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Abstract The numerical description of skeletal morphology
enables forensic anthropologists to conduct objective, repro-
ducible, and structured tests, with the added capability of ver-
ifying morphoscopic-based analyses. One technique that per-
mits comprehensive quantification of outline shape is ellipti-
cal Fourier analysis. This curve fitting technique allows a
form’s outline to be approximated via the sum of multiple sine
and cosine waves, permitting the profile perimeter of an object
to be described in a dense (continuous) manner at a
user-defined level of precision. A large amount of shape in-
formation (the entire perimeter) can thereby be collected in
contrast to other methods relying on sparsely located land-
marks where information falling in between the landmarks
fails to be acquired. First published in 1982, elliptical
Fourier analysis employment in forensic anthropology from
2000 onwards reflects a slow uptake despite large computing
power that makes its calculations easy to conduct. Without
hurdles arising from calculation speed or quantity, the slow
uptake may partly reside with the underlyingmathematics that
on first glance is extensive and potentially intimidating. In this
paper, we aim to bridge this gap by pictorially illustrating how

elliptical Fourier harmonics work in a simple step-by-step
visual fashion to facilitate universal understanding and as
geared towards increased use in forensic anthropology. We
additionally provide a short review of the method’s utility
for osteology, a summary of past uses in forensic anthropolo-
gy, and software options for calculations that largely save the
user the trouble of coding customized routines.
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Introduction

Elliptical Fourier analysis (EFA) is a mathematical tool devel-
oped in 1982 by Kuhl and Giardina [1] to quantitatively de-
scribe a closed outline, such as that of a morphological form, at
a user-specified level of detail. This is achieved using two sets
of partial differential equations comprised of sine and cosine
terms. The EFA method of Kuhl and Giardina represents an
extension of the regular Fourier series, first derived by Jean
Baptiste Joseph Fourier (1768–1830) that elegantly describes
periodic or oscillating functions, i.e., repeating patterns along a
time axis. For example, by tracing a static 2D outline shape and
recording just the x-axis position value by time, a repeating
pattern or periodic function is generated as the outline is
retraced multiple times. Fourier’s breakthrough was so revolu-
tionary and general in its application that at the time it was
discovered, it was not accepted by leading physicists (e.g.,
Biot, Laplace, and Poisson)—because it was thought to be
too impressive to be believed, delaying its publication by ap-
proximately 15 years [2]. While Fourier’s original interest was
heat transfer, it was Cosgriff [3] who first recognized that
closed contours could too be treated as periodic (repeating)
patterns, permitting the transformation of spatial geometrical
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data into the frequency domain. This subsequently paved the
way for Kuhl and Giardina’s formulation of EFA.

One of the first practical applications of Kuhl and Giardina’s
shape description method was in the detection of airplane sil-
houettes from radar images [1]. Since its development in 1982,
EFA has experienced a slow uptake in forensic anthropology
with its first published use in 2000 [4]. Where classification
accuracies exist for multiple methods for assigning biological
characters (e.g., sex and/or ancestry using morphoscopic trait or
linear measurement analysis), EFA often performs comparably
or better (see Table 1), signaling broad but currently unrealized
utility. The limited use may be a result of the mathematical
complexity by which EFA is typically described. Indeed, many
explanations of EFA (e.g., [1, 5–10]) assume more than a basic
or elementary level of mathematics, especially as pertains to the
level of the general biologist, impeding understanding where
technical jargon is employed—Bpiecewise constant derivatives^
[1] are but one example from the literature. While some good
basic descriptions of regular Fourier series exist for the
non-mathematician (e.g., [11]), there appears to be no equivalent
for elliptical Fourier analysis. So too, the similarities and differ-
ences of regular Fourier series and elliptical Fourier analysis
tend not to be clearly illustrated for non-mathematicians. The
aim of this paper is to fill this void. Herein, we reviewEFA in lay
terms and provide pictorial explanations to illustrate the most
perplexing parts of the mathematical formulae. Additionally, we
provide specific examples of the utility of EFA in forensic an-
thropology and describe software capabilities.

A short description of the value of the quantification
of anatomical morphology

While physical anthropologists are typically very adept at vi-
sually, or morphoscopically, assessing human skeletons for

biological characteristics (sex, age, and ancestry) and injury
(timing, blunt force, and sharp force), the numerical descrip-
tion of morphology is also crucial. Quantified analyses enable
objective and structured tests that lend themselves to repeat-
ability and reproducibility, as embodied by the classic exam-
ple of bone length regression equations for stature estimation
[32]. Additionally, quantification serves to offer measurable
data that may verify principles of morphoscopic analyses, and
the numerical product from quantitative analysis enables
computer-automated analysis of large datasets, which can be
extremely useful. While in some cases morphoscopic analyses
may be the ultimate preference due to their low cost, ease (for
trained individuals), speed, and (in some cases) accuracy, it is
prudent wherever possible for the underlying principles on
which the morphoscopic analysis rests to be verified quanti-
tatively. The repeatability and reproducibility measurements
derived from quantification further play an important role for
courtroom-based evidentiary standards, as exemplified by the
objectives of the Organization of Scientific Area Committees
(OSAC) under the US National Institute of Standards and
Testing (NIST) and as inspired by the National Academy of
Sciences Report on the Forensic Sciences [33].

Before moving onto the mechanics of quantification, it is
also important to mention here that Bform^ is currently used in
the literature to encompass all physical attributes of a mor-
phology including, but not limited to, size (scale), shape (out-
line), and spatial orientation [34] (see Fig. 1). The same usage
is found herein.

Approaches to morphological quantification

Initial attempts to quantify skeletal size and shape involved
conventional metric approaches using linear distances, angles,
and ratios [35]. These simple measurements alone can provide

Table 1 Accuracy of classification for select skeletal features using morphometric and visual methods

Skeletal element Estimation category Accuracy (%)

Elliptical Fourier analysis Linear measurements Visual assessment

Frontal sinus Individuation 96 [12] ~100 [13] 100 [14]a

Anterior nasal aperture Ancestry 91–96 [15] 94–95 [15] 83–86 [16]b

Mandible Sex 92–97 [17] 78–81 [18]; 82 [19]; 85 [20] 58–86 [21]

Clavicle Short-list to assist individuation 75 [22] – 88–100 [23]c

Prox. humerus Sex 92–95 [4] 89–90 [24] 83–86 [18]

Greater sciatic notch Sex 92 [25] 70–87 [26]; 72–77 [27] 80 [28]; 86 [29]; 88 [30]

Patella Individuation 91 [31] – 97 [31]

Italics indicates the highest method performer for each skeletal feature derived from any kind of validation testing
a Reported as 100% accuracy without validation testing
b Based on a combination of six mid-facial traits and one cranial trait
c Combination of features from the cervicothoracic junction (clavicle and C3–T4 vertebrae)
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for powerful analysis of shape, especially when undertaken in
multivariate fashion. Measurements such as these form the
underlying basis for classification of unknown skeletal mate-
rials in the well-known program FORDISC [36]. While clas-
sification accuracies of these methods can be high (depending
on the trait(s) evaluated), landmark placement is important in
determining the shape information to be retained and fine
details of boundary shape information will not be retained if
the boundary sampling is sparse—as it often is when linear
measurements are employed. This has prompted pursuit of
other more comprehensive approaches to shape measurement.

One such method is geometric morphometrics (GMM),
which has been traditionally classed as a landmark approach
because it requires the placement of a finite set of multiple
landmarks at strategic locations that are then subject to analy-
sis. Landmark-based GMM methods include superimposition
methods that standardize for rotation, translation, and scale,
such as generalized Procrustes [37] and resistant-fit methods
[38]; thin plate spline, which mathematically expresses global
shape changes on a deformation grid [39]; and Euclidean dis-
tance matrix analysis (EDMA), which is a coordinate-free
alternative, thus avoiding the coordinate covariation intro-
duced by super impos i t ion [40] . More recen t ly,
landmark-based methods have been supplemented by
pseudo-landmark and semi-landmark modifications in an at-
tempt to boost point sampling between Breal^ landmarks and
thus the amount of shape information recorded along bound-
ary edges [39, 41].

Rather than placing limited numbers of landmarks at stra-
tegic positions, outline methods are also available to more
fully describe continuous margins. Depending on the ap-
proach, these can be applicable to open or closed outlines.
The methods include polynomial curve fitting, Fourier analy-
sis, EFA, and wavelet-based supplementations of the latter
approach [42]. Note that contour methods such as EFA are
not entirely dissociated from landmark-based methods since
they begin with a single landmark to initiate the shape approx-
imation or may use a suite of landmarks distributed around the
object boundary to record its shape, and so, differentiation
between landmark and non-landmark-based methods cannot
be considered to be strictly categorical [43]. After reviewing
the mechanics of Fourier and EFA, we will return to consider
strengths and weaknesses of this latter method.

Fourier analysis

As mentioned above, Fourier analysis was originally developed
to describe radiant heat transfer from solid objects [2]. As a result
of this work, Fourier demonstrated that it is possible to recon-
struct any complex curve or function by transforming it into the
frequency domain and reducing the complex form to a series of
more simple sine and cosine components (i.e., simpler waves).

A special example of how a Fourier series can describe a
shape by transforming the geometric data from a spatial to a
frequency domain is the description of a point traveling

Fig. 1 Components of
morphological form. a Size. b
Shape—only perimeter outline
highlighted (white line). c Spatial
orientation
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around the outline of a unit circle (radius of one) at constant
speed (Fig. 2a). The x and y coordinates can be plotted as a
time series (termed a t-axis) [6], with the y-coordinates gener-
ating a sine wave (Fig. 2b) and the x-coordinates a cosine
wave (Fig. 2c). These simple waves can be combined
(summed) to form a single more complex wave that encodes
both sets of data (Fig. 2d), and this complex wave can always
be decomposed back into its original starting constituents.

Complex waves are neatly described by partial differential
equations comprised of two terms that correspond to the sine
and cosine waves. This is straightforward for the unit circle,
which is precisely described by only one sine and one cosine
term; however, additional orders of sine and cosine terms—
denoted harmonics—are required for describing more com-
plex patterns/waves as represented by

y ¼ f tð Þ ¼ A0 þ ∑
k

n¼1
Ancos ntð Þ þ ∑

k

n¼1
Bnsin ntð Þ ð1Þ

where y is the wave amplitude (dependent variable), A0 is the
constant, An and Bn are the harmonic coefficients of the nth
order, and t represents the points sampled from the t-axis given

by the period 2π. The constant and coefficients are derived
using further trigonometric functions, not presented here in
the interest to maintain simplicity; however, readers can find
further details, e.g., in Lestrel [6]. An object’s outline shape
can be described by an infinite number of harmonics, although
the amount of the shape information captured tends to de-
crease with increasing harmonic order. As the summed or
cumulative number of harmonics increases, so does the level
of shape detail captured by the Fourier terms (Fig. 3).

In conventional Fourier outline analysis, boundary data
are first converted to a new 1D Bshape signature^ vari-
able, which produces a single time series graph when
projected to the frequency domain by its recalculation
about the object in time. The most popular shape signa-
ture method converts the Cartesian coordinates into radial
coordinates using a polar coordinate axis. As this method
uses a constant polar angle, with equally dispersed radial
lines projecting from the pole (center) to intersect with the
object outline (for further information, see [7, 45]), its
application is limited to simpler shapes so that multiple
intersection points are not generated by instances where
the outline curves back upon itself [6]. For descriptions of

Fig. 2 A unit circle example of
frequency encoding of spatial
data using the Fourier series. a
Unit circle plotted on a Cartesian
grid with x and y coordinates
(arrow indicates direction of
travel for subsequent graphs). b, c
The projection of the y (b) and x
coordinates (c) of the circle
starting at the 1, 0 (x, y) and
working counterclockwise (gray
dot indicates one point in the time
series). d The summation of b and
c waves into a single complex
wave. Example modeled after
Transnational College of Lex
[11]. Images created using R [44]
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other shape signature methods, see Rohlf and Archie [45],
Zahn and Roskies [46], and Zhang and Lu [47].

Elliptical Fourier analysis

Rather than encoding shape in a single 1D signature and
projecting it to the frequency domain as regular Fourier series
does (Figs. 2 and 4), EFA uses two signature codes (one for the
x-coordinates and another for the y-coordinates), ingeniously
combining the two sets of data to form a chain of interlinked
ellipses that move in time about one another. This enables an
approximation of the target shape by a single point on the
highest order ellipse. This is the key difference that distin-
guishes regular Fourier series and EFA, as the latter uses two
sets of partial differential equations for each harmonic each
with sine and cosine terms (i.e., four coefficients in total per
harmonic: an, bn, cn, dn) so that it can define the harmonic as an
ellipse. In contrast, regular Fourier series uses a single shape
signature function, such that each harmonic is comprised of
only two coefficients (an, bn). Note here that the Fourier coef-
ficients are often termed BFourier descriptors.^ For a compari-
son of traditional and elliptical Fourier analysis methods using
the same starting shape, see Fig. 4 and Supplementary Video 1.

To be a little more precise regarding the interactions of
the ellipses during EFA, the contour of a shape is de-
scribed by epicycles—the movement of the center point
of any given ellipse (corresponding to harmonic n) around
the perimeter of a larger ellipse (harmonic n − 1). That is,
any given ellipse moves around the perimeter of the ellip-
se preceding it, which, in turn, moves around the ellipse
that precedes that ellipse, and so on until the ellipse for
the first harmonic is reached. The end product of the sum
of these mechanics is elegant and best illustrated by ani-
mation as provided in Supplementary Videos 1–3.

With this overarching concept map of how EFAworks, it is
worth delving back into some of the finer details of the tran-
sition of spatial shape data to the frequency domain in EFA
and how this links to regular Fourier series. While it is not our
intention here to become too immersed in the details of the
trigonometry, for completeness, the mathematics must be at
least superficially presented. If non-mathematicians prefer on-
ly the pictorial illustrations, then the reader should skip the
following paragraph on the partial differential equations.

For EFA, the parametric functions x(t) and y(t) are expand-
ed as follows:

x tð Þ ¼ A0 þ ∑
k

n¼1
ancosntn þ bnsinntn−1ð Þ ð2Þ

and

y tð Þ ¼ C0 þ ∑
k

n¼1
cncosntn þ dnsinntn−1ð Þ ð3Þ

Fig. 3 Harmonic visualization for traditional Fourier outline analysis
using polar coordinate data. The first eight harmonics individually
plotted for the shape depicted in gray on the right (Separate). Relative
size information is not retained to aid visualization. Approximation of the
original shape outline as subsequent harmonics are combined, showing
that the approximation is converging on the original shape (depicted in
gray) as the harmonic number increases (Cumulative). Example modeled
after Rohlf and Archie [45]. Images created using R [44]
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where t is the collective chord length of the outline points,
scaled to range from 0 to 2π, (an, bn) and (cn, dn) are the four
Fourier coefficients defining each harmonic (nth order), and k
is the maximum number of harmonics used [6]. A0 and C0 are
constants that represent the weighted x and y coordinates of
the center of the form, and their equations can be found in
Kuhl and Giardina’s landmark paper [1] and the appendix to
Lestrel’s EFA paper [6].

By setting the period T = 2π, the nth harmonic’s coeffi-
cients, which are used for subsequent analysis, are represented
for the x-projection as

an ¼ 1=n2π ∑
q

p¼1
Δxp=Δtp: cos ntp

� �
−cos ntp−1

� �� � ð4Þ

and

bn ¼ 1=n2π ∑
q

p¼1
Δxp=Δtp: sin ntp

� �
−sin ntp−1

� �� � ð5Þ

where the number of outline points (p) total to equal q; tp is the
length of the step between the points p and p + 1, and Δxp is
the projection of p to p + 1. The y-projection Fourier coeffi-
cients, cn and dn, can be calculated in the same manner as
Eqs. (4) and (5), substituting Δxp for Δyp.

For any quantitative analysis using EFA, it is the four co-
efficients (an, bn, cn, dn) that are retained as the outline shape
descriptors, and they can be used either to reconstruct the
starting shape as an approximation or as the basis for statistical
assessment of shape—see Table 2 for the EFA coefficients for
the first 20 harmonics describing the skull outline shape in
Figs. 5, 6, and 7. It should be noted that the mathematics of
EFA has been widely trialed and tested over the years and is
well recognized to be robust.

As previously mentioned, EFA records a form’s shape by
retaining the x and the y coordinates separately [6] (Fig. 5) and
projecting these data to the frequency domain as waves
(Fig. 6a, b). These waves can be represented in their complex
form (summed sine and cosine terms; Fig. 6c, d) that when
plotted against one another for a corresponding harmonic val-
ue generate an ellipse (Fig. 6e). As a result of this process, the
first harmonic tends to describe the general size and length of
the object being analyzed.

The position of each subsequent harmonic (n + 1) is cen-
tered on the current time point, but on the previous harmonic
(n) (see, e.g., Fig. 7a). These center points travel around the
ellipse of the previously set harmonic, establishing a vector
from the center of the previous harmonic that is termed a
Bphasor^ by mathematicians. The harmonic number (n) repre-
sents the wavelength and, in turn, the number of times the
point traverses around that harmonic in the total time period
(e.g., this point travels around the second harmonic twice in

Table 2 The Fourier descriptors (coefficients) for the first 20
harmonics calculated using Eqs. (4)–(5) and the skull outline used in
Figs. 5, 6, and 7a

Harmonic
number

an bn cn dn

1 −330.422 99.73088 −192.586 −296.596
2 52.83648 6.819893 −61.1977 15.19532

3 −14.916 −1.63322 0.605295 −41.5449
4 −8.28668 −25.3474 26.12699 −8.27207
5 5.008195 −8.50411 8.087178 6.895032

6 2.169348 −0.84613 −1.9586 −1.87794
7 0.148094 6.140658 2.77881 −4.87293
8 −2.78538 −0.11023 5.7206 1.715498

9 0.597155 −0.41022 0.319893 5.283465

10 0.489914 −1.44532 −3.7345 2.231514

11 −0.37304 −0.33243 −2.13588 −0.80122
12 −2.57681 −0.33451 0.480483 −1.16328
13 −3.91576 −1.12792 0.170185 1.534124

14 −3.1378 −0.95338 −1.77637 −0.77887
15 −2.4876 −0.59796 0.949671 −1.76404
16 −1.20013 0.367144 1.926024 0.284832

17 −0.44792 1.146361 −0.59133 0.844731

18 −0.24043 0.628154 −0.44107 −1.2967
19 1.205436 0.55456 1.114009 −1.37115
20 0.943532 0.583383 1.167985 0.527544

a Following the equations provided by Lestrel [6], the constants for this
inputted shape are as follows:

A0 = 954.9844; C0 = 1316.721. Consequently, to calculate the x and y
projections of the original shape (as displayed in Fig. 6c, d), the following
would be undertaken for the first harmonic by substitution into Eqs. (2)
and (3): x(t) = 954.9844 + −330.422(cos*1*tn) + 99.73088(sin*1*tn − 1);
y(t) = 1316.721 + −192.586(cos*1*tn) + −296.596(sin*1*tn − 1). When
these data are plotted against each other, they form the large ellipse of the
first harmonic observed in Fig. 6e

Fig. 4 Comparison of traditional Fourier and elliptical Fourier analysis
methods. Original object shape and outline depicted using 80 equally
spaced landmarks (Original Shape). Methods for extraction of outline
information, demonstrating the major difference between traditional and
elliptical Fourier methods (Shape Signature Extraction). For traditional
Fourier, the information is combined into a single function, whereas the x
and y coordinates are analyzed in separate functions for elliptical Fourier.
The traditional Fourier shape signature extraction method chosen for this
example uses polar coordinates (r = radius, θ = theta angle) between
equally spaced angled radii. The elliptical Fourier method plots the x
and y coordinates separately against a new time (t) axis. Complex wave
(a combination of sine and cosine terms) for the first harmonic (First
Harmonic Fourier Transform). Traditional Fourier has one complex
wave resulting from a single Fourier function, compared with two for
elliptical Fourier (one for each of the x and y coordinate functions).
Reconstructed outline shape approximation depicting the first two
harmonics in relation to each other (Harmonic Representation).
Traditional Fourier is in polar coordinate space, whereas elliptical
Fourier is in Cartesian coordinate space. Harmonics are gray; phasors
are dotted lines, and the combined outlines are bold black lines. Images
created using R [44]

R
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the time it takes to traverse the first harmonic). In a similar
fashion to traditional Fourier, each additional rotation captures
a greater amount of shape detail, thereby improving the shape
approximation with increasing harmonic numbers (see
Supplementary Videos 1–3). Note that the Fourier coefficients
are not dependent on their counterparts in higher or lower
harmonics and do not change as the harmonic number is in-
creased. That is, the first two harmonics will remain the same
for a shape described by two, three, four, or more harmonics.

The product of any EFA is a matrix of coefficients four
cells wide (corresponding to the four coefficients for each
harmonic) and as many rows long as harmonics used in
the analysis (Table 2). Since ellipses are used, the shape
description in EFA is (i) global and (ii) good at replicating
natural shapes with curved edges—EFA does not do so
well on straight edges and/or acute corners (Fig. 8). As
skeletons are natural forms, EFA is well suited to their
description. One of the useful properties of these Fourier
coefficients resulting from EFA is their inverse transfor-
mation, which enables the frequency data to be converted
back to the spatial domain providing a visual reconstruc-
tion of the EFA geometrical shape approximation (see

Figs. 7, 8, and 9). This is useful since it is challenging
for humans to interpret tables of Fourier descriptors alone
—instead, their visualization tends to be much easier.
Such inverse transformations are routinely employed by
the majority of EFA studies (see, e.g., [1, 17, 48]).
Figure 7 depicts how the harmonics combine to approxi-
mate a skull’s shape and increase in accuracy with an
increased harmonic number.

EFA add-ons

One question that arises when using EFA is how the appropriate
number of harmonics is selected for analysis since it determines
the EFA approximation accuracy. Oneway this can be done is to
subject the harmonics to the Nyquist frequency sampling rate,
which states that the harmonic number must be less than half the
number of sampled outline points (variables) [6]. Other methods
involve either calculating the percentage of deviation between
the reconstructed Fourier outline and the original outline using
different harmonic numbers or calculating the cumulative power
of the harmonics as shape measures (see [49]).

Fig. 5 Starting data for EFA. a A
left lateral skull outline with x and
y coordinates plotted on a
Cartesian axis (spatial domain);
arrow indicates counterclockwise
direction of travel (Original
Shape). b The projection of the y
coordinates of the skull to a new t-
axis; the series starts at the filled
circle and arrow in a (Y-
Coordinates). c The projection of
the x coordinates of the skull to a
new t-axis. The unfilled circle
depicts an equivalent point in the
series (850 out of 1000). Images
created using R [44]
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EFA can also be extended to enable 3D shape analysis by
adding the following equation for the z-axis to Eqs. (2) and (3):

z tð Þ ¼ E0 þ ∑
k

n¼1
Encosntn þ Fnsinntn−1ð Þ ð6Þ

This results in six Fourier coefficients for each harmonic,
two for each axis, instead of the four provided with more
traditional 2D EFA.

Coupled with the continuous wavelet transform (CWT),
the limitation of the global nature of shape description with
EFA can be overcome to provide greater insight into localized
shape features [34]. CWTcan be beneficial when dealing parts
of an outline that contain corners or complex curvatures, as it
uses small waves (wavelets), differing in size and starting
position, that focus on a specific location [50]. For an
in-depth discussion of wavelet theory and application, refer
to the theoretical guides provided by Daubechies [42], Lestrel
et al. [51], and Neal and Russ [50].

To enable meaningful comparison of multiple objects using
EFA, it is necessary that the data be normalized with regards to
orientation [6] since elliptical Fourier coefficients rely on a
coordinate system. To normalize, Kuhl and Giardina [1]

recommend alignment based on the major axis of the first
harmonic (Fig. 9). The second optional normalization is for
size differences. This can be useful if the aim is to examine
shape differences specifically, as considerable size differences
(e.g., between sexes) could overpower shape differences. Size
correction can be undertaken followingKuhl andGiardina [1],
by rescaling the semi-major axis of the first harmonic to a
value of one and adjusting all remaining coefficients by the
same factor (Fig. 9). Since size is an important factor in sex
and ancestry classification [52–55], there are advantages for
retaining it in forensic anthropology analyses. For example,
Schmittbuhl et al. [17] reported up to a 13% reduction in sex
classification accuracies when size was removed from the
EFA of the mandible.

An alternative method of size, scale, and translation
normalization is Procrustes analysis (GPA). GPA mini-
mizes the sum of the squared differences between a mean
and the entire dataset [37]. This is achieved through re-
petitively choosing an object at random as the mean, be-
fore computing a new mean once all samples have been
superimposed. GPA has been used for normalization with
Fourier methods in studies on artificial cranial deforma-
tion [56] and human molar identification [57]. Corny and

Fig. 6 Plots of the first three harmonics from the skull in Fig. 5. a
Elliptical Fourier expansion of the x-coordinates from Fig. 3 (X
Transform). b Elliptical Fourier expansion of the y-coordinates from
Fig. 3 (Y Transform). c, d Cosine and sine waves combined to form
complex waves for the X and Y transforms (c X and d Y Complex
Waves). e The two complex waves plotted against one another to form

an ellipse for each harmonic (reconstructed using the constants (A0, C0)
to determine centroid position) (Harmonic Representation). Waves for
the first harmonic in c and d are calculated using Eqs. A1 and A2,
respectively. Dot depicts equivalent point from the skull outline in each
plot (point 850 out of 1000). Images created using R [44]
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Detroit [57] specifically compared several normalization
procedures on their data, with classification rates calculat-
ed using the leave-one-out cross-validation procedure.
They concluded that GPA was the most appropriate meth-
od for near-circular outlines, with a misclassification rate
of 2.8% of isolated molars compared with the traditional
Fourier normalization procedure proposed by Kuhl and
Giardina [1], which misclassified 3.3% of samples.
These marginal differences between normalization ap-
proaches may be negligible in many contexts.

A pivotal question is Bwhen to choose EFA as the
shape quantifier?^ In our view, when the investigator is
interested in describing the global shape of a structure as a
continuous contour and finds an approximation of the

original structure to be sufficient, then EFA may be a
suitable choice. In this context, the global nature of the
shape description is an advantage and provides the flexi-
bility that the method can be used when homologous
landmarks are sparse, difficult to establish, or (less pref-
erably) entirely absent. In some cases, EFA can act as a
data reduction technique which may be favorable when it
is sufficient to use only a small number of harmonics to
approximate the shape. Outside of these contexts, EFA is
simply one of several alternatives for shape quantification.
In these circumstances, the transformation of spatial data
to the frequency domain has been considered to be a su-
perfluous additional step, since the original geometric data
can be directly evaluated using other methods [58].

Fig. 7 Inverse representation of elliptical Fourier series depicting a the
path of traveling around 1000 points on the skull from Fig. 5 using two
harmonics, up to point 850, and the shape achieved with all 1000 points
using b 2, c 3, and d 20 harmonics. Reconstructed using the constants

(A0, C0) to determine centroid position. Harmonics are gray; phasors are
dotted lines, and the combined outlines are bold black lines. Images
created using R [44]
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EFA applications in forensic anthropology

Since its development, there have been a number of studies
using EFA to analyze anthropologically relevant topics
such as orthodontic treatments [59], age-related changes
in mandibular form [60], artificial cranial deformation
[56], facial form differences in ancestry [61], sexual dimor-
phism of the chin [62], as well as one attempt to predict the
facial profile from the skull [63]. EFA for forensic identi-
fication purposes does not appear until 2000, 18 years after
it was described by Kuhl and Giardina [1], with Tanaka
and colleagues’ study on the proximal humerus [4].
Below, we summarize studies using EFA in a forensic an-
thropological context based on the skeletal element studied
(also see Table 3 for summary).

Skull

The variability of frontal sinus patterns was quantified with
EFA and used successfully as an identification tool by
Christensen [12, 64]. This was achieved through tracing and
digitizing the sinus outlines from radiographs, retaining size
information in the elliptical Fourier coefficients. Using log
likelihood ratios, Christensen [12] was able to conservatively
match frontal sinus images using 20 harmonics, with the odds
of a correct match compared with a match from the population
reportedly being 1021 to 1. Although other researchers have
previously quantified frontal sinuses, prior to Christensen, no
attempt had been made to measure their individuating power.

Maxwell and Ross [65] explored the utility of cropped
cranial vault outlines from radiographs as a differential

Fig. 8 Elliptical Fourier analysis,
using 30 harmonics, of a a natural
type object (elephant cartoon) and
b silhouette of a fighter jet. Left
side shows original image in
black. Right side shows original
image (gray) with EFA
reconstruction (dark line). Note
the poorer ability of EFA to
capture pointed corners and
straight edges due to the elliptical
nature of the EFA capture process.
Starting binarized outlines
adapted from clker.com (19/03/
15). Elliptical Fourier
reconstructions created in R [44]

Fig. 9 Elliptical Fourier analysis conducted on a skull image using 40
harmonics. Plots display Fourier reconstructed outline superimposed with
the first harmonic (ellipse) using original (a), orientation normalized (b),

and size and orientation normalized (c) EFA methods. Dotted line
represents major axis of the first harmonic, which is aligned to the x-axis
using the orientation normalized method. Images created using R [44]
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identifying feature. Outlines were manually traced from
nasion to the mastoid processes, with 30 harmonics used for
analysis, normalizing for size. While they recommend EFA as
an analytical tool, they found much less value for EFA of the
outline shape as an identification tool, concluding that the
shape of the vault outline alone is not varied enough to indi-
viduate. Their conclusion was supported by a supplementary
visual comparison test, in which only 47% of assessors cor-
rectly assigned all radiographs [65]. It may be worth noting
that despite the authors own recommendation for using EFA
with a multivariate analysis of variance (MANOVA) or dis-
criminant function analysis (DFA), this study used univariate t
tests for analysis.

Using EFA, Lestrel et al. [54] describes, in detail, the sexual
dimorphism of the craniofacial complex. Their study aimed to
highlight shape variations specifically, and therefore, the study
was conducted on size-normalized Fourier coefficients.
Sourcing data from multiple studies, statistically significant
sexually dimorphic changes were evident in all structures ex-
amined, namely the nasal bones, cranial base, dental arch,
mandibular arch, and cranial vault. The most sexually dimor-
phic region was that of the nasal bones, which were longer and
narrower in females, while the slightest dimorphism was not-
ed for the cranial vault [54].

Gore et al. [48] used EFA to assess the influence of sex,
age, ancestry, and geographical location on size-normalized
orbital shape. Photographs were taken of 162 individuals
sourced from skeletal collections in the USA and South
Africa. They demonstrated that orbital outlines could effec-
tively distinguish individuals based on sex, ancestry, and geo-
graphical location. While they speculated that age may affect
orbital size in relation to the rest of the craniofacial complex,
Gore et al. [48] did not observe any age-related influence on
its shape as an isolated structure.

In 2012, McDowell et al. [15] analyzed the shape of the
anterior nasal aperture in South Africans with EFA to quantify
population differences. Traditional landmark craniometrics and

GPAwere also used. The EFA analysis was conducted on pho-
tographs with digitally traced outlines. Size-normalized EFA
enabled classification with 94% accuracy for ancestry estima-
tion, which is comparable to their reported 94–95% accuracy
using craniometrics [15]. This is an improvement on the 83–
86% accuracy rates reported for visual assessment [16].

In 2002, Schmittbuhl et al. [17] studied individual variabil-
ity and sexual dimorphism in mandibular shape using EFA.
Instead of conducting analysis on the customary Fourier coef-
ficients, they defined novel Belliptical descriptors,^ based on
axis length, axis orientation, and initial phase angle. These
descriptors were designed to enable ease of association to
morphological interpretation [17]. They were able to success-
fully classify 97% of males and 92% of females from the
shape and size of the lateral mandible outline.With the remov-
al of the size factor, they achieved classification rates of 84
and 81% in males and females, respectively. The size-retained
data thereby provide a marked improvement on classification
accuracies using both visual assessment (58–86% [21]) and
linear measurements (78–85% [18–20]).

The EFA-CWT method previously described has been uti-
lized in anthropological studies on sexual dimorphism in the
human cranial base [34, 51] and cranial vault [66]. However, it
has not been applied in a forensic setting thus far. The 3D EFA
approach has been employed with skeletal material in a foren-
sic context, with a study assessing the influence of ancestral
group, sex, and age on orbital margins [67].

Clavicle

Post-mortem clavicle outlines were recently compared with
ante-mortem records to aid in skeletal identification by
Stephan et al. [22, 68, 69]. Using the sum of squared differ-
ences in normalized Fourier descriptors between 3D clavicle
laser scans and clavicle morphologies recorded on
ante-mortem chest radiographs, true positive matches were
found in the top 5% of the shape-ranked chest radiograph

Table 3 Summary of skeletal
studies utilizing elliptical Fourier
analysis in a forensic
anthropology context

Skeletal element Study Purpose

Cranial Frontal sinus Christensen [12, 64] Identification

Cranial vault Maxwell and Ross [65] Identification

Craniofacial complex Lestrel et al. [51] Sex estimation

Orbits Gore et al. [44] Sex, age, ancestry estimation

Anterior nasal aperture McDowell et al. [15] Ancestry estimation

Infracranial Mandible Schmittbuhl et al. [17] Sex estimation

Clavicle Stephan et al. [22, 68] Identification

Vertebrae Paolello and Cabo-Perez [70] Identification

Proximal humerus Tanaka et al. [4] Sex estimation

Greater sciatic notch Velemínská et al. [25] Sex estimation

Patella Niespodziewanski et al. [31] Identification

1686 Int J Legal Med (2017) 131:1675–1690



databases 75% of the time [22, 68]. These results offer major
benefits for automated searching of large datasets in contrast
to manual searches.

Vertebrae

Paolello and Cabo-Perez [70] employed EFA to assess indi-
viduation of vertebral outlines from radiographs. The outlines
of the left transverse process of 85-s lumbar vertebra were
extracted from radiographs that were conducted to simulate
ante-mortem and post-mortem records. While correction for
size was not specified in the written account, nor were the
classification accuracies, these authors recommended use of
the method for forensic casework [70].

Humerus

In 2000, Tanaka et al. utilized EFA to quantify sexual dimor-
phism of the proximal humerus in Japanese adults born c.1900
[4]. The humeral outlines from photographs were traced and
digitized, before conducting EFA using 27 harmonics. Data
were analyzed using a one-wayMANOVA, withWilk’s lamb-
da scores showing statistically significant sex differences.
While significant sex differences in size were noted, they still
achieved a correct classification of sex in approximately 92–
95% of humeri using discriminant functions based on
size-normalized amplitudes. Reconstruction of the Fourier co-
efficients revealed male humeri to possess a more pronounced
lesser tubercle but a less pronounced greater tubercle [4].
Outline analysis performed better in terms of accuracy than
both linear measurement (89–90% [24]) and visual assess-
ment (83–86% [18]) methods.

Os coxae

Velemínská et al. [25] conducted a study in 2013 on
sexual dimorphism of the greater sciatic notch using the
following six geometric morphometric techniques: (1)
with equally angled semi-landmarks from a center point,
(2) distances between those landmarks and the center
point, (3) semi-landmarks equidistant to the curve, (4)
polyline distances, (5) Fourier coefficients, and (6)
Legendre coefficients. All methods were conducted after
size normalization and proved to successfully classify sex
(90–92%), with the Fourier coefficients classifying with
the highest accuracy. EFA also outperformed visual as-
sessment studies, which classified sex with 80–88% ac-
curacy [28–30]. Classification accuracy declined as the
number of harmonics increased above the optimum num-
ber (in this case, five), most likely due to a reduction of
the signal to noise ratio.

Patella

Niespodziewanski et al. [31] recently assessed the utility of
lateral patella outlines for individuation using EFA. In a sim-
ilar fashion to Stephan et al. [22, 68], patella outlines were
compared between radiographs and rotated shadowgrams
from 3D laser scans. Based on ranking the sum of squared
differences between the elliptical Fourier coefficients, 20 of
the 22 specimens ranked in the top five images (top 1.4%),
with 16 of the 22 correctly matching the top ranked image.

EFA software

The calculations involved in EFA are laborious by hand, es-
pecially when large numbers of harmonics are used, which
lends the methods entirely to computerized approaches.
Since EFA’s first conception in 1982, several programs have
been developed to specifically undertake EFA. The majority
of these are available online for free download.

Christensen’s frontal sinus research [12, 64] employed
EFAWin (now called EFAV on the SUNY Stony Brook
website) developed by Mike Isaev [71] for conducting ellipti-
cal Fourier analysis and obtaining the Fourier coefficients.
The Fourier calculations for the software were done by
Rohlf and Ferson, who also released their own software a
couple years earlier [72] that can be used in conjunction with
their outline coordinate extraction software tpsDig [73].

SHAPEwas developed in 2002 by Iwata and Ukai [74] and
is a software package that includes five programs to perform
image outline extraction, run normalized EFA and principal
component analysis, as well as visualize outline reconstruc-
tions at each stage. The image outline is extracted using edge
detection on an optimized image: Each image is separated into
three based on the RGB channels, and the image with the
highest object-to-background contrast is selected to undergo
automatic threshold establishment for binarization [74]. This
program has been used by Stephan et al. [22] in initial trials of
clavicle matching and by Maxwell and Ross in their study on
identification from cranial vault outlines [65].

Momocs [75] is an EFA package recently developed for use
within the R environment [44]. The functions written within
Momocs are primarily derived from Claude’s 2008 book
Morphometrics Using R [49]. It encompasses the majority of
the analytical process, including outline extraction, EFA, as
well as statistical methods such as principal component anal-
ysis, MANOVA, and thin plate splines. The utility of calling
individual functions within R allows the user to customize the
analysis to their needs; however, it also requires a basic
knowledge of R programming to navigate. Despite its use in
a wide range of other research areas (e.g., sexual dimorphism
of bird tails [76], phenotypic gene expression patterns [77],
and a comparison of Middle Stone Age assemblages [78]),
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Momocs has not been used in the forensic anthropological
literature so far.

To conduct their chest radiograph comparison studies,
Stephan et al. [22] coded EFA equations from Kuhl and
Giardina [1] into R as part of their customized clavicle
matching software. Rather than enabling generalized use of
EFA, this software instead provides a dedicated standalone
tool for ranking radiographs based on EFA encoding. While
originally designed for clavicles, the program has also been
successfully extended to searching of lateral knee radiographs
from 3D scans of patellae [31].

PAleontological STatistics (PAST) [79] was developed as a
comprehensive tool for paleontological data analysis, permit-
ting EFA on already obtained outline coordinates. This soft-
ware has not yet made an appearance using EFA in the foren-
sic anthropological literature.

There are also some commercially available software pack-
ages for EFA. The EFF23 software is one of the longest avail-
able, developed around 30 years ago as a MS-DOS tool for
running EFA on a matrix of coordinates [7, 80]. The elliptical
Fourier coefficients are then exported to analyze in third-party
statistical software. This software has been used in combina-
tion with MLmetrics to digitize outlines, also available from
the EFF23 developers [6, 80], and has been used by Tanaka
et al. [4] in their proximal humerus study. Another shape anal-
ysis program that includes EFA among a number of shape
routines is NTSYSpc developed by Rohlf [81]. This program
also requires a third-party outline digitization tool to be used
ahead of the EFA.

The above options provide investigators with a range of
solutions. While user preferences are likely to vary, programs
with graphical user interfaces (GUIs) may generally be more
convenient for investigators without coding experience. The
trade-off is that these programs offer much less flexibility
compared to those running from coding consoles. Out of the
GUI programs available, SHAPE offers a simple, easy to in-
stall, and user-friendly workflow that includes the outline ex-
traction in one program suite that some researchers may find
advantageous.

The future

Modern day computers offer abundant power to undertake
EFA, that only require seconds for analysis. Consequently,
the scope to increase the use of EFA in forensic anthropology
within the computer age is immense, in part because bones are
natural objects with smooth curving outlines. Future applica-
tions may include, for example, sex and ancestry estimation of
skulls and osteometric sorting based on longitudinal or
cross-sectional bone shape and may extend beyond forensic
anthropology to other disciplines of legal medicine—a ready
example is forensic odontology given that EFA has already

been used for growth studies of teeth [82]. The possibilities are
massive, as recently demonstrated by the automated searching
of radiographic libraries for identification purposes.

One of the major attractions to EFA is that it can be under-
taken using a broad array of acquisition equipment from rela-
tively simple digital cameras (e.g., Tanaka et al. [4]) to more
complex 3D scanning units (e.g., 3D digitizer used by
Urbanová [67]). All these factors award EFA special utility
where large samples are concerned and yield potential for a
Fordisc-like anthropometric tool based on EFA to be developed.
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