 42 out of 60 intermediate eyes were 
predicted as blue, and most of them presented light inter-
mediate tones. Therefore, when blue eyes are predicted, it 
would be important to remind that this could indicate green 
eyes as well, and the search should include people in the 
blue light intermediate eyes spectrum. This approach could 
be used in order to minimize the impact of errors involving 
intermediate phenotypes, while markers that can identify 
them remain unknown. The use of the 0.7 thresholds also 
helps to decrease the impact of intermediate eyes failure, 
since almost 30% of them become undefined when applying 
it, leaving predictions of blue and brown eyes more reliable.

Some studies have evaluated the IrisPlex system in 
admixed and non-admixed populations [29–34], and the tool 
was not able to predict intermediate eyes for any individual in 
all of them, achieving a sensitivity zero and specificity one. 
These studies, as well as the present one, are in agreement 
with the statement described in the original IrisPlex studies 
[26, 27]: the HIrisPlex system can predict blue and brown 
eyes accurately, but it presents some difficulties in predict-
ing intermediate eyes, pointing to the necessity of additional 
markers strongly associated with this phenotype. The evalua-
tion of the IrisPlex system is especially important in admixed 
populations outside Europe because this genetic background 
leads to a higher presence of intermediate phenotypes.

As discussed above, HIrisPlex predicts blue and brown 
eyes competently and shows a reasonable prediction perfor-
mance when it comes to hair color, with higher sensitivities 
for red and brown hair. However, its use in admixed popu-
lations must be addressed with caution. Such populations, 
due to their variable degrees of European and non-European 
genetic inheritance, tend to present more intermediate phe-
notypes than most autochthonous populations. Then, such 
predictive difficulty is especially problematic and has a 
stronger impact when used in admixed populations. Even 
though markers capable of helping in intermediate pheno-
types predictions are still being studied, the enhancement 
of the HIrisPlex system with such markers would increase 
undoubtedly the reliability of prediction in Brazil and, 
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perhaps, in other South-American countries that share a 
similar ancestry background [61].

The European, African, and Amerindian biogeographi-
cal groups compose the ancestry background of other Latin 
American populations but in different proportions. Countries 
such as Mexico, Guatemala, Peru, and Ecuador display a 
more significant Amerindian contribution in their popula-
tions, while countries such as Cuba, Chile, Colombia, Puerto 
Rico, Venezuela, Argentina, and Uruguay have a major 
European influence. African ancestry is more common in the 
Caribbean area, including the Bahamas, Haiti, and Jamaica. 
Finally, Brazil presents a considerable variability among its 
regions: although European ancestry is predominant every-
where, we can observe a higher Amerindian contribution 
in the north of the country, while the northeast has a strong 
African contribution and the south and southeast (where the 
samples of this study were collected) have a higher European 
influence [34, 61–64]. Further studies in other Latin popula-
tions are required to evaluate HIrisPlex’s performance.

The need of additional predictive markers is more pro-
nounced in such admixed countries, which, in addition to pre-
senting a higher frequency of intermediate phenotypes and 
a more diverse spectrum of pigmentation phenotypes, have 
particular demographic histories, which may result in a new 
genetic background characterized by the epistatic interaction of 
different ancestry-specific alleles. For example, two variants in 
the MFSD12 gene that are strongly associated with skin color 
have been recently identified in studies involving African and 
Latin American admixed populations [13, 25, 65].

Conclusion

In conclusion, the present study evaluated HIrisPlex perfor-
mance in a different admixed background and reinforced its 
performance in predicting blue and brown eyes, despite its 
already known limitations in predicting intermediate eye 
color, which decreases the system sensitivity. Red hair was 
the most accurately predicted phenotype among hair colors. 
Despite the limitations for the other colors prediction, as 
age-dependent changes and probably the lack of additional 
predictive markers, the results obtained support its utility if 
addressed carefully. Finally, it is important to emphasize that 
there might be other factors influencing pigmentation, such 
as new combinations of alleles derived from different biogeo-
graphical ancestries, in case of admixed populations. Besides 
that, additional studies are important to identify new genetic 
markers that could be used to complement and enhance the 
HIrisPlex system predictions, providing more accurate out-
comes. The improvement on prediction of intermediate eyes 
and dark blond/light brown hair phenotypes would be very 
important for admixed population, since they present high 
frequency of these phenotypes.
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