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Abstract
Simultaneous assessment of a panel of protein markers is becoming essential in order to enhance biomarker research and improve
diagnostics. Specifically, postmortem diagnostics of early myocardial ischemia in sudden cardiac death cases could benefit from
a multiplex marker assessment in the same tissue section. Current analytical antibody-based techniques (immunohistochemistry
and immunofluorescence) limit multiplex analysis usually to not more than three antibodies. In this study, mass spectrometry-
immunohistochemistry (MS-IHC) was performed by combining laser ablation inductively coupled plasma mass spectrometry
(LA-ICP-MS) with rare-metal-isotope-tagged antibodies as a technique for multiplex analysis of human postmortem myocardial
tissue samples. Tissue sections with myocardial infarction were simultaneously analyzed for seven primary, rare-metal-isotope-
tagged antibodies (troponin T, myoglobin, fibronectin, C5b-9, unphosphorylated connexin 43, VEGF-B, and JunB). Comparison
between the MS-IHC approach and chromogenic IHC showed similar patterns in ionic and optical images. In addition, absolute
quantification was performed byMS-IHC, providing a proportional relationship between the signal intensity and the local marker
concentration in tissue sections. These data demonstrated that LA-ICP-MS combined with rare-metal-isotope-tagged antibodies
is an efficient strategy for simultaneous testing of multiple markers and allows not only visualization of molecules within the
tissue but also quantification of the signal. Such imaging approach has a great potential in both diagnostics and pathology-related
research.

Keywords Mass spectrometry-immunohistochemistry . Multiplex tissue imaging . Biomarker . Myocardial ischemia . Forensic
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Diagnostics of several pathological conditions would benefit
from concurrent assessment of a panel of markers but this
requires development of analytical techniques capable of de-
tecting several biomarkers simultaneously (multiplexing), at
good spatial resolution, and with high sensitivity. In particular,
a panel of markers (instead of just one single marker) has been
recently proposed for pathological diagnostics of early

myocardial ischemia (EMI) [1, 2]. This acute condition repre-
sents the most frequent cause of sudden cardiac death. EMI
occurs during the initial 4 to 6 h after occlusion of coronary
flow to myocardium and, in cases where it is not suddenly
fatal, EMI can lead to the development of myocardial infarc-
tion (MI) [1, 2]. Because EMI lacks gross anatomical changes
and specific tissue morphology at histological analysis, much
effort was made over the past several decades to improve
recognition of EMI pathology by identifying pathological
pathways and developing new diagnostic tools (molecular tar-
gets, strategies, methodologies, and instrumentation) [1, 3].
Currently, efforts are being made to develop multiplex ap-
proaches in order to both accelerate the discovery process
and integrate multiplexing into routine work for improving
diagnostics.

Despite progress in this field, the prevalent methods for
tissue pathology diagnosis still lack high-throughput capabil-
ities and allow only semi-quantitative analysis (e.g.,
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immunoassays, immunohistochemistry (IHC), immunofluo-
rescent microscopy (IFM), Western blotting, and antibody-
based in situ hybridization). The most frequent and feasible
color combination with IHC or IFM is three markers on a
single-tissue section [4]. Aspects that impede concurrent
screening of more molecules on a single-tissue section include
spectral and spatial overlap of reporters, cross-reactivity be-
tween the detection reagents (in cases where indirect detection
methods are used), and tissue autofluorescence (in cases of
fluorescently labeled antibodies) [4]. In addition, quantifica-
tion of the signal remains inaccurate due to non-linear charac-
teristics of signal amplification. Furthermore, quantification of
chromogenic IHC is performed by analyzing pixel intensities
of digital scans of slides instead of measuring the reporter on
the antibody [5].

Mass spectrometry IHC (MS-IHC) is an emerging ap-
proach with the potential for multiplex analysis of markers
directly on tissue section [6]. This technique utilizes an inno-
vative antibody tagging method that was originally developed
for extensive multiplex analysis of single cells in mass cytom-
etry [7–10]. Briefly, the primary antibody is tagged with a
combination of rare-earth-metal isotopes and specific metal-
chelating polymers instead of enzymatic or fluorescent
probes. After incubation with primary antibodies, the entire
surface of tissue section is rastered either by laser or ion beam
in a coordinated way, using a grid array at a fixed lateral
resolution. At each coordinate, the generated ions are analyzed
by MS to generate a data set, which is used for reconstruction
of ion images (similar to other imaging mass spectrometry
technologies, e.g., matrix assisted laser desorption/ionization)
[6, 11, 12]. Recently, this method was successfully applied to
simultaneously assess 10 and 32 makers in breast cancer tis-
sues by secondary ion mass spectrometry (SIMS) and laser
ablation inductively coupled plasma mass spectrometry (LA-
ICP-MS), respectively [13, 14].

In this study,MS-IHCwas evaluated as a multiplex method
to quantitatively analyze human postmortem formalin-fixed,
paraffin embedded (FFPE) samples by LA-ICP-MS for seven
markers: troponin T, myoglobin, fibronectin, C5b-9,
unphosphorylated connexin 43 (Cx43), JunB, and vascular
endothelial growth factor-B (VEGF-B).

Materials and methods

Autopsy specimens

Cardiac samples were collected from six autopsy cases, per-
formed at the University Center of Legal Medicine in Geneva,
Switzerland, between December 2010 and November 2014.
In all cases (n = 6; 5males, 1 female; mean age 61.7 years), the
cause of death was acute MI, defined by the presence of poly-
morphonuclear leucocyte infiltration (associated or not with

hemorrhagic infiltrates and eventually contraction band necro-
sis) and cardiomyocyte coagulation necrosis, in sections
stained with hematoxylin and eosin (H&E). In order to ensure
the presence of ischemic myocardium, samples with evident
MI were intentionally selected for this study. In accordance
with our standard sampling protocol, eight cardiac regions
were evaluated in every case (anterior, lateral, and posterior
wall of both ventricles, anterior and posterior septum) but only
one region representative of each case was used for further
investigation in this study: the region with the most severely
infarcted area, as observed by histological examination. In
total, one tissue block from each case was examined in this
study (the total number of sections per case is illustrated in
Supplementary Fig. 1). Tissue samples were fixed in 4% buff-
ered formaldehyde for 24 h, embedded in paraffin, and cut in
5-μm thick sections. The postmortem interval (time from
death to autopsy) ranged from 5 to 36 h.

Immunohistochemistry

Chromogenic IHC on serial sections for troponin T, myoglo-
bin, fibronectin, and C5b-9 were used for comparison to MS-
IHC by LA-ICP-MS, as Bpositive controls.^ Although chro-
mogenic IHC and MS-IHC are different techniques, the over-
all pattern for markers’ distribution (accumulation or deple-
tion) was expected to be approximately similar because the
same primary antibodies were used in both techniques and
evaluated on consecutive sections. In addition, three experi-
mental markers were added to the multiplex panel, namely,
Cx43, VEGF-B, and JunB. FFPE tissue sections were
deparaffinized and treated for epitope retrieval by either incu-
bation with proteinase K (Sigma-Aldrich®, 0.1 mg/ml in
50 mM Tris-Buffered Saline) for C5b-9 and fibronectin or
microwaving for 15 min at 95 °C in Dako Target Retrieval
Solution for the other antibodies. Following epitope retrieval,
the sections were treated with 1% H2O2 in 10% methanol,
blocked with bovine serum albumin, and subsequently probed
with primary and secondary antibodies in a humidified cham-
ber. Primary antibodies were against troponin T (mouse
monoclonal, Abcam®, 1:250; n = 5), myoglobin (Bond™
mouse monoclonal, Leica, 1:50; n = 6), fibronectin (rabbit
polyclonal, Dako, 1:2000; n = 6), C5b-9 (mouse monoclonal,
Quidel®, 1:2000; n = 6), Cx43 (mouse monoclonal,
Invitrogen™, 1:500; n = 4), JunB (rabbit polyclonal,
Abcam®, 1:200; n = 3), VEGF-B (mouse monoclonal, R&D
System®, 1:500; n = 2). Secondary antibodies were biotinyl-
ated anti-mouse (Vector Laboratories) or anti-rabbit (Vector
Laboratories) IgG, followed by incubation with either
VECTASTAIN® ABC Complex HRP kit (Vector
Laboratories) for JunB or streptavidin/horseradish
peroxidase-conjugate (Dako) for the rest. Colorimetric detec-
tion was performed using either Vector® DAB (Vector
Laboratories) or Vector® AEC (Vector Laboratories) kits,
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according to the manufacturer’s instructions, with hematoxy-
lin as counter-staining. For chromogenic IHC, negative con-
trols without primary antibody were tested for all antibodies;
moreover, negative controls were run in every IHC series and
the slides were evaluated only if the negative controls showed
negative results.

Tissue and antibody preparation for MS-IHC

The overall workflow for the entire procedure consisted of
three major stages: sample preparation, data acquisition, and
data analysis (Fig. 1). The protocol for sample preparation and
tissue labeling was similar to the process used in chromogenic
IHC and IFM but instead of conjugating the antibody with
enzyme or fluorophore, the primary antibody was coupled to
a polymer tagged with rare-metal isotope. Sections (5 μm)
from human autopsy FFPE samples with infarcted myocardi-
um were deparaffinized, treated for epitope retrieval using
microwave (10 min at 95 °C in Dako target retrieval solution),
pre-treated with 1%H2O2 in 10%methanol, and blocked with
bovine serum albumin. The sections were then incubated for
90 min with a 200-μl mixture (per slide) of seven antibodies
that were pre-labeled with a complex containing MAXPAR®
X8 Polymer and a rare-metal isotope (MAXPAR® Antibody
Labeling Kit, Fluidigm®): C5b-9 tagged with 139La (0.5 μg/
ml; n = 6), fibronectin tagged with 141Pr (2.5 μg/ml; n = 6),
myoglobin tagged with 144Nd (15.0 μg/ml; n = 6), troponin T
tagged with 151Eu (4.0 μg/ml; n = 5), JunB tagged with 159Tb
(20.0 μg/ml; n = 5), Cx43 tagged with 175Lu (1.0 μg/ml; n =
5), and VEGF-B tagged with 162Dy (1.0 μg/ml; n = 5). After
incubation with the mixture of antibodies, the sections were
rinsed in Dako Wash Buffer (Dako) and dried at room tem-
perature prior to MS analysis.

MS-IHC data acquisition

Tissue pre-incubated with rare-metal-isotope-tagged antibod-
ies was placed into the laser ablation chamber and was ablated
by a Nd:YAG/213-nm laser focused on 8 or 40 μm diameter
spot using laser ablation system (NWR-213, New Wave,
Fremont, USA) coupled to quadrupole mass analyzer
(Agilent 7700 ICP series, Darmstadt, Germany). The generat-
ed ablated particles were transported to the ICP ion source by
a helium carrier gas of 800 mL/min and exposed to plasma
torch. Only the metal tags were able to withstand this step and
were subsequently passed to mass spectrometer for detection
and quantification. The LA-ICP-MS parameters were opti-
mized to provide the best signal-to-noise ratio while keeping
the maximum reproducibility between analyses. In this way,
the energy output was set at 23% corresponding to a laser
fluency of 0.35 J/cm2. The lateral resolution was fixed at 10
or 50 μm in the raster mode with a scan speed of 10 or 50 μm/
s, respectively. The laser repetition frequency was set at 20Hz.

Rare-earth metals (139La, 141Pr, 144Nd, 151Eu, 159Tb, 175Lu,
and 162Dy) were monitored for a duty cycle of 1 s.

Data analysis and image visualization

The acquired raw data were extracted using the MassHunter
software (Agilent, Darmstadt, Germany). Data files (.d) of
IMS experiment were successively converted to mzML and
imzML formats using msconvert and imzMLConverter tools,
respectively. Ion images were reconstructed and visualized
using either the MSIReader v0.06 software or MALDIQuant
and Cardinal packages in R environment (http://cran.r-project.
org) [15, 16].

Calibration procedure

The concentration ranges for each rare-metal-isotope reporter
were calculated using corresponding calibration curves, which
were generated using laboratory standards. Briefly, synthetic
laboratory standards were prepared from human heart homog-
enates of analogous control autopsy cases doped with rare-
metal isotope at four different concentrations (50, 500, 1000,
and 5000 ng/g; Supplementary Table S1 lists these concentra-
tions in nmol/g) as described elsewhere [17, 18]. For each
rare-metal isotope, the 80 μm× 100 μm rectangles from the
spiked areas were analyzed, i.e., 80 pixels at each concentra-
tion, and average intensities of those 80 pixels were calculated
for each concentration. Then the average pixel intensity (u.a.)
was plotted against the concentration of a metal isotope to
generate a calibration curve. The calibration curves were then
used to convert the intensity scales recorded by LA-ICP-MS
to the concentrations of rare-earth metals, which is directly
proportional to the amounts of markers.

Results

Multiplex tissue imaging of MI in human postmortem
samples with MS-IHC

Chromogenic IHC results showed cytoplasmic depletion of
troponin T and myoglobin from large groups of
cardiomyocytes in the infarcted areas and accumulation of
fibronectin, C5b-9, Cx43, and JunB (Fig. 2). Fibronectin and
C5b-9 accumulation was observed in cytoplasm of
cardiomyocytes located in the infarcted area. Increased Cx43
signal localized at gap junctions and in some cardiomyocytes
also in cytoplasm. JunB positive reactions were found in nu-
clei of cardiomyocytes and infiltrating leucocytes. Evaluation
of IHC with microscope at high magnification showed some
VEGF-B positive reactions only in endothelial cells of few
vessels (Supplementary Fig. 2). After analysis of the samples
by MS-IHC and data acquisition, image reconstruction was
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performed for each rare-metal-isotope (Fig. 2, Supplementary
Fig. 2). Reconstructed ion images obtained with MS-IHC
showed similar distribution patterns as the consecutive

sections stained with chromogenic IHC (Fig. 2). Concerning
VEGF-B–162Dy, some variations in signal were also observed
in reconstructed ion images but due to the expression of this
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marker in endothelial cells of blood vessels, the accurate in-
terpretation of the LA-ICP-MS data would require analysis at
a higher resolution than was selected in this study.

This approach for multiplex tissue imaging allows recon-
struction of composite images. Figure 3 shows two composite
reconstructions: (1) troponin T–151Eu and fibronectin–141Pr,
and (2) troponin T–151Eu and C5b-9–139La. Increased
fibronectin–141Pr and C5b-9–139La levels were evident in
the areas with decreased troponin T–151Eu.

Due to its sensitivity, the multiplex MS-IHC allowed in
some cases more precise determination of areas with marker’s
accumulation or depletion. For example, evaluation of one of
the cases for fibronectin by chromogenic IHC showed accu-
mulation of fibronectin (positive staining) in the entire region.
However, reconstruction of ion image for fibronectin–141Pr
showed obvious distinction between areas with and without
signal (Fig. 4). This difference between the two methods and
strong signal from chromogenic IHC could possibly be ex-
plained by signal amplification in chromogenic IHC during

both the incubation with secondary antibody and the exposure
to substrate for development of colored precipitate.

Sensitive method that permits accurate marker
quantification

Quantif icat ion was performed for selected cases
(representative case is shown in Fig. 4). Since the metal iso-
topes are measured by mass spectrometer and the isotopes are
conjugated to the primary antibody, quantification is fairly
straightforward. The signal intensity is proportional to the lo-
cal marker concentration in the tissue section (in contrast to
IHC or IFM, where the quantified signal is often amplified by
incubations with additional antibodies needed for the detec-
tion and visualization). Using calibration curves for each rare-
metal isotope, the intensity color scale was converted to con-
centration scale (Fig. 4, Supplementary Fig. 3). Utilizing the
concentration scale already provides a more objective way for
comparison. For instance, visual examination of ionic
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reconstruction for C5b-9–139La and fibronectin–141Pr (Fig. 4)
suggests similar distribution of these markers in the selected
tissue area. Despite similar distribution, the concentration of
C5b-9–139La was much higher (nearly doubled) in compari-
son to fibronectin–141Pr.

Discussion

Majority of postmortem studies are in agreement that no sin-
gle marker would be both sensitive and specific enough to
precisely detect EMI, and, therefore a panel of markers should
be used for accurate diagnostics. But chromogenic IHC (the
most widely used tool to evaluate markers in postmortem
samples) limits the number of antibodies that can be simulta-
neously tested on the same tissue sections. Availability of
techniques capable of multiplex tissue imaging would be an
advantage for evaluating a panel of markers. The main novelty
of this study is the evaluation of MS-IHC with LA-ICP-MS as
a technique to simultaneously visualize and quantify seven
ischemic markers in the same tissue section from human post-
mortem cardiac tissue with evident MI. Cases with evident MI

were intentionally selected in order to ensure the presence of
ischemic myocardium. The only two previous MS-IHC stud-
ies assessed markers in breast cancer and did not investigate
the absolute quantification capability of the approach [13, 14].
Primary antibodies tagged directly with the innovative re-
porters (rare-earth-metal isotopes combined with metal-
chelating polymer) have the potential to greatly surpass mul-
tiplex options available with IHC and IFM and to improve
multiplex tissue imaging in the same tissue cross section to a
new high-throughput level.

The selected panel of seven markers consisted of four
established postmortemmarkers (C5b-9, fibronectin, troponin
T, and myoglobin, where troponin T and myoglobin are also
currently used as serum markers for the clinical diagnosis of
MI), and three experimental markers (Cx43, JunB, and
VEGF-B). Our results for the established four markers (C5b-
9, fibronectin, troponin T, and myoglobin) were consistent
with previously published studies: C5b-9 and fibronectin ac-
cumulated in MI tissue and troponin T and myoglobin were
depleted [1, 19–26]. Cx43, JunB, and VEGF-B are markers
that were recently shown in experimental research to be influ-
enced by ischemia, already during its onset [2, 27–31].
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Connexin43 is gap junctional protein. Cardiac gap junction
channels are located at the intercalated disks and are respon-
sible for intercellular exchange of ions and small regulatory
molecules. EMI was shown to induce Cx43 and to lead to its
accumulation at the intercalated disks as early as 15 min after
ischemia onset [2]. Our results concerning the changes of
Cx43 in MI are consistent with the only one other study that
also evaluated protein level of Cx43 in human postmortemMI
samples [26]. The function of JunB during EMI is not yet well
understood but it was shown to be induced by EMI [2, 32].
VEGF-B is one of the five secreted glycoproteins in the VEGF
family. This released growth factor appears to play a role in
the growth of coronary arteries, enlargement of capillaries,
and cardiac hypertrophy [29]. Overall, previous studies per-
formed on human postmortem MI samples investigated vari-
ous combinations of these markers. But only a maximum of
four markers were investigated in two separate studies and not
in the same section but using consecutive sections [1, 21]. All
other postmortem MI investigations evaluated two or three
markers at a time in a given study.

Identifying various potential ischemic markers is currently
needed in order to improve knowledge about this acute pa-
thology and select a panel of targets that could be used for
diagnosis and chronological dating of EMI [33]. Although we
investigated only six cases, our results demonstrate that MS-
IHC is suitable for performing multiplex tissue imaging in a
larger study. Future application of MS-IHC offers a great po-
tential to accelerate research utilizing human postmortem EMI
samples. The ultimate goal is to implement this methodology
for development of a diagnostic panel of markers and poten-
tially use it as a tool to detect EMI. While seven markers were
evaluated in this study, the method allows for a more high-
throughput analysis: not only a panel of 32 tags was already
successfully evaluated using similar approach in the context of
tumor biology but also nearly 100 rare-earth-metal isotopes
might be available in the future [14]. Several aspects of this
multiplex approach are currently being developed, including
the number of available isotopes and metal-chelating chemis-
tries [14]. Innovations in these areas are likely to further im-
prove the multiplexing ability and accuracy of this method.
But the persisting challenge for any techniques using rare-
earth-metal-tagged antibodies will remain to be the availabil-
ity of specific primary antibody for a given target.

In imagingMS, the selected criteria are often a compromise
between resolution and the analysis time: higher resolution
can be achieved but with longer duration for data acquisition
[12]. In this study, resolution at cellular level was chosen
(either 10 or 50 μm) to evaluate broader area within reason-
able amount of time. Assessment of a larger tissue area is more
relevant in EMI and in several other forensic investigations.
But higher resolution can be obtained with this method. Using
similar approach, resolution at 1 μmwas recently reported but
assessment of 0.5 mm× 0.5 mm area took about 3.5 h [14]. In

the near future, innovations in designs of laser ablation cham-
ber and laser properties will improve the efficiency and allow
more rapid scanning [34].

In addition to high-throughput multiplexing, other advan-
tages of this technique include single incubation step for la-
beling with multiple antibodies, elimination of labeling with
secondary antibody without losing sensitivity, and improved
quantification of the signal. Importantly, this method is highly
sensitive and has a wide dynamic range, which allows abso-
lute and precise quantification of the markers [35]. In compar-
ison to MS-IHC, other available multiplex methods employ
lengthy and laborious staining techniques with less precise
quantification. Quantitative analysis of tissue samples by
LA-ICP-MS has been successfully demonstrated showing
powerful quantification capabilities [36, 37]. Improved mark-
er quantification within the exact same section is particularly
powerful in research context because it allows more precise
statistical analysis between study cases and controls, more
accurate evaluation of affected area, and establishing cutoff
values for marker’s concentration. Since the initiation of this
study, several additional markers have been proposed for EMI
(e.g., GAL1, GAL3, HIF-1α, MIF, MCP-1) [33, 38–41]. The
challenge for selecting the most useful panel of diagnostic
markers is comparison of specificity and sensitivity among
all of them. In this case, accurate quantification will be useful
for performing appropriate statistical tests to determine the
optimal combination of markers and to validate their useful-
ness. Furthermore, quantification based on external calibra-
tion makes it possible to establish a threshold value, similarly
to other standard laboratory tests that utilize calibration. In
forensic and clinical pathology, implementation of threshold
values for ischemic markers in routine work would allow a
more accurate comparison of data from different samples and
a precise diagnosis of this acute pathology, which otherwise
remains undiagnosed, misdiagnosed, or, in the best scenario,
only hypothesized. Moreover, quantification of the markers
could give information about the severity of the ischemic in-
sult (infarction size), duration of ischemia prior to death, and
the time of death. These data are undoubtedly crucial for re-
searchers, clinicians, and pathologists. Besides EMI, accurate
marker quantification can be applied to a variety of patholog-
ical conditions in order to improve their diagnosis and to ob-
tain information about their time of appearance, evolution,
vitality, and contribution to death. Wound vitality and wound
age estimation are an example of the possible applications.
Lastly, quantitative multiplex tissue imaging allows more ef-
ficient and accurate way to study changes in markers’ level
over time. Temporal study can be performed in a relatively
short amount of time: several targets can be analyzed within
one-day procedure (a process that would take several days to
test with chromogenic IHC). At the same time, accurate quan-
tification is dependent on reliable calibrations curves. Prior to
incorporating this approach for routine work in forensic
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medicine, the method needs to be validated according to the
international guidelines.

In summary, the method presented in this investigation
offers the advantage of simultaneously multiplexing and
quantifying markers in the same tissue section, in human post-
mortem cases of MI. Current technologies for biomarker dis-
covery that utilize untargeted strategies are rapidly generating
candidate markers that can potentially improve diagnostics.
MS-IHC has a great potential for accelerating translational
research by simultaneously validating multiple markers of in-
terest and also for improving clinical and forensic diagnostic
of pathologies that require a multiplex evaluation of markers.
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