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Abstract Best scientific practice for sex estimation incorpo-
rates accurate techniques that employ appropriate standards
and population- and period-specific data. Single measure-
ments provide accurate sex estimations, but multiple measure-
ments and multivariate techniques offer greater validity to
biological profile assessments. Appropriate, modern standards
for sex estimation are limited to the cranium in South Africans
(SA), which warrants the examination of the potential for sex
estimation using the postcrania of socially defined SA blacks,
whites and coloureds through multivariate models and ad-
vanced statistical techniques. A total of 39 standard
osteometric measurements were taken from the postcrania of
360 socially defined SA blacks, whites and coloureds (equal
sex and ancestry). Univariate and multivariate models were
evaluated. Multivariate models, with cross-validation and
equal priors, were explored with linear and flexible discrimi-
nant analysis (LDA and FDA, respectively). Classification
accuracies associated with univariate models ranged from 56
to 89%, whereas multivariate classification accuracies using
bone models (i.e. all measurements from one element) ranged
from 75 to 91%. The highest correct classifications were
achieved with multivariate subsets (i.e. combinations of mea-
surements from different bones) and ranged from 90 to 98%.
Overall, FDA and LDA yielded similar accuracy rates.
Postcranial bones achieve comparable classification accura-
cies to the pelvis and higher accuracies than metric or

morphological techniques using the cranium. While
LDA is the most commonly used classification statistic
in biological anthropology, FDA provides a good alter-
native for classification.
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Introduction

Best practice guidelines for sex estimation, as set out by the
Scientific Working Group for Anthropology (SWGANTH),
advocate that the most reliable and objective morphoscopic
and osteometric techniques be applied to an unknown case.
Applicable standards and population-specific and period-
specific data should also be employed [1, 2]. Postcraniometric
methods to estimate sex in US populations show promising
results with univariate and multivariate bone models providing
classification accuracies up to 95% [2, 3]. Past studies on the
postcrania of South African populations also support the use of
univariate sectioning points to estimate sex and suggest the
method is useful in cases of fragmentary remains [4–6]. Sex
estimation is possible using a univariate approach, but themeth-
od is less precise than a multivariate approach because of the
limited amount of human variation expressed in a single skel-
etal measurement. A problem with previously published multi-
variate discriminant functions is that they require a specific set
of measurements in order to run the analysis. If any of the
measurements are unavailable, the discriminant function cannot
be used and a sex estimate cannot be made. Therefore, the use
of a suitable software programme is required for a more accu-
rate sex estimation, particularly when remains are incomplete or
fragmented.
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Reference samples are also limited to black and white South
Africans and do not assess the South African coloured group,
resulting in an inapplicable standard for this population. The
term ‘coloured South African’ refers to a self-identified group
of people who emerged as a result of a complex history of
slavery and inter-racial marriages in the country [7]. Coloured
South Africans are the second largest population in South
Africa (8.9%), but represent the largest group in the Northern
Cape andWestern Cape, where theymake up between 40.3 and
48.8 % of the population, respectively [8, 9].

The Daubert criteria for ‘good science’mandates biological
anthropology researchers to investigate scientifically tested
methods with potential error rates [10, 11]. For sex estimation,
many osteometric and morphologic techniques have been up-
dated with more advanced statistical analyses, as well as prob-
abilities and accuracies, for most of the skeletal elements [10,
12–16]. Software programmes that perform multivariate sta-
tistical analyses, such as Fordisc3.1 (FD3.1), CRANID and
OSSA, are regularly used in forensic anthropology laboratories
around the world. A limiting factor of discriminant function
analysis, which is a common statistic employed in anthropo-
logical software programmes, is the statistical assumption that
the unknown belongs to one of the reference populations in the
programme. Currently, not all populations are represented in
the Forensic Databank [17]. A database was created from cra-
nial data of white, black and coloured South Africans for use in
FD3.1 to ensure the same statistical rigour could be applied
[16]. However, the postcranial skeleton of South Africans
needs to be evaluated with regard to their accuracies in estimat-
ing sex and ancestry.

Linear discriminant analysis is a consistent and reliable
classification technique. Yet, new statistical analyses are con-
tinually being investigated for use in improving classifica-
tions. Flexible discriminant analysis (FDA) is not commonly
used in biological anthropology, but may provide a novel ap-
proach to classifying unknown individuals for the creation of
estimations of biological parameters. The purpose of this pa-
per is to evaluate the potential of postcranial measurements
from the three largest socially defined South African groups to
estimate sex.

Materials and methods

The stratified, random sample consisted of 360 peer-reported
black, white and coloured South African males and females,
with equal numbers in each sex and ancestry stratum. All
individuals were between the ages of 18 and 87 years with a
mean of 53 years (Table 1). The samples are housed at the
Pretoria Bone Collection at the University of Pretoria
(Department of Anatomy) and the Kirsten Collection at the
University of Stellenbosch (Division of Anatomy and
Histology). The skeletal collections are cadaver-based and

consist of unclaimed, but known, and donated individuals
for medical training and/or research. Both institutions have
actively accessioned skeletons since the 1950s [18, 19]. Data
were collected from the three largest socially identified groups
present in South Africa to ensure as much population variation
is captured in the reference population.

Coloured South Africans are a self-identified group from
the Western Cape. Their genetic heritage is composed of, on
average, equal contributions fromBantu-speakers, Europeans,
Khoesan (indigenous South Africans) and Asians, making
them one of the most genetically admixed groups in the world
[7, 20–22]. However, genetic contributions vary between the
sexes, at the individual level and in geographic location within
South Africa [7, 22, 23]. White South Africans are descended
largely from colonial immigrants including Dutch, French,
British and Germans [24, 25], with recent genetic research
demonstrating almost equal contributions from all Europeans
[26]. Black South Africans primarily arose from Bantu-
speaking groups that migrated from the Nigerian/Cameroon
highlands into South Africa within the past 3000 to 5000 years
[27–30]. Genetic and morphological differences do exist be-
tween the historical Bantu-speaking and indigenous South
Africans (Khoesan), despite evidence for some gene flow
among certain groups [13, 31, 32].

A total of 39 standard measurements were taken from 11
postcranial bones. Table 2 refers to full measurement names
and abbreviations. Measurements were taken from the left
side, unless trauma or pathology was present or the bone
was missing, in which case the right side was substituted.
While an attempt was made to obtain full numbers for each
measurement, some data had to be removed post hoc as out-
liers. All measurements were taken according to the measure-
ment guidelines presented in Data Collection Procedures for
Forensic Skeletal Material [33] and abbreviations were taken
from FD 3.1 [34]. All statistical analyses were executed in R
or FD3.1 [34, 35].

Statistical analyses

The final measurement numbers, the means and the standard
deviations for all measurements and each sex-ancestry group
are presented in Table 3. The postcranial bones of five indi-
viduals were re-measured by the principal investigator and by
a second observer to analyse the repeatability of the measures.
The inter- and intra-observer error was assessed using abso-
lute technical error of measurement (TEM) and relative tech-
nical error of measurement (%TEM) and was visualized using
Bland-Altman plots. A high TEM is associated with a large
mean and a low TEM is associated with a small mean. The
association between TEM and size of measurement is problem-
atic, as comparative imprecision of different measurements
cannot be assessed [36]. In order to compare the TEM collected
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from different variables, the absolute TEM is converted to rel-
ative TEM (%TEM). The relative TEM is calculated in order to
obtain the error expressed as percentage corresponding to the
size of the measurement [37]. Each Bland-Altman plot illus-
trates measurement differences either between measurements
taken by two separate observers (inter-observer error Bland-
Altman plot) or between two rounds of measurements per-
formed by the same observer (intra-observer error Bland-
Altman plot) for all 39 variables. The measurement differences
between observers (y-axis) are plotted against the measurement
means (x-axis) and additional reference lines include the inter-
val of two standard deviations of the measurement differences
on either side of the mean difference [38, 39].

Student’s t tests were used to compare the male and female
measurements when the populations were pooled. A
Bonferroni correction was run to counteract any type I errors
due to multiple comparisons. Additionally, analysis of vari-
ance (ANOVA) and multivariate analysis of variance
(MANOVA) were used to test the effects of sex, ancestry

and an interaction between sex and ancestry for every individual
measurement and for the multivariate subsets, respectively. If a
measurement demonstrated a significant difference between the
sexes with the Student’s t test or the ANOVA results, univariate
models were created and assessed.

Linear discriminant analysis (LDA) is the most commonly
used type of parametric classification statistic in biological
anthropology. Generally, LDA is employed when there is a
categorical response variable (i.e. coloured males, white fe-
males, etc.) and continuous predictor variables (i.e. measure-
ments). Assumptions for LDA include independent observa-
tions, a normal distribution, equal variance covariance matri-
ces, and homoscedasticity. In LDA, a factor or weight is cal-
culated for each measurement, which, when added together
for all variables, maximizes the mean differences among
groups [40]. Both forward and backward stepwise selection
was used to choose only the most discriminatory variables
from each subset. The results provide a probability that the
unknown belongs to one of the groups in the reference sample

Table 2 Full measurement
names and abbreviations Clavicle maximum length claxln Breadth of S1 sacs1b

Clavicle vertical diameter clavrd Innominate height innoht

Clavicle anterior-posterior diameter claapd Iliac breadth iliabr

Scapula height scapht Femur maximum length femxln

Scapula breadth scapbr Femur bicondylar length fembln

Humerus maximum length humxln Femur epicondylar breadth femebr

Humerus epicondylar breadth humebr Femur vertical head diameter femhdd

Humerus vertical head diameter humhdd Femur subtrochanteric anterior-posterior di-
ameter

femsap

Humerus maximum midshaft
diameter

hummxd Femur subtrochanteric transverse diameter femstv

Humerus minimum midshaft
diameter

hummwd Femur midshaft anterior-posterior diameter femmap

Radius maximum length radxln Femur midshaft transverse diameter femmtv

Radius anterior-posterior diameter radapd Tibia condylo-malleolar length tibxln

Radius transverse diameter radtvd Tibia proximal epiphyseal breadth tibpeb

Ulna maximum length ulnxln Tibia distal epiphyseal breadth tibdeb

Ulna dorso-volar diameter ulndvd Tibia maximum diameter at nutrient foramen tibnfx

Ulna transverse diameter ulntvd Tibia transverse diameter at nutrient foramen tibnft

Ulna physiological length ulnphl Fibula maximum length fibxln

Sacral height sacaht Fibula maximum midshaft diameter fibmdm

Sacral breadth sacabr Calcaneus breadth calcbr

Table 1 Sample sizes and
abbreviations for each ancestry
and sex group for modern South
Africans

Collection n Mean age Abbreviation

Pretoria bone collection Black females 60 47.0 BF

Black males 60 47.8 BM

White females 60 67.3 WF

White males 60 61.9 WM

Kirsten Collection Coloured females 60 44.1 CF

Coloured males 60 52.6 CM
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(posterior probability) [41]. Equal prior probabilities were
used and results were cross-validated using leave-one-out
cross validation (LOOCV). The LDA function in the MASS
package was used to conduct LDA and the stepclass function
in the klaR package was used to conduct stepwise variable
selection in R [42].

FDA is similar to LDA, except it replaces linear regression
with a non-parametric regression method [43]. For this study,
FDA built regression models defined by multivariate adaptive
regression splines (MARS) [44]. MARS uses piece-wise lin-
ear segments to model non-linear relationships. To identify the
optimal model, a forward and backward stepwise procedure is

Table 3 Means and standard deviations (SD) for each sex and ancestry group and all measurements

BF BM WF WM CF CM

n Mean SD n Mean SD n Mean SD n Mean SD n Mean SD n Mean SD

claxln 35 141 8 37 155 8 42 144 8 41 159 10 52 136 7 52 151 10

claapd 35 9 1 39 11 1 46 9 1 41 11 1 55 9 1 55 11 1

clavrd 33 11 1 37 13 1 46 11 1 42 13 2 55 11 1 55 13 1

scapht 50 135 8 54 154 9 55 145 9 50 163 10 54 135 6 44 151 10

scapbr 58 92 6 56 105 7 59 97 6 57 108 6 56 90 4 55 102 6

humxln 60 297 15 60 323 18 58 313 15 59 338 17 58 289 15 58 315 17

humebr 60 56 3 60 62 3 60 57 3 60 65 4 58 53 3 59 61 4

humhdd 60 38 2 59 44 2 59 43 2 58 48 3 57 38 2 60 44 3

hummxd 60 20 1 59 23 2 60 21 2 60 24 2 57 19 2 59 22 2

hummwd 60 15 1 60 18 2 59 16 2 59 19 2 58 15 1 60 18 2

radxln 60 231 14 60 257 15 57 230 12 57 254 12 60 218 12 56 243 14

radapd 60 11 1 60 13 1 57 11 1 57 13 1 60 10 1 59 13 1

radtvd 60 13 1 60 15 1 58 14 2 58 17 2 60 13 1 58 15 1

ulnxln 58 250 14 60 276 16 59 247 13 60 272 13 57 235 13 53 260 15

ulndvd 59 13 1 60 16 2 60 14 2 56 16 2 60 13 1 59 16 2

ulntvd 60 13 1 60 16 2 59 14 1 60 17 2 60 13 1 58 16 1

ulnphl 58 218 13 59 243 14 59 216 11 60 236 12 59 206 12 57 227 15

sacaht 33 97 10 47 104 10 27 105 10 31 108 12 32 97 8 25 99 7

sacabr 46 92 6 54 89 6 49 101 6 54 98 7 38 95 7 44 90 5

sacs1b 40 44 5 53 48 3 51 45 3 45 48 3 39 41 3 29 45 3

innoht 58 189 9 58 205 10 59 209 10 59 224 12 50 185 8 55 201 12

iliabr 56 142 7 58 150 7 59 163 9 54 165 9 51 141 7 58 146 9

femxln 59 425 19 60 457 22 57 441 20 60 471 23 59 413 19 57 446 24

fembln 59 421 19 60 454 22 57 438 21 60 468 23 59 409 19 57 443 24

femebr 60 72 4 60 80 4 57 76 3 58 84 4 58 70 3 57 78 4

femhdd 60 40 2 59 46 2 58 43 2 60 48 3 59 40 2 58 46 3

femsap 59 25 2 57 28 2 52 27 2 52 30 2 55 25 2 56 27 2

femstv 60 28 2 59 32 2 55 31 2 55 33 2 58 29 2 57 33 2

femmap 59 27 2 59 30 2 58 28 2 52 31 2 53 26 2 47 29 2

femmtv 60 25 2 59 27 2 55 26 2 57 29 2 59 24 2 57 27 2

tibxln 56 361 19 58 390 21 57 365 21 59 391 21 59 344 20 56 373 25

tibpeb 58 68 4 58 76 4 55 71 4 57 79 4 57 66 3 52 74 4

tibdeb 58 44 2 58 49 3 58 47 3 59 52 3 57 43 2 55 47 3

tibnfx 57 32 2 53 36 3 56 33 2 55 37 3 55 31 2 50 35 2

tibnft 59 23 3 60 26 2 59 24 2 56 27 2 59 22 2 54 25 2

fibxln 58 353 19 57 383 21 48 358 21 56 383 20 56 336 17 49 365 22

fibmdm 59 14 2 56 16 2 54 15 1 56 16 2 55 14 1 47 15 2

calcxl 52 74 4 58 83 4 46 80 4 48 86 5 0 – – 0 – –

calcbr 51 39 2 59 43 2 55 40 2 55 44 3 50 41 3 51 43 4
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implemented along with automatic variable selection [45].
FDA is considered advantageous to LDA because FDA gen-
erates a flexible surface to separate the classes and is not as
restricted by assumptions. Subsequently, accuracies have been
higher when there are more than two classification categories or
when assumptions of normality and homoscedasticity are vio-
lated [43]. The FDA function in the mda package was used to
conduct FDA in R [46].

Both LDA and FDAwere used to classify the sample using
the univariate models, bone models, and multivariate subsets.
The bone models consist of combinations of the different
measurements taken from each bone (Table 4) and the multi-
variate subsets consist of different combinations of measure-
ments (Table 5). For the purpose of showing the potential of
the multivariate approach, only a limited number of multivar-
iate subsets are presented. The selected variables for each
model and subset differ slightly between LDA and FDA as
seen in Tables 4 and 5. The two multivariate techniques were
used to classify the sample according to sex and ancestry (six
groups). Only multivariate subsets were utilized and again
stepwise selection reduced the number of parameters for each
model, as to include only the best measurements for classify-
ing the sample. While some data were missing, the sex and
sex-ancestry sample sizes were similar for all groups.

Results

The mean intra-observer TEM and %TEM, for all measure-
ments, were fairly small at 0.13 mm (ranging from 0.0 to
0.82mm) and 0.24% (ranging from 0.0 to 2.24%), respectively.
The mean TEM and %TEM for the inter-observer error were
slightly higher at 0.43 mm and 1.04%, and the ranges slightly
wider at 0.0 to 0.94 mm and 0.0 to 4.65%, respectively.
Measurements associated with the ulna had the greatest error,
specifically the dorso-volar and transverse diameters. The
Bland-Altman plots of the intra- and inter-observer errors

revealed overall high agreement with no measurement differ-
ences exceeding 2 mm or any systematic bias (Fig. 1). Most
measurements fell between the upper and lower agreement
levels (dashed lines), which were calculated based on the stan-
dard deviations. While the means and range of differences did
not vary considerably between the intra- and inter-observer
errors, the spread of the differences is larger for the inter-
observer error than for the intra-observer error.

Student’s t tests, with a Bonferroni correction, revealed
significant differences (p < 0.05) between the sexes for all 39
measurements when ancestry groups were pooled (i.e. all
males compared to all females). The ANOVA results demon-
strated significant differences (p < 0.05) among all three pop-
ulations for all measurements except claapd, clavrd, ulndvd
and calcbr, while the MANOVA results indicated significant
differences between sex and ancestry groups for all multivar-
iate subsets. Significant interactions between sex and ancestry
were only present for iliabr and calcbr; however, significant
interactions were present between sex and ancestry for the
upper limb, breadths and all-variable models.

Cross-validated correct classification rates for the univariate
models using LDA, when the three ancestry groups were
pooled, ranged from 56 to 89%. The radapd and the iliabr
classified best and worst, respectively (Table 6). Univariate
accuracies using FDA ranged from 60 to 89%, and radapd
and sacabr classified best and worst, respectively (Table 6).
Cross-validated accuracies for LDA ranged between 75 and
90% for the bone models. The radius performed the best and
the sacrum and fibula performed the worst. Females classified
better than males for all bone models, except for the ulna and
sacrum (Table 7). Cross-validated correct classification accura-
cies for the bone models ranged from 75 to 91% using FDA.
The clavicle was best and the fibula worst at classifying the
sample into males and females. Overall, females classified bet-
ter than males, except for models of the clavicle, humerus,
innominate and femur (Table 8).

Cross-validated correct classifications ranged from 90 to
98% when LDA was employed on the multivariate subsets.
A sex bias was observed in most subsets with males only
achieving higher accuracies for the hip and lower limb bone
model subsets (Table 9). Overall classification for the multi-
variate subsets ranged from 90 to 97% using FDA. The
lengths subset achieved the lowest accuracy and the all-
variable model achieved the highest accuracy. Females obtain-
ed higher correct classifications for all subsets, except for
breadths and lengths models (Table 10).

When the sample was classified into six sex-ancestry
groups, the number of groups increased considerably, which
led to decreased classification accuracies. LDA correctly clas-
sified the sample 64 to 80%; the all-variable model achieved
the highest classification accuracy, whereas the hip subset
achieved the lowest. Overall, white females classified the best
and coloured males the worst (Table 11, Fig. 2). A

Table 4 Stepwise selected variables included in bone models for LDA
and FDAwhen classifying according to sex only

n LDA FDA

Clavicle 253 claxln, claapd claapd, clavrd, claxln

Scapula 294 scapht scapbr, scapht

Humerus 343 humebr humebr, hummwd, humhdd

Radius 344 radapd radapd, radxln

Ulna 339 ulntvd ulnxln, ulntvd, ulndvd

Sacrum 160 sacabr, sacs1b sacs1b, sacabr

Innominate 331 innoht, iliabr innoht, iliabr

Femur 288 femhdd femhdd

Tibia 293 tibpeb tibpeb, tibnfx

Fibula 312 fibxln fibxln, fibmdm
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Fig. 1 Bland-Altman plots
representing the intra- (above)
and inter-observer (below) errors,
respectively, when both the prin-
cipal investigator and a second
observer re-measured all mea-
surements for the five randomly
selected individuals

Table 5 Stepwise selected
variables included in multivariate
subsets for LDA and FDAwhen
classifying according to sex only

n LDA FDA

Hip 130 sacabr, femhdd, femstv femhdd, sacabr, iliabr, femebr, femmap

Upper limb 183 humhdd, radapd radapd, claxln, clavrd, claapd, humxln, humhdd

Lower limb 148 sacabr, femhdd, tibpeb femhdd, sacabr, tibnfx, iliabr, femsap

Breadths 138 scapbr, ulntvd, sacabr ulntvd, sacabr, radapd, humebr, iliabr, scapbr

Lengths 106 scapht, ulnxln scapht, radxln, tibxln, claxln, innoht, fibxln

All-variable 124 femhdd, sacabr ulntvd, femhdd, sacabr, claapd
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Mahalanobis distance matrix for LDA shows the distances
between sex-ancestry groups and also shows the distances
between males and females of each ancestry (i.e. sexual di-
morphism). Coloured South Africans display the greatest
amount of sexual dimorphism, while white South Africans
display the least amount of sexual dimorphism (Table 12).
Slightly lower, but comparable, correct classification accura-
cies (60–79%)were achievedwhen FDA classified the sample
into sex and ancestry. The lengths subset produced the lowest

and the all-variable model the highest classification accura-
cies. Overall, white males classified best and coloured males
worst (Table 13).

The FDA plot illustrates the results of a flexible discriminant
analysis in discriminant (canonical) coordinates. A function of
the method was incorporated to extract discriminant variables,
posterior probabilities and to predict class memberships. The
observations are classified according to the distance to the
nearest centroid in discriminant space by the predict function
of the mda package [44, 46]. Interpretation of the relationships
between the centroids of all six sex-ancestry groups show over-
lap between black and coloured females and between black and
coloured males, while white males and females are the most
distinct of the groups and obtained the highest correct classifi-
cations (Figs. 2 and 3). Comparison of the multivariate classi-
fication techniques demonstrated that FDA was only slightly
better in classifying the sample into sex and ancestry groups
with an average accuracy of 70%, compared to the 69% of
LDA. The slight disparity could also be explained by sampling
variation; however, the lack of large differences between the
two methods may also indicate that the data were similar to the
assumed distribution.

Table 6 Correct classification accuracies (%) for assessment of
univariate models using LDA and FDAwhen ancestry groups are pooled

LDA FDA LDA FDA

radapd 89 89 fembln 76 76

femhdd 86 86 femmap 76 76

tibpeb 86 85 calcxl 76 76

ulntvd 85 85 clavrd 75 77

humebr 85 84 femxln 75 75

hummwd 83 83 humxln 75 74

scapht 82 82 radtvd 74 74

claapd 81 82 femmtv 74 74

scapbr 81 81 tibxln 73 74

radxln 81 81 femsap 73 73

ulnphl 81 80 calcbr 73 73

femebr 81 79 tibnft 72 76

ulnxln 80 80 tibdeb 70 76

hummxd 79 79 innoht 68 70

ulndvd 79 79 sacs1b 67 72

claxln 78 78 fibmdm 67 67

humhdd 78 78 sacaht 61 61

femstv 78 77 sacabr 60 60

tibnfx 78 75 iliabr 56 64

fibxln 76 77

Table 7 Classification accuracies for LDA using stepwise selected
single bone measurements to estimate sex

Accuracy (%) Sex bias (%)

Males Females Combined

Clavicle 86 90 88 4

Scapula 79 84 82 5

Humerus 84 84 84 0

Radius 89 90 90 1

Ulna 86 85 86 −1
Sacrum 76 74 75 −2
Innominate 73 82 78 9

Femur 85 88 86 3

Tibia 84 88 86 4

Fibula 75 75 75 0

Table 8 Classification accuracies for FDA using bone models to
estimate sex

Accuracy (%) Sex bias (%)

Males Females Combined

Clavicle 93 90 91 −3
Scapula 84 87 86 3

Humerus 88 87 88 −1
Radius 89 90 90 1

Ulna 89 89 89 0

Sacrum 74 79 76 5

Innominate 80 77 79 −3
Femur 87 86 87 −1
Tibia 82 90 86 8

Fibula 73 77 75 4

Table 9 Classification accuracies for LDA using stepwise selected
multivariate subsets to estimate sex

Accuracy (%) Sex bias (%)

Males Females Combined

Hip 98 94 96 −4
Upper limb 93 97 95 4

Lower limb 99 95 97 −2
Breadths 98 99 98 1

Lengths 88 92 90 4

All-variable 97 97 97 0
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Discussion

The type and location of the measurements are important to
consider when estimating sex within a population. Of the 39
measurements, taken from each individual in the sample, 26
were breadth measurements. Most variables selected for in
model creation in this study were breadth measurements. A
multitude of factors contribute to the expression of sexual
dimorphism in the skeleton. The current research, as well as
the results of numerous publications, suggests that breadth
measurements discriminate between the sexes better than
length dimensions [47–51].

While the superiority of breadth measurements for the es-
timation of sex are well documented in biological anthropol-
ogy, a relatively unexplored area in sex estimation and popu-
lation studies is whether current measurements and statistical
approaches, such as univariate and multivariate models using
LDA, are adequately capturing the most sexually dimorphic
elements [10, 52, 53]. In using the stepwise selection process
on multiple measurements, the likelihood of selecting the mea-
surements with the most discriminating power increases [40].
As in other studies, stepwise selection process and the use of
multiple variables provide higher classification accuracies than
single measurement models.

Assessment of the bone models and multivariate subsets
using both LDA and FDA resulted in similar classification

accuracies for both techniques, with FDA achieving only
slightly better results. LDA, as a parametric test, is generally
considered more powerful when compared to a non-
parametric test, such as FDA. However, LDA is only powerful
when assumptions of independence, normality, equal variance
covariance matrices and homoscedasticity are met. When as-
sumptions are violated, a non-parametric technique may be
more suitable [12, 43]. FDA has resulted in higher overall
correct classifications compared to stepwise selected LDA
models for assessing sex in juveniles and estimating ancestry
from postcranial remains in South Africans [50, 54]. While
FDA demonstrated the potential to be a useful classification
technique in biological anthropology, no standardized soft-
ware programme, besides R, exists to use FDA for adult spec-
imens. Because of the extensive number of potential measure-
ment combinations, it is difficult to create discriminant func-
tions for all possible combinations. For a multivariate model, a
statistical software programme, such as FD3.1, should be uti-
lized to create the model that yields the highest correct classifi-
cation based on all available measurements. However, as
population-specific databases are required for reliable results
to be produced using FD3.1, the data collected for the current
study are available for use on SouthAfrican postcranial remains
(available on request from corresponding author).

When the bone model results are compared to the Spradley
and Jantz (2011) publication that estimated sex from postcranial
remains on a US sample, similar patterns of sexual dimorphism
are apparent. In both studies, the clavicle and radius are good sex
estimators, whereas the fibula and sacrum are weak estimators.
However, overall classification accuracies for South Africans
were slightly lower for the bone models when compared to the
results obtained by Spradley and Jantz (2011), indicating a lower
level of sexual dimorphism among South African groups.While
bone models did not prove as useful in the South African con-
text, multivariate subsets far outperformed the bone models of
either study.

The all-variable model for classification according to sex
and ancestry shows significant sex and ancestry interactions.
Thus, ancestry affected the separation of groups. Cranially,
South African blacks and coloureds overlap considerably,
whereas South African whites tend to be more distinct from
the other two groups [7]. A similar outcome is observed in the
plot for LDA (Fig. 2) when the all-variable model is used to
classify into sex and ancestry. White females had the highest
correct classification and the group centroid is located
furthest away from the other female centroids (Fig. 2).
Misclassifications generally occurred in ancestry, rather
than sex, although the white females misclassified by
sex, rather than ancestry. Furthermore, the distance between
the white female centroid and the black and coloured female
centroids is greater than the distances between the group
means of the male counterparts. The overall robusticity or size
of the white female measurements contributes to the

Table 10 Classification accuracies for FDA using multivariate subsets
to estimate sex

Accuracy (%) Sex bias (%)

Males Females Combined

Hip 94 96 95 2

Upper limb 95 96 96 1

Lower limb 93 96 95 3

Breadths 98 96 97 −2
Lengths 98 89 93 −5
All-variable 97 97 97 0

Table 11 Correct classification rates when sex and ancestry were
assessed by LDA using multivariate subsets. Number of variables in
subsets is included in parentheses

n Accuracy (%)

BF BM WF WM CF CM Combined

Hip (4) 228 61 52 92 64 65 57 64

Upper (4) 224 59 64 83 70 68 60 67

Lower (6) 226 49 62 84 73 73 70 68

Lengths (4) 189 57 62 70 81 68 48 65

All-variable (6) 226 78 78 95 81 79 65 80
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separation of the white females from the black and coloured
females and the misclassifications of the white females as
white males. The mean age of the white females is consider-
ably higher than the other female groups and likely associates
with the increase in robusticity [14, 55]. In a previous study
involving the morphological expression of sexual dimorphism
in the cranium, white females present with a larger number of
intermediate/masculine numbers than black females [53].
Furthermore, genetic evidence and population history of white
South Africans suggests low rates of intra-group variation for

the whites when compared to black and coloured South
Africans and this may have contributed to the distinct separa-
tion of white South Africans in comparison to the other South
African females.

Conclusion

The current research is a comprehensive postcranial analysis
that incorporates a thorough, novel and advanced statistical
approach as a means to improve sex estimation standards with

Fig. 2 LDA plot of the all-variable model when classifying according to sex and ancestry (80% correct classification)

Table 12 Mahalanobis distancea matrix for LDA using the all-variable
modelb

BF BM CF CM WF WM

BF 0.0 11.3 4.5 8.6 10.7 12.4

BM 11.3 0.0 22.6 2.3 28.2 7.9

CF 4.5 22.6 0.0 14.7 10.2 18.5

CM 8.6 2.3 14.7 0.0 22.3 6.8

WF 10.7 28.2 10.2 22.3 0.0 11.0

WM 12.4 7.9 18.5 6.8 11.0 0.0

a All distances significant at <0.001
bAll-variable model: ulnxln, ulntvd, sacabr, iliabr, femhdd, and calcbr

Table 13 Correct classification for FDA using multivariate subsets to
estimate sex and ancestry

n Accuracy (%)

BF BM WF WM CF CM Combined

Hip (6) 228 66 58 83 82 66 36 64

Upper limb (4) 224 61 71 67 82 74 71 71

Lower limb (8) 226 71 77 85 82 68 67 75

Lengths (3) 189 49 61 70 80 68 41 60

All-variable (6) 226 79 81 94 85 72 63 79

Number of variables in subsets is included in parentheses
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a sample that includes more South African groups, and hence
a larger amount of variation than any previous South African
sex estimation research. Long bone dimensions are shown to
reliably distinguish between males and females in three so-
cially defined South African populations. Postcranial bones
achieve comparable classification accuracies to morphological
analysis of the pelvis and higher accuracies than metric or
morphoscopic techniques using the cranium in South Africa
[10, 12, 15, 24, 56, 57]. The current study demonstrates the
advantage of multivariate subsets (multiple measurements from
multiple bones) for sex estimations from long bones, as the
subsets are made up of the most sexually dimorphic elements
and thus provide the most reliable results. Furthermore, the
resulting database can be used with FD3.1 and applied to fo-
rensic cases in South Africa to classify an unknown using the
most sexually dimorphic of the available measurements.
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