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Abstract
Organophosphorus insecticides, such as parathion-ethyl, quinalphos, chlorpyrifos, chlorfenvinphos or diazinon, are still widely used for
pest control on crops. These compounds are extremely toxic to humans, and, even though specific legislation exists that controls the use
of these substances, the frequency of toxic and/or fatal events and the existing data suggest that they are still easily accessed and the
knowledge associated to the risks is not well-recognized. For these reasons, the determination of the exposure to these compounds, their
detection (and of their metabolites as well) in biological samples, is of great importance in clinical and forensic toxicology, and,
therefore, the development of techniques for this evaluation is an important task for laboratories.Most confirmatory analyses use blood,
serum, plasma and urine as biological samples and are performed by either gas chromatographic-mass spectrometric or liquid
chromatographic-mass spectrometric instrumentation, which represents the gold standard in what concerns high sensitivity. This paper
will not only address the physical–chemical and toxicological aspects of this class of compounds but also perform a comprehensive and
critical review on the analytical methods available for their determination in biological specimens, with special focus on the latest
instrumental developments and sample preparation approaches.
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Introduction and history

Pesticides have always been used in its crude form from the
earliest times, but their use as synthetic compounds happened
early in the middle of the twentieth century [1].

Highly toxic organophosphorus compounds are a large
group of organic phosphorus esters created in the 1930s before

the WorldWar II [2, 3], with the accidental discovery of tabun
by Gerhard Schrader in 1937 [2, 4]. In addition to this finding,
the starting point for the development of this class of pesti-
cides was also the synthesis of alkyl phosphorofluoridates by
Lange and von Krueger [5]. Consequently, investigations
were initiated to develop other highly toxic compounds sub-
sequently used as chemical warfare nerve agents, such as sa-
rin, VX and soman [2, 4, 6, 7]. More recently, agents from the
Novichok group are known to be weaponized, such as sub-
stance 33, A-230, A-232 (with Novichok-5 as binary ana-
logue) and A-234 (with Novichok-7 as binary analogue).
This family of compounds is related to the previously men-
tioned nerve agent VX; however, this group is considered to
be 5–10 times more potent than the former [8].

After the war period, the use of these compounds and re-
search on their development with the pesticide function in-
creased [2, 9], due to the lower environmental stability, high
toxicity and high efficiency [9, 10]. Consequently, these pes-
ticides have become one of the most commonly used classes
of substances in the world [11, 12].

These compounds have their importance and the beneficial
effects associated with agriculture as agrochemicals used to
minimize crop and post-harvest crop losses, ensuring the

Electronic supplementary material The online version of this article
(https://doi.org/10.1007/s00414-019-02119-9) contains supplementary
material, which is available to authorized users.

* Eugenia Gallardo
egallardo@fcsaude.ubi.pt

1 Centro de Investigação em Ciências da Saúde (CICS-UBI),
Universidade da Beira Interior, Av. Infante D. Henrique,
6201-556 Covilhã, Portugal

2 Laboratório de Fármaco-Toxicologia—UBIMedical, Universidade
da Beira Interior, Covilhã, Portugal

3 Serviço de Química e Toxicologia Forenses, Instituto Nacional de
Medicina Legal e Ciências Forenses, Delegação do Sul,
Lisboa, Portugal

4 Faculdade de Medicina, Universidade de Coimbra,
Coimbra, Portugal

https://doi.org/10.1007/s00414-019-02119-9
International Journal of Legal Medicine (2019) 133:1763–1784

/Published online: 12 July 2019

http://crossmark.crossref.org/dialog/?doi=10.1007/s00414-019-02119-9&domain=pdf
http://orcid.org/0000-0002-1802-8998
https://doi.org/10.1007/s00414-019-02119-9
mailto:egallardo@fcsaude.ubi.pt


effective production, and to control pests that affect them, as
well as reducing the incidence of diseases transmitted by vec-
tors [1, 10–13]. These compounds also have much shorter
environmental half-lives compared to other classes of pesti-
cides [14–16].

However, pesticides are manufactured to be toxic to living
species and released into the environment; so, a large part of
the population is exposed to these chemicals in the non-
occupational environment or at the workplace, which makes
it virtually impossible for exposure to be completely avoided.
In addition, because of their widespread use and the fact that
they are not specific to target organisms, they can be harmful
to man, being considered an environmental health problem,
which means that the associated risks (depending on whether
the exposure is acute or chronic) should be properly evaluated
[11, 12, 17–22].

Besides their reckless and indiscriminate use, the lack of
use of safety devices during manufacture, storage, transport
and agricultural application increases the risk of human expo-
sure to these compounds, and as such a high number of acci-
dental and intentional human intoxications occur [11, 23–29].
Furthermore, the widespread use of these compounds may
increase insect resistance [12].

Although some of these insecticides have been restricted in
2001, their agricultural use is still important [30]. Though
international organizations, such as the World Health
Organiza t ion (WHO) and Food and Agricul ture
Organization of the United Nations(FAO-UN) [31–33], have
issued warnings and created strict legislation to prohibit and
control the use of these compounds, they are still responsible
worldwide for many deaths for accidental ingestion or acci-
dental exposure through the skin and airways [33–36] and
poisonings, either suicidal [37–39] or homicidal [40–43], each
year [12, 13, 17, 23, 34, 44–48]. Most cases of suicides or
attempts occur in rural areas, where people who use these
pesticides usually store them at home, facilitating their inges-
tion [23, 49], since that they are still widely used in commer-
cial and domestic agriculture or as chemical weapon [1, 17,
50, 51]. Cases of homicidal poisoning involving these com-
pounds are less frequent due to the unpleasant odor and taste
they present [23]. There is an estimation of 3 million acciden-
tal poisoning cases per year, an incidence of 220,000 deaths
worldwide according to the WHO [36, 52] and more than
250,000 deaths per year from suicidal poisoning [13,
53–56]. A recent study involving several countries reports that
the annual incidence of poisonings among agricultural
workers varies from 3 to 10% per country [57, 58].
However, and despite these data, there is little published case
reports in the literature [58–70].

The morbidity and mortality percentage due to intoxication
by these insecticides is high and varies from country to coun-
try. Several factors contribute to this rate, such as the level of
socioeconomic development, accessibility to these chemicals,

importance of the local agricultural sector, as well as the delay
in diagnosis and inadequate treatment. This reinforces the im-
portance of toxicological screening for the correct diagnosis,
since accurate information on the involved substance(s) is
often rare. There is also a wide variety of compounds that
may eventually be present, making it necessary to develop
powerful and versatile analytical methodologies for their iden-
tification [62, 71].

The risk and the potentially increasing threat of terrorist
attacks using either these pesticides or the above-mentioned
nerve agents continue to be addressed today. This situation
encourages the Chemical Weapons Convention (CWC) to ban
their development, production and storage, which entered into
force in April 1997. Recent episodes and intoxication statistics
also reinforce the importance of toxicological aspects [72].

Structure and classification

Organophosphorus pesticides are a large group of highly toxic
organic phosphorus esters, presenting the following basic
structure (Fig. 1) (proposed by Gerhard Schrader in 1937 [2]).

All compounds are derived from the phosphoric acid mol-
ecule (P〓O) or from the phosphorothioic acid molecule (P〓
S). The presence of one of these groups is important for the
determination of human toxicity arising from these com-
pounds [32, 73]. The thiophosphates have to be metabolized
to the respective oxon, to become effective acetylcholinester-
ase inhibitors [9, 74], a cytochrome P450-mediated reaction
that is susceptible to interindividual variations and conse-
quently individual susceptibility to pesticides with this bond
[75, 76].

The combination of the possible residues in the R and R′
positions and the different groups in the X position allows the
synthesis of an indeterminate number of final derivatives. The
R and R′ radicals may be alkyl, alkoxy, aryloxy or others,
while X may be a phenoxy, thiophenoxy, phosphate, carbox-
ylate or other groups [9, 73, 77].

Therefore, these pesticides can be divided into different
subclasses, including phosphates, phosphonates,
thiophosphates, phosphoramidates and phosphinates, which
originate quite different physicochemical and toxicological
properties [4].

They are usually liquid and non-polar compounds, which
means that most of them are poorly soluble in water and tend
to dissolve in fat [78]. Many of these compounds evaporate at
room temperature. However, their stability depends on the pH
of the mediumwhere they are, and they will decompose under
strongly alkaline pH values or in the presence of humidity.
These properties have an influence on the importance of the
routes of entry of these compounds, as well as the conditions
that can best destroy them [79, 80].
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Mechanisms of action

Organophosphorus pesticides affect the central nervous
system, and nicotinic and muscarinic receptors are affect-
ed as well; these compounds are potent and irreversible
inhibitors of cholinesterase activity (in whole blood), in-
hibit the activity of pseudocholinesterase (in serum) and
inhibit the activity of acetylcholinesterase (in red blood
cells), and this is known as the cholinergic syndrome
[11, 13, 22, 54, 63, 81–84]. These effects are the cause
of lethality associated to these insecticides. Other effects
have also been reported, but they are not detailed because
they are outside the scope of this review.

The toxicity of these pesticides is determined by this same
inhibitory potency, by physicochemical properties, chemical
and biological stability and through added additives. These
compounds are commercialized as complex formulations
and may therefore contain various organic solvents and emul-
sifiers, which may in turn increase their absorption and con-
sequently toxicity. Intoxications can result in a broad spectrum
of clinical signs depending on the intrinsic toxicity, the admin-
istered dose and the route of exposure [85–88].

The propagation of the action potential is due to the pres-
ence of acetylcholine followed by hydrolysis by the enzyme
acetylcholinesterase. In a normal process, the enzyme hydro-
lyzes acetylcholine in two steps [89, 90]. Acetylcholine begins
by binding to the active site of the enzyme, releasing the
choline fraction and forming an acetylated version of it.
Then, a water molecule attacks the enzyme releasing acetic

acid plus the active enzyme, which is again available for a new
catalytic cycle. In the case of organophosphorus pesticide poi-
soning, acetylcholinesterase is inhibited through a similar
mechanism [89, 90]. The pesticide begins by phosphorylating
the same active center that also binds to acetylcholine, but, in
this situation, the phosphorus fraction is not released from the
protein by hydrolysis [89, 90] and the phosphorylated enzyme
is not capable of hydrolyzing its natural substract, losing its
normal function in the catabolism of neurotransmitters [19].
Briefly, the main mechanism of toxic action is the covalent
binding to the active site serine OH– group at the base of a
deep gorge of the pivotal enzyme acetylcholinesterase.
Inhibition of the physiological action of acetylcholinesterase
to hydrolyze the neurotransmitter acetylcholine is due to its
phosphylation, which includes both phosphorylation and
phosphonylation [91].

With this, the altered hydrolysis of acetylcholine leads to its
accumulation in the synaptic cleft, with consequent overstim-
ulation of muscarinic and nicotinic receptors at the nerve–
nerve and nerve–organs of the cholinergic system [22, 82,
92, 93]. This results in an eventual paralysis of nerves or
muscles, which can produce neurotoxicity and result in death,
which usually occurs following the impairment of respiratory
muscles [23, 82, 94–96].

Moreover, it is known that this inhibition also involves, in
addition to the central and vegetative nervous systems, the
neuromuscular junctions with production of acute toxicity
with high levels of acetylcholine acting on the above-
mentioned receptors [22, 82, 92].

Fig. 1 Basic structure of
organophosphorus insecticides
(a) and examples of
organophosphorus insecticides,
which are (b) chlorfenvinphos, (c)
parathion, (d) azinphos, (e)
quinalphos, (f) dimethoate, (g)
diazinon and (h) chlorpyrifos
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In addition to acetylcholinesterase, these compounds also
exert a potent inhibitory effect over other serine esterases,
namely butyrylcholinesterase and carboxylesterase [23,
97–99]. However, this inhibition does not result in additional
acute toxic effects, but these enzymes can serve as endoge-
nous source receptors for detoxification of a limited amount of
incorporated compound [100, 101].

Consequently, the determination of the activity of the men-
tioned enzymes can be used in the biological monitoring of the
exposure to those compounds that act on their inhibition [11, 54].

Acetylcholinesterase remains inhibited until a new enzyme
is generated or until an enzyme reactivator (oxime) is directed.
This phosphorylated enzyme can be reactivated by treatment
with strong nucleophilic agents, such as those oximes referred
previously, which reactivate acetylcholinesterase by removing
the phosphoryl group. On the other hand, it may also undergo
a spontaneous time-dependent process called “aging”, where a
dealkylation process occurs, leaving the enzyme irreversibly
inhibited [19, 54, 102, 103].

In cases of intoxication by these pesticides, following the
acute cholinergic crisis, the intermediate syndrome appears be-
fore the manifestation of delayed neuropathy. Symptoms such
as respiratory paralysis, elevated serum creatine phosphokinase,
weakness of proximal limb muscles, neck flexors and respira-
tory muscles and muscle fiber necrosis may occur in this syn-
drome. Studies have shown that this syndrome can occur from
24 to 96 h after organophosphate ingestion and after the indi-
vidual recovers from acute cholinergic crisis. Additionally, de-
layed neuropathy induced by organophosphorus pesticides is a
rare complication of acute exposure to some of these com-
pounds, resulting from the phosphorylation and subsequent ag-
ing of at least 70% of neuropathy target esterase in peripheral
nerves and consequent loss of activity [104, 105].

Toxicokinetics

Exposure to organophosphorus pesticides can occur through
several routes, and this is important in the compound’s rate of
absorption into the systemic circulation. Thus, knowing the
physicochemical properties of the compounds is essential for
their toxicological evaluation [106].

The most common routes are inhalation, dermal contact
and ingestion [22, 55, 82], with ocular exposure being a less
common route of entry for these toxic compounds [107, 108].

After exposure to these compounds by vapor inhalation or
intravenous administration, signs of intoxication (miosis, for
instance) may appear early within a few minutes or hours,
resulting in a rapid increase in their concentration in circula-
tion resulting in acute toxicity [13, 22, 82, 92]. However, if
poisoning occurs by percutaneous exposure to vapor or liquid,
the signs may take hours to appear, and this results in a latency
time between exposure and the onset of clinical symptoms,

such as local sweating and fasciculations. There is also a delay
in hours until they can be detected and quantified in blood. In
the case of oral ingestion of these pesticides, gastrointestinal
symptoms appear readily, and the risk is much more domi-
nant, followed by the risk of contamination by inhalation [85,
106–121]. Systemic exposure through inhalation, dermal con-
tact or ingestion may also lead to symptoms such as lack of
vision and burning sensation [22, 82]. In addition to the acute
toxicity associated to this exposure, long-term consequences
of chronic toxicity may occur, such as infertility and cancer
[20, 122–124]. Several studies suggest that there is an associ-
ation between exposure to organophosphorus pesticides and
reproductive disorders, because they affect the sperm structure
and function and consequent deterioration of the semen, and
any DNA damage may interfere with the transmission of ge-
netic information during reproduction. These compounds may
also alter reproductive function by reducing acetylcholinester-
ase activity in the brain, affecting pituitary gonadotropin. Both
situations result in infertility [125, 126]. A compilation of
papers by Mostafalou and Abdollahi [127, 128] shows that
there is enough evidence demonstrating the role of exposure
to organophosphorus pesticides in the incidence of diseases,
such as cancer. The results show that the exposure to these
compounds is related to cancers of the nervous system (brain
tumor), haematopoietic system (lymphoma), digestive system
(colorectal cancer), male (prostate cancer) and female (breast
and ovarian cancer) reproductive systems and lung, thyroid
and skin cancer. In addition, they concluded that carcinoge-
nicity, via genetic or epigenetic mechanisms, is considered the
most commonly reported toxic effect related to this class of
pesticides, adding to endocrine disruption and oxidative
stress. In addition, the organic solvents in which the pesticides
are incorporated may also contribute to the mechanisms of
toxicity.

These properties are an important factor to take into ac-
count for the development of appropriate methods for decon-
tamination and drug treatment [129].

Organophosphorus pesticides easily cross alveolar and der-
mal membranes due to their lipophilic structures [130, 131],
and as they are commonly applied as aerosols, inhalation and
dermal exposures are the most common in accidental intoxi-
cations [130, 132]. However, the gastric mucosa also presents
permeability to these compounds, being the classic choice in
case of attempted suicide [131, 132].

Due to their chemical nature, these compounds have bio-
logical half-lives in the order of hours to a few days [133] and
do not circulate in the bloodstream for longer time periods.
These pesticides are distributed throughout the body, especial-
ly in adipose tissues [55], but, generally, do not accumulate
due to their rapid biodegradation, being usually metabolized
and excreted from the body within a few days [19].

After the distribution phase, the metabolism phase takes
place. Some of these pesticides can be eliminated without
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metabolism. However, as noted earlier, in most cases, rapid
metabolism occurs, converting them to specific and non-
specific metabolites [131, 134]. Most organophosphorus are
activated by oxidation in the liver, and the enzymes involved
in this process are the cytochrome P450 system and flavin-
containing monooxigenases. The enzymatic systems involved
in detoxification are phosphotriesterases (PTEs),
carboxylesterases and glutathione-S transferases [135]. A ma-
jor detoxification pathway is the hydrolysis by a type of ester-
ases called PTEs, where the reaction products do not exhibit
phosphorylation capability and each enzyme molecule is ca-
pable of deactivating many pesticide molecules [89, 90].

Nevertheless, these insecticides are generally metabolized
into the more reactive form of oxon, which can bind to cho-
linesterases or be hydrolyzed into a dialkylphosphate (DAP)
and a hydroxylated organic fraction specific of the pesticide.
Alternatively, the intact pesticide may undergo hydrolysis pri-
or to any conversion to the oxon form and the polar metabo-
lites are excreted [19].

After metabolism, the metabolites may be excreted in fae-
ces and expired air, although in low amounts; the main route
of elimination is urine, specifically for the more polar metab-
olites [19, 131]. As an indication of exposure to these com-
pounds, non-specific DAP metabolites may be measured in
urine [136–142], and as this conversion does not originate
specific metabolites, the absorbed pesticide cannot be identi-
fied [134]. Most of these compounds are excreted within 48 h
as the parent pesticide, a mercapturate detoxification product,
and as free or conjugated metabolites (glucuronides, sul-
phates) [143–150].

Case reports

Because of their widespread use in agriculture, organophos-
phorus pesticides represent a health problem worldwide and
are involved in suicides, accidental self-poisonings and even
homicides [25–29, 39, 43–48, 59–61, 68–70, 151]. In fact, a
recent study reports that the annual incidence of poisonings
among agricultural workers varies from 3 to 10% per country
[57]. However, and despite these data, there is little published
case reports in the literature. The following lines describe all
case report cases found in the PubMed database using the
following search strings (either alone or in combination): “or-
ganophosphorus pesticides” or “organophosphorus insecti-
cides” and the different types of biological specimens.

An example of this is the case of a 79-year-old man found
dead at home with a belt tied around his neck. A strong
“chemical” odor was also detected. According to statements
obtained, the deceased was being treated for prostate disease
and depression, having already tried suicide twice. The autop-
sy findings included features such as edematous and emphy-
sematous lungs, blood-like fluid from the parenchymal cut,

presence of yellowish-white mucus in the bronchial tubes
and trachea, congested liver, clear liquid with strong solvent
odor, as well as walls with signs of erosive gastritis in the
stomach and esophageal mucosa. Samples of blood and gas-
tric contents were submitted for toxicological analyses.
Negative results for drug and alcohol abuse were obtained.
However, when the samples were analyzed by gas
chromatography–tandem mass spectrometry (GC–MS/MS),
diazinon was detected in blood at a concentration of
6.48 μg/mL [62].

In another case, a 43-year-old man attempted suicide by
ingesting 100 mL of 5% fenitrothion and acephate emulsion.
The patient was transferred to an emergency department, and
blood samples were collected in dried heparin, treated and
stored. On the next day, the samples were prepared and ana-
lyzed by liquid chromatography-atmospheric pressure chemi-
cal ionization-mass spectrometry (LC-APCI-MS). The deter-
mined serum concentrations of fenitrothion and acephate were
4.5 and 7.2 μg/mL, respectively [63].

An 80-year-old man was found dead in bed, with no evi-
dence of a struggle. A forensic autopsy was performed to
elucidate the cause of death, where moderate rigidity was
observed in all joints, chemical lesions on the right side of
the face and upper portion of the body and congestive organs.
The lungs were markedly edematous, the stomach contained a
dark grey fluid that smelled strongly of organic solvents and
the duodenum and intestine also contained a white milky liq-
uid with the same odor. No drugs or ethanol were detected in
the urine and blood samples, and the concentrations of
methidathion in cardiac and peripheral blood were 66.2 and
8.33 μg/g, respectively. In the 30 g of stomach contents, the
concentration of methidathion was 64 mg/g and that in the
upper portion of the small intestine was 38 mg/g. The samples
were analyzed by gas chromatography–mass spectrometry
(GC–MS) [64].

Another paragon is that of a 24-year-old woman found
dead in bed, with a strong smell of solvents or pesticides and
faeces. There was a bottle whose label said it contained
200 mg/mL of chlorfenvinphos. Furthermore, it was said by
the mother that it would be for the treatment of dog ticks. A
suicide note was found, and the deceased had a history of
depression, drug abuse and suicide attempts. At the autopsy,
congested and edematous lungs were observed. Samples of
cardiac blood, liver and stomach contents collected had a
greenish-smelling colour with strong solvent odor and were
analyzed by gas chromatography-flame ionization detector
(GC-FID). Chlorfenvinphos was detected at concentrations
of 8.6 mg/L in the cardiac blood, 60.0 mg/kg in the liver and
1.132 mg/L in the stomach contents [65].

An additional case is a 54-year-old man found dead on a
football pitch. A bottle with a brownish fluid was found near
the victim whose label mentioned “Denkavepon M50” and that
it contained 47.5% of dichlorvos. The autopsy revealed diffuse
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congestion of the internal organs and a haemorrhagic ulcer of the
digestive tract. In the stomach, 150 mL of a volatile liquid was
present. Samples of blood (cardiac and peripheral), urine, gastric
contents, heart, lung, kidney and liver were collected and ana-
lyzed by GC–MS and liquid chromatography-photodiode array
detector (HPLC-PDA). The concentration of dichlorvos in car-
diac blood was 4.4 mg/L and that of peripheral blood was
1.3 mg/L. The pesticide was detected in heart tissue at
1400 mg/kg, and the kidney and lung concentrations were 1
and 2.1 mg/kg, respectively. In the urine, the concentration was
1.3mg/L, and, in the stomach, it was 253mg/mL, corresponding
to 38 g dichlorvos [66].

Finally, the case of a 21-year-old woman, known to be a
drug user, that was found dead at home. They found an empty
syringe and a bottle of parathion-methyl. The blood sample
was tested for the presence of alcohol, as well as for cannabi-
noids, opiates, cocaine, benzodiazepines, barbiturates and am-
phetamines by fluorescence polarization immunoassay. No
evidence was found for the presence of drugs, and the blood
alcohol concentration was 1.05 g/L. Organophosphorus pesti-
cides were identified in the blood, but they were not detected
in the liver, kidney and stomach contents. Parathion-methyl
was determined in the blood at a concentration of 24 mg/mL
using gas chromatography-nitrogen phosphorous detector
(GC-NPD). According to the toxicological analysis, due to
the absence of stomach contents, it was concluded that the
cause of death was acute poisoning by intravenous injection
of this organophosphorus [67].

Bioanalytical procedures
for organophosphorus pesticide detection
in biological specimens

In the field of clinical and forensic toxicology, it is essential to
perform confirmatory tests for the diagnosis of acute or
chronical poisoning situations. The choice of a type of analy-
sis depends on the complexity of the biological specimens
used for the detection and/or the determination of the toxic
agents involved. The most commonly analyzed specimens are
blood, plasma, serum and urine. However, it is also possible to
use less conventional matrices, such as oral fluid, hair, sweat,
tissues, vitreous humor and bile, among others. These alterna-
tive specimens are usually characterized by their complexity,
and the toxic substances are usually present at low concentra-
tions; in addition, in some cases, the amount of sample avail-
able for analysis is relatively small. Furthermore, post-mortem
specimens can endow some difficulties compared to those
obtained in clinical scenarios, namely those resulting from
autolytic/putrefactive changes.

The use of highly sensitive techniques is therefore neces-
sary. Typically, the detection of toxic compounds in clinical
and forensic settings begins with a screening test followed by

confirmatory analyses. For this purpose, immunoassays are
usually the first approach [152].

In the literature, there are also cases of application of im-
munoassay tests to this class of compounds. An example is the
work by Zhang et al. [153], in which a portable
immunochromatographic strip-based biosensor was devel-
oped for the detection of trichloropyridinol (specific biomark-
er of exposure to chlorpyrifos) in saliva samples, which was
successful in the direct analysis of complicated authentic sam-
ples. This immunosensor is based on gold nanoparticles,
which are augmented in situations of reduced levels of
analytes. These nanoparticles, when captured, can be ob-
served without any equipment and quantified by a
colourimetric reader. This biosensor exhibits a linear range
and detection limit of 0.625–20 and 0.47 ng/mL, respectively.

Eskandari and Naderi-Darehshori [154] synthesized nano-
particles of a hydrophobic magnetic polymer (poly(styrene-
divinylbenzene)) and studied their adsorption potential in or-
der to determine trace levels of fenitrothion in both biological
and environmental samples. The magnetite nanoparticles are
added to the sample solution as a way of preparing a strong
local magnetic field, which leads to a faster and more efficient
precipitation of the nanoparticles from the extraction mixture.
The method has a spectrophotometric determination at
571 nm and has been successfully applied to various samples,
including plasma and urine. Linearity was observed in a range
of 2–230 ng/mL of the compound, with relative standard de-
viations of 0.9–5.1% and recoveries in the range of 97.2–
100.0%.

Lu et al. [155] have carried out a study in which the occu-
pational exposure to diazinon by workers from Nicaraguan
plantations, as well as their children, was evaluated by repeat-
ed sample collection over several days and biomonitoring
using saliva samples. An enzyme-linked immunosorbant as-
say (ELISA) was used, and a significant correlation was found
between the concentrations of the compound in saliva and
plasma samples collected at the same time. Regarding chil-
dren, this compound was not detected in most saliva samples,
which was confirmed by urinalysis. Consequently, it has been
suggested that saliva may be used to evaluate human exposure
to this compound.

Furthermore, the work of Curwin et al. [156], where a
comparison of an ELISA immunoassay and liquid
chromatography–tandem mass spectrometry (LC–MS/MS)
analytical methods for measuring chlorpyrifos metabolite
(3,5,6-trichloropyridinol (TCP)) in urine samples from Iowa
farmers and non-farmers was presented. For this comparison,
different statistical methods were used, and the analytical
methods were moderately correlated (0.40–0.49), but the im-
munoassay method consistently presented significantly higher
geometric mean (GM) estimates. This estimate of GM for
TCP by immunoassay and LC–MS/MS varied between 14
and 14 and 2.9–3.0 μg/L, respectively. The limits of detection
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(LOD) values for this metabolite were 0.50 and 3.32 μg/L by
LC–MS/MS and ELISA, respectively.

Another approach to perform a screening in order to detect
pesticides is the use of optical sensors. Yan et al. [157] carried
out a recent review concerning this matter. In this review, new
trends in high sensitivity optical sensors and their advantages
have been compiled for the detection of pesticides, in partic-
ular the class of organophosphorus insecticides, which con-
tinues to be a concern because of their residues. Recent devel-
opments in optical sensors highlighted fluorescence detection
(FL) strategies, such as enzyme-mediated methods, antibody-
assisted methods, molecularly imprinted polymer (MIP)-
based methods and aptamer-based and host–guest
interaction-based sensors. Another category of sensors is
shown by colourimetric (CL)-sensing strategy based on en-
zymes, antibodies and aptamers. Surface-enhanced Raman
scattering strategies (SERS) focused on sensors based on gold,
silver and bimetallic nanomaterials. The last group compre-
hends surface plasmon resonance sensor (SPR) and chemilu-
minescence strategy. These sensors bring advantages, com-
pared to traditional methods of analysis, with respect to the
sampling approach which becomes easier, faster and less ex-
pensive, while maintaining sensitivity of detection. These op-
tical sensors show good performance to quantify pesticide
residues in complex environments and food matrices, espe-
cially for simplification and visualization design. Since the
devices are miniaturized and wireless networking is used, pes-
ticide recognition can be transformed into a digital signal mea-
surable by portable devices, which makes detection feasible
outside the laboratory environment with minimal user in-
volvement, representing a new generation of analytical de-
vices for real-time detection. However, the use of this optical
sensor has scarce application in human biological specimens.

All positive results in screening tests require therefore con-
firmation by a different method, which must be at least as
sensitive as the screening test, allowing results with higher
levels of confidence. The most common confirmation
methods involve liquid (LC) or gas chromatography (GC)
coupled to different detectors, but, since these compounds
are volatile and of non-polar nature, GC is the most used
instrumentation for analysis. Obviously, before running any
chromatographic assay, the previous step of sample prepara-
tion is undoubtedly a fundamental step. This process is man-
datory taking into account the complexity of the samples, the
presence of interferences and in some cases the low concen-
trations of the compounds of interest. On the other hand, the
physicochemical properties of the analytes have to be taken
into consideration, since it is a quite heterogeneous group of
compounds, being commercialized under different forms as
well. The extraction methods are in constant evolution in par-
allel with instrumental techniques, thus allowing to reduce the
complexity of sample treatment, and increasing sensitivity,
precision and accuracy of the analysis. Once there are no

reviews on the sample preparation techniques used to deter-
mine these compounds and considering that the greater vol-
ume of laboratory work is related to sample preparation, we
have conducted a critical review of the approaches and recent
trends available in the laboratories for the detection and quan-
tification of these analytes in biological matrices, in order to
aid analysts, particularly in the fields of clinical and forensic
toxicology. Afterwards, the analytical aspects associated to the
determination of these compounds will be discussed.

In order to simplify this information and facilitate the un-
derstanding and the readability of the paper, the existing liter-
ature on the matter was compiled in three tables, according to
the sample preparation technique employed.

Literature search was performed using the PubMed data-
base, and the search strings were “organophosphorus pesti-
cides” or “organophosphorus insecticides” in the different
types of human biological specimens. The most commonly
used samples are blood, urine, plasma and serum, and papers
since 2000 have been selected. For the remaining specimens,
considered as alternative samples, papers from previous years
were selected as well. All articles were screened independent-
ly by three of the authors to determine their relevance in the
framework of the current review, and only papers selected by
at least two of them were included.

Among the compilation made, articles in which more com-
pounds were analyzed at the same time should be emphasized,
such as the works of Kumari et al. [158], Lacassie et al. [159],
Musshoff et al. [84], Luzardo et al. [62], Kudo et al. [160],
Tarbah et al. [161], Russo et al. [162], Roca et al. [163] and
Duca et al. [164]. In these works, analytical methods have
been developed for the identification and/or quantification of
a large number of organophosphorus compounds and some of
their metabolites as well.

In Table 1 (Supplementary material), all the papers involv-
ing liquid–liquid extraction (LLE) and protein precipitation as
sample preparation techniques for the analysis of organophos-
phorus pesticides are compiled. LLE is the most used tech-
nique for this class of compounds, while GC coupled to mass
spectrometry is the most used instrumentation. In LLE, it is
usual to use mixtures of organic solvents, such as dichloro-
methane, ethyl acetate, acetone and hexane. Luzardo et al.
[62] used LLE as extraction technique with a mixture of these
same solvents (dichloromethane, ethyl acetate and acetone)
for the determination of a large number of pesticides in
2 mL of blood samples, and they were able to obtain limits
of quantification between 5 and 50 ng/mL and recoveries from
77 to 105%, using GC and LC instruments both coupled to
tandem mass spectrometry (MS/MS). Using a mixture of di-
chloromethane, acetone and hexane, Araoud et al. [165] were
able to determine five compounds in 2 mL of serum, obtaining
limits of quantification between 5 and 10 ng/mL and recover-
ies of 56 to 93%, using for analysis a GC–MS apparatus. In
general, in the case of urine samples, with the use of only one
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solvent in LLE extraction, the authors of several studies were
able to obtain lower limits of detection and quantification for
these compounds and metabolites, when compared to other
biological samples. Spaan et al. [166], using hexane as the
solvent for LLE and GC–MS/MS instrumentation in the de-
termination of several metabolites in 2 mL of urine, obtained
limits of quantification between 0.01 and 0.1 ng/mL, with
good recoveries (91–115%). Okamura et al. [167], using only
0.5 mL of urine, used ethyl acetate as extraction solvent,
achieving limits of quantification between 1 and 2 ng/mL
for two of the organophosphorus metabolites and detection
limits of 0.3 and 0.5 ng/mL, with recoveries of 68 to 118%,
by GC–MS analysis. With 0.8 mL of sample and LC–MS/MS
instrumentation, Jayatilaka et al. [168], using dichloromethane
as extraction solvent, were able to reach limits of quantifica-
tion between 0.004 and 0.009 ng/mL for four of these insec-
ticides, and recoveries around 100% were obtained. Using
2 mL of urine and the same solvent (dichloromethane),
Montesano et al. [169] were able to obtain for the same com-
pounds limits of quantification of 0.250 ng/mL and recoveries
between 52 and 63%, using high-performance liquid
chromatography–tandem mass spectrometry (HPLC–MS/
MS) analysis.

Acetonitrile is the most commonly used solvent for protein
precipitation, and there are several studies in which this is the
only approach for sample preparation, both in urine and serum
samples. Reemtsma et al. [170] using acetonitrile as the pre-
cipitation solvent, obtained limits of quantification of 0.3 to
2.5 ng/mL and recoveries between 69 and 122% for metabo-
lites in 3 mL of urine and using a LC–MS/MS device. On the
other hand, Wu et al. [171], with gas chromatography-flame
photometric detector (GC-FPD) and GC–MS analysis, obtain-
ed limits of quantification between 2 and 10 ng/mL, also for
metabolites in 1 mL of urine, with recoveries between 62 and
98%. Additionally, Inoue et al. [63], using 0.2 mL of serum
and LC–MSanalysis, reached limits of quantification between
250 and 1250 ng/mL for a number of organophosphorus pes-
ticides, with recoveries between 82 and 107%.

Nevertheless, the large volumes of organic solvents that are
required are considered, nowadays, a pitfall, and, therefore,
some authors try to keep these volumes to a minimum, how-
ever assuring good extraction efficiencies. On the other hand,
these two pretreatment techniques do not have a sufficient
degree of efficiency in what concerns the removal of interfer-
ences, which are capable of increasing the matrix effect and
hinder the signal of the analytes, especially at low concentra-
tions; in addition, detection systems must be cleaned and
maintained more often due to the deposition of fatty acids.

Solid-phase extraction (SPE) is known for presenting good
compatibility with high-throughput multi-residue analytical
procedures, and great extraction efficiencies are usually asso-
ciated to it. Furthermore, and when compared to the previous
approaches, there is no doubt that its main advantage isT
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automation (at least to a certain degree) as well as the consid-
erable decrease of interfering compounds. With this tech-
nique, many types of cartridges with different sorbents can
be used.

In this case, the most commonly used cartridges are
reversed-phase hydrophilic–lipophilic balance, C18 and in
some cases aminopropyl and anion exchange cartridges.
Davis et al. [172] used 96-well plate SPE with Oasis HLB
reversed-phase sorbent for the extraction of organophospho-
rus pesticide metabolites from 1 mL of urine and analysis
through LC–MS/MS. They achieved limits of quantification
between 0.03 and 0.1 ng/mL and recoveries between 50 and
98%. Using Oasis HLB reversed-phase sorbent, Raposo et al.
[49], using 0.5 mL of blood and GC–MS instrumentation,
Park et al. [13] in 1 mL of the same specimen and instrument
andOlsson et al. [173] in 2mL of urine and using LC–MS/MS
for analysis have obtained limits of quantification between 50
and 100 ng/mL, 130 and 170 ng/mL and 0.25 ng/mL, respec-
tively. In addition, they obtained recoveries between 31 and
109%, 71 and 94% and 81 and 99%, correspondingly. Cequier
et al. [174], using 0.3 mL of urine, in 96-well plate SPE with
Strata-X-AW-functionalized polymeric sorbent and an ultra-
performance liquid chromatography–mass spectrometry–
quadrupole time-of-flight (UPLC-MS-QTOF) instrument,
have obtained limits of quantification between 0.50 and
4 ng/mL and recoveries from 39 to 112%. On the other hand,
with analysis through LC–MS/MS, Odetokun et al. [175] in
0.6 mL of urine, used 96-well plate SPE with a weak anion
exchange cartridge and obtained limits of quantification of
0.125 ng/mL and recoveries around 100%. Ueyama et al.
[176] also used the SPE extraction technique with Strata-X-
AW sorbent and LC–MS/MS for the analysis, obtaining limits
of quantification between 0.3 and 1.2 ng/mL and recoveries
between 64 and 101% in 1 mL of urine. Pitarch et al. [177]
used SPE with Bond Elut C18 sorbent and GC–MS/MS anal-
ysis in the determination of several organophosphorus from
1 mL of serum, obtaining limits of quantification between 0.4
and 9 ng/mL and recoveries between 71 and 102%.
Procedures involving solid-phase extraction (SPE) as sample
preparation technique are compiled in Table 2 (Supplementary
material).

The classical techniques of LLE and SPE continue to be
widely used in the extraction of these compounds in various
biological samples. However, the LLE technique, although
relatively simple and faster, has the disadvantage of retaining
fatty acids, which are subsequently harmful for the chromato-
graphic instrumentation. On the other hand, SPE is the most
used extraction technique and has advantages such as assisted
automation and versatility of C18 and reversed-phase columns
that allow the extraction and subsequent detection and quan-
tification of a wide range of compounds.

However, these last sample preparation procedures use con-
siderable volumes of organic solvents. For this reason, there is a

growing trend to use “greener” extraction procedures, namely
fully automatic and/or miniaturized techniques, which provide
new operational paradigms. The papers in which
microextraction techniques were used for sample preparation
should also be emphasized. This criterion was used taking into
account the advantages of these techniques, particularly low
volume of sample and organic solvents, minimization of sol-
vent waste (with the consequent environmental advantages)
and the possibility of reusing the extraction device [178, 179].
Examples of these new paradigms are the changes to classical
techniques such as SPE, incorporation of process automation,
the use of dried blood spots (or dried matrix spots), molecular-
imprinted polymers (MIPs), solid-phase microextraction,
liquid–liquid microextraction or QuEChERS. Papers dealing
with these new challenges in sample preparation are summa-
rized in Table 1, and themain characteristics of each of them are
highlighted.

Example of the use of this miniaturized techniques in the
determination of organophosphorus pesticides is the pub-
lished article by Kumari et al. [158]. These authors used a
technique of fast-agitated directly suspended droplet
microextraction (FA-DSDME) for the determination of a large
number of compounds in small aliquots of blood (0.1 mL).
Hernández et al. [18] and Musshoff et al. [84] also for blood
samples (0.5 mL) used the headspace-solid-phase
microextraction (HS-SPME) technique with difference only
in the fiber used. Tsoukali et al. in two different papers [67,
180] have used the same technique (HS-SPME), but with the
use of different and unusual samples as blood, plasma, kidney,
liver, cerebrospinal fluid and stomach contents (0.3 mL from
1 g of tissue homogenate and 0.3 mL of whole blood or plas-
ma), using the same fiber and the same instrumentation (GC-
NPD). Ebrahimi et al. [181] prepared 50 mg of hair samples
by hollow fiber solid-phase microextraction (HF-SPME) and
analyzed them by high-performance liquid chromatography-
photodiode array detector (HPLC-PDA). López et al. [182]
developed an analytical procedure for 3 mL of serum and
urine samples using solid-phase microextraction (SPME) with
a polydimethylsiloxane (PDMS) fiber. Yet, Gallardo et al.
[183–185] used the same technique, however using
Carbowax™/divinylbenzene (CW/DVB) fibers for the prepa-
ration of blood and urine samples, using smaller sample vol-
umes (0.1 mL). In turn, Yang and Xie [186] used the solid-
phase micro-extraction membrane (SPMEM) preparation
technique for 1 mL of urine samples for the determination of
dichlorvos. Recently, Santos et al. [187] published an article
using a miniaturized version of SPE, microextraction in
packed sorbent (MEPS). These authors were able to reach
limits of detection of 500 ng/mL for diazinon, chlorpyrifos,
chlorfenvinfos, parathion-ethyl and quinalphos using volumes
of whole blood as low as 0.1 mL and achieving recoveries
between 57 and 78%. Moreover, Soares et al. [188], using
only 0.05 mL of whole blood sample, applied the dried blood
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spots (DBS) sampling approach and, although the recoveries
were between 1 and 12%, limits of quantification between 50
and 250 ng/mL were obtained.

Worth noting is the use of a mini QuEChERS (Quick, Easy,
Cheap, Effective, Rugged, and Safe) method by Srivastava
et al. [189] and regular QuEChERS by Usui et al. [190] and
Roca et al. [163]. This approach for sample preparation shows
advantages in the versatility of the used sample, in these cases,
plasma, blood and urine, as well as versatility in the type of
equipment used for the analysis, which in the described cases
was GC–MS/MS, LC–MS and ultra-high-performance liquid
chromatography–high-resolution mass spectrometry
(UHPLC-HRMS), respectively. It is important to mention that
this QuEChERS technique has been accepted by many pesti-
cide residue analysts, namely in the agricultural field.
However, some modifications to the original QuEChERS
method had to be introduced to ensure efficient extraction of
pH-dependent compounds, to minimize degradation of some
compounds which are susceptible to extraction conditions
using acids or bases and to expand the spectrum of matrices
and applications covered [152]. Liao et al. [191] used 0.3 mL
of cord blood, which is an uncommon sample, with an online
SPE system. Saito et al. [192, 193] used monolithic extraction
for 0.2 mL of serum and urine preparation in the analysis of
four organophosphorus compounds which were afterwards
determined by gas chromatography–mass spectrometry
(GC–MS). Jia et al. [194] used an innovative technique of
urine cloud-point extraction coupled to a microwave-assisted
back-extraction for the determination of some of these com-
pounds, however with the disadvantage of the need to use a
large sample volume (9 mL). Recently, Aladaghlo et al. [195]
used solvent-assisted-dispersive solid-phase extraction (SA-
DSPE) technique for the determination of diazinon, however
in large volumes of urine (10 mL). Pelit and Yengin [196]
developed a method for the determination of chlorpyrifos
and one of its metabolites with a solidified floating organic
drop microextraction (SFODME) sample preparation tech-
nique, but also needing considerable amounts of urine sample
(5 mL) to accomplish the analysis.

Santos et al. [197] opted for a different preparation tech-
nique, molecularly imprinted solid-phase extraction (MISPE),
for the determination of two metabolites of organophosphorus
compounds in 1 mL of urine, with the disadvantage of the
need for derivatization. Russo et al. [162] have used a gel
permeation chromatography for extraction of kidney and liver
samples (2–3 g), obtaining good analytical results.

Zhang et al. [198] developed a technique of active magnet-
ic metal-organic framework hybrid material and a magnetic
SPE procedure for the preparation of 300 mg of hair samples
and 3 mL of urine.

Regarding the used equipment, Pérez et al. [199] and Barr
et al. [200] are highlighted by the use of gas chromatography–
high-resolution mass spectrometry (GC-HRMS). Hernández

et al. [201], without sample preparation, used only hydrolyzed
urine, Sancho et al. [202] have used a coupled-column liquid
chromatography combined with tandem mass spectrometry
(LC–LC–MS/MS) and Oya et al. [203] used an ultra-
performance liquid chromatography–tandem mass spectrom-
etry (UPLC–MS/MS) instrument.

The use of QuEChERS as an extraction technique earns a
special mention because it has passed from the application to
food samples to be applied in the extraction of biological
specimens. In addition, it allows the extraction of more com-
plex samples, such as viscera, which is more difficult when the
classic techniques are employed. The other techniques of
microextraction require further studies to be transferred from
development and optimization to the applicability in routine
laboratories.

Concerning hair samples, the number of studies is very
scarce. It should be emphasized that from a general perspec-
tive hair samples require a prior extraction from the hair ma-
trix (the same happens with meconium), for which a metha-
nolic pre-extraction is often used, as was done by Tsatsakis
et al. [204] (in 200–500 mg), Kanavouras et al. [205] (in
100 mg) and Knipe et al. [206] (in 100 mg) for hair samples
and by Whyatt and Barr [207] for 500 mg of meconium sam-
ples. Moreover, Duca et al. [164] analyzed a large number of
compounds of this class in 50 mg of hair samples, comparing
two classical techniques for sample extraction, SPE and LLE,
and using two highly sensitive instruments, GC–MS/MS and
LC–MS/MS.

Also, in general, GC equipment can be pointed out as the
most used in the analysis of this class of compounds. A final
important note is that for the analysis of the DAPs, it is always
necessary to derivatize the extracts prior to analysis by GC,
and the most used derivatizing agent is pentafluorobenzyl
bromide (PFBBr).

As a curiosity, with the use of LC–MS/MS equipment with
atmospheric pressure ionization source (API), most of these
insecticides form an ion during ionization, the protonated or
deprotonated molecular ion and sometimes an adduct ion
(e.g., sodium or ammonium adduct). Sources of atmospheric
pressure chemical ionization (APCI) may be used instead of
electrospray ionization (ESI), because it is less prone to sodi-
um adduct formation. There are compounds which have the
potential to form sodium or ammonium adducts in the mode
of positive ions, most of the cases, or acetate or formate ad-
ducts in the negative ion mode with an API source. This char-
acteristic confers a lower capacity of confirmation of the com-
pounds and decreases the abundance of the protonated or
deprotonated molecular ion, and there is greater potential for
formation of adduct with ESI than APCI. Mobile phases of
methanol have a higher degree of adduct formation, compared
to acetonitrile, with respect to sodium adducts. This formation
can be reduced or suppressed by the addition of ammonium or
hydrogen ions [208].
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In what concerns chromatographic analysis, the most used
instrumentation for this class of compounds is GC. Regarding
chromatography coupled detection, tandem MS detectors are
critical for a range of substances with trace concentrations. In
addition, other novel detection systems, such as TOF and
orbitrap, are important for quantifying low-concentrated
analytes and for identifying metabolite structures.

Conclusions and future perspective

The use of pesticides has affected man and human societies
worldwide since ancient times to the present day.

This exposure to pesticides, specifically to the organophos-
phorus class, has been documented through the analysis of bio-
logical samples, mainly blood, plasma, serum and urine speci-
mens. These specimens are themost commonly used for analysis
in clinical and forensic toxicology. However, it is thought that
toxicological studies should not only depend on the analysis of
these samples but may be complemented by the analysis of other
non-conventional biological matrices, such as oral fluid, hair and
nails. One of the advantages of using these samples, compared to
the more traditional ones, is that their collection is less invasive,
being easier and less uncomfortable for the patient. However,
few or no studies and analytical methods exist for the identifica-
tion of these compounds in these samples.

Over the last few years, most of the procedures for sample
preparation involve micro approaches, and there have been
developments in GC–MS and LC–MS technologies for the
identification of these compounds, being accessible to most
laboratories nowadays. These methods contributed to reduce
the amount of sample used in the analysis as well as to obtain
lower LODs and LOQs.

In the future, instruments are expected to become even more
sensitive and accurate, and other analytical technologies can be
used. Consequently, as the sensitivity of the analytical equipment
increases, there will also be a trend to reduce sample volume,
whichmay be decisive in the case of little matrix availability; this
is also important from the analytical point of view, since matrix-
borne interferences will affect analysis to a lesser extent.

In addition, more efficient sample cleaning procedures are
being developed, which are less time consuming and less ex-
pensive and harmful to the environment, with the use of lower
amounts of organic solvents.

Concluding, what is being more and more necessary are
rapid, sensitive and specific approaches for analysis, which
are also miniaturized and prone to automation. Analytical
methodologies for the identification of these compounds in
cases of ante- and post-mortem intoxication should be devel-
oped and validated before routine use, and the analytical data
should be shared through different communication platforms
to let the results be available quickly enough to contribute to
the immediate attention of an intoxicated individual.
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