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Abstract The BoneXpert method for automated determination
of bone age from hand X-rays was introduced in 2009, covering
the Greulich–Pyle bone age ranges up to 17 years for boys and
15 years for girls. This paper presents an extension of themethod
up to bone age 19 years for boys and 18 years for girls. The
extension was developed based on images from the First Zurich
Longitudinal Study of 231 healthy children born in 1954–1956
and followed with annual X-rays of both hands until adulthood.
The method was validated on two cross-sectional studies of
healthy children from Rotterdam and Los Angeles. We found
root mean square deviations from manual rating of 0.69 and
0.45 years in these two studies for boys in the bone age range
17–19 years. For girls, the deviations were 0.75 and 0.59 years,
respectively, in the bone age range 15–18 years. It is shown how
the automated bone age method can be applied to infer the age
probability distribution for healthy Caucasian European males.
Considering a population with age 15.0–21.0 years, the method
can be used to decide whether the subject is above 18 years with
a false positive rate (children classified as adults) of 10 % (95%
confidence interval = 7–13%) and a false negative rate of 30 %
(adults classified as children). To apply this method in other
ethnicities will require a study of the average of Bbone age −

age^ at the end of puberty, i.e. how much this population is
shifted relative to the Greulich–Pyle standard.

Keywords Bone age . Age assessment . Bayes . Hand
radiographs . Asylum seekers

Introduction

Bone age rating from hand X-rays is associated with a
considerable inter- and intrarater variability that limits its use-
fulness. To remove this, a fully automated method for bone
age determination was introduced in 2009 [1, 2] for the bone
age ranges 2.5–17 years for boys and 2–15 years for girls. This
is widely used in clinical practice in Northern Europe, mainly
in relation to paediatric endocrinology. To date, it has not been
used in forensic medicine.

This paper presents an extension of the automated method
up to bone age 19 years for boys and 18 years for girls. The
method was developed on longitudinal data and validated on
two cross-sectional studies against manual rating according to
the Greulich–Pyle (GP) method [3].

In the discussion, we show how this can be used to derive
the probability distribution of age for a given observed bone
age. Finally, we present performance measures (sensitivity,
specificity, etc.) for the use of this method to determine
whether a male is above 18 years old.

Readers who are interested only in age assessment may
wonder why the authors do not develop a method that predicts
age directly from the image, without going via bone age.
There are, however, many reasons for using bone age as a
stepping stone.

& Firstly, this is the workflow that has been used for age
assessment by manual raters for decades.
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& Secondly, because bone age rating from hand X-rays is so
common, there is an excellent working knowledge for
doing this, and this can generate accurate Btarget values^
for a machine learning method, which can thereby learn
from the experts.

& Thirdly, using bone age rather than age as target for a
regression from the image means that the residual error
is smaller, around 0.6 years, whereas the residual for age
prediction is about 1.0 years. Thus, the teacher is much
Bsharper^, and this helps the machine learning method to
extract the salient features. This is the most important
reason.

& Fourthly, using bone age as target allows pooling of
studies from populations reaching full maturity at
different ages.

& Finally, bone age assessment at the end of puberty has its
own clinical value, e.g. in paediatric orthopaedics.

Material and methods

Material

This study was based on hand X-rays from four data sets,
which had all been used in previous publications, but here,
we exploited the higher end of the bone age more extensively.

1. The First Zurich Longitudinal Study (1ZLS) of 231
healthy children with both left- and right-hand X-rays
taken at every anniversary1 until the age of 20—for late
maturers, even one or more years longer. These 119 boys
and 112 girls were born in 1954–1956, and the X-rays
were rated according to the GP method at the time of
the study. These data were used previously to establish a
model for adult height prediction [4, 5]. Two thousand
eight images were used from this study.

2. The Björk longitudinal study of 162 healthy children en-
rolled for orthodontic treatment at the Royal Dental
College in Copenhagen [6]. The subjects were born on
average in 1952, and X-rays of the non-dominant hand
were taken annually, typically from age 7 to 21 years. For
each subject, the first author identified the first image
reaching bone age 18 years for boys and bone age 16 years
for girls. Five hundred forty-seven images from this study
were used.

3. The Erasmus cross-sectional study of 542 normal children
fromRotterdam imaged in 1997. Each image was rated by
one of two paediatric radiologists [7].

4. The Los Angeles (LA) cross-sectional study of 1103 nor-
mal children of four ethnicities. Each image was rated
independently by two paediatric radiologists [8].

The first two studies were used for development and the
last two for validation.

Method

The BoneXpert method for automated determination of bone
age is a CE-marked medical device for routine clinical use [9],
intended to be able to replace the manual rating altogether.
The method locates 13 bones in the hand: radius, ulna and
the 11 short bones in rays 1, 3 and 5—the so-called RUS
bones. It determines the GP bone age in each bone, and the
final bone age is formed as the average.

The BoneXpert method was originally developed using the
principle (due to Tanner) [10] that the bone ages of the 13
RUS bones should agree amongst each other, and this was
used in the development of the method based on cross-
sectional data [1] by training each bone to predict the average
bone age of all the other bones. In this work, we were inter-
ested in the bone age ranges above 17 years for boys and
15 years for girls, the so-called end-of-puberty range, and
here, this principle can no longer be applied because the mat-
uration of the short bones has finished; only the ulna and
radius display signs of continued maturation. Tanner therefore
refrained from assessing bone age in the end-of-puberty range,
so the Tanner–Whitehouse 3 bone age scale, which agrees, on
average, well with the GP scale before the end of puberty,
stops at bone ages 16.5 years for boys and 15 years for girls.
The GP bone age scale, however, continues up to bone ages
19 years for boys and 18 years for girls.

To extend BoneXpert, we employed the 1ZLS and Björk
study in the following manner: For each boy, we selected the
visit, where GP 18 was reached, as the anchor of that subject.
For girls, the anchor was chosen as the visit where GP 16 was
reached, which has the same appearance as GP 18 in boys.
This stage of maturity is described as Bfusion of the epiphysis
has begun^—a relatively clear maturity indicator because
fusing of the epiphysis occurs over a short span of time, so it
is relatively easy for a rater to identify the visit that reaches this
stage. We pooled males and females by treating the females as
males with GP 18 at the anchor visit.

Males and females mature by going through the same
sequence of visual appearances, but shifted in age by, on
average, about 2 years, and this average shift is constant
over a rather wide age range, at least from the age of
11 years of boys. The GP method ends at 19 for males,
so one would expect the female scale to end at 17; howev-
er, it ends at 18 for females, so it would not be surprising if
the progression from 17 to 18 in females is determined less
reliably. However, rating females up to bone age 18 years

1 Ninety-four per cent were taken within 14 days of the anniversary; 99%
within a month.
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has become a convention, so the new automated system
adheres to this. The automated system yields a smoothly
progressing bone age, and for numerical reasons, it is
designed to end not strictly at 19 for males and 18 for
females, but just below 19.3 and 18.3, respectively.

This idea of pooling males and females is originally due to
Tanner [10], whose scheme for manual rating employs nine
stages of bone appearance common to males and females.
Human raters thus have to learn only one rating system, not
one for each gender. Likewise, our machine learning system
only had to learn one system, namely the bone age of the
image assuming that it is a male. This has the benefit of
doubling the amount of training data for the method. A
relatively simple formula is then used for the females to
transform the computed male bone age to the female scale.

We picked the images taken 1 and 2 years before the anchor
and assigned them nominal bone ages 17 and 16 years.
Likewise, the visits 1 and 2 years after the anchor were defined
as having nominal bone ages 19 and 20 years. Figure 1 shows
examples of these training data for two subjects.

The computation of bone age from the images was imple-
mented using random forests [11], suitable for interpreting
data with many input variables. We used a technique similar
to [12], where features are formed from average image inten-
sities in rectangles placed in arbitrary locations across the
bone image.

The random forest has 160 decision trees (used as regres-
sion trees), and each tree was trained on a subset of the
subjects, each subject having a left- and, for the 1ZLS, also
a right-hand series of five images centred at the anchor visit.
This process of introducing randomness, called bagging, al-
lows for an elegant way to use the training data also for
validation through out-of-bag cross-validation [11]. To exploit
this, we trained 500 trees, and for each subject, we found 160
trees, which did not use this subject for training, and these
were used to form a random forest to cross-validate the model
on this subject. This was done for each subject in turn. We
exploited this in the discussion section to form distributions of
bone ages observed at a given age.

The new method requires that at least 2 cm of radius is
included in the image. Figure 2 is an example where there is
just about enough included.

A critical element of the new method is the localisation of
the radius and ulna. These bones are more difficult to delineate
than the short bones because their shapes and pose vary more.
In particular, the ulna can be rotated around its axis; the ideal
rotation presents the tip of ulna on the left side, but it can also
be in the middle (as in Fig. 2). Also, the amount of profusion
of the tip of ulna varies. Finally, there can be some overlap of
the radius and ulna—preferably this should be avoided.

The new method automatically determines whether the
bones have been located with sufficient reliability for a bone
age assessment. If the radius is not found reliably, and the

bone age assessment is above 17 years, it is reported as
Bunreliable^. The ulna, however, is allowed to be missing.

In the bone age range 2.5–15 years for boys, the bone age is
determined as a simple average over the 13 bones, i.e. the
bones have equal weight. When bone age becomes larger than
15 years, the radius and ulna are assigned a progressively
larger weight, and at the end of the bone age scale, they have
all the weight. The relative importance of the radius and ulna
is initially 2:1, but as bone age progresses above 18, the ulna
loses its contribution, so from 18 to 19, the bone age is almost
exclusively determined by the radius. This is similar to what a
manual rater does. For girls, the same rules apply, but shifted
by 2 years.

Results

We validated the new method on two studies, which had been
used previously to validate the method in the bone age ranges
up to 17 years for boys and 15 years for girls.

For images at the end of puberty, the radius was found reli-
ably in 97 % of the images in the Erasmus study and in 87 % in
the LA data. Most of the rejections were due to an insufficient
amount of radius included in the exposed image, namely 2% of
the Erasmus images and 11 % of the LA images.

The comparison of the manual and automated ratings for
the Erasmus study is shown in Fig. 3. Figure 4 compares the
automated and manual ratings for the LA study. As Bmanual
rating^, we used the average of the two manual ratings.

As usual in such comparisons, it is instructive to inspect the
images with the highest deviation; in this case, we chose to
define such images (arbitrarily) as those with a deviation more
than 1.6 years, as indicated by the horizontal lines. We have
also drawn vertical lines to delimit the end-of-puberty range.

The cases at the end of puberty, where the deviation wasmore
than 1.6 years, are encircled. The authors rerated these images to
decidewhether the original manual rating or the automated rating
was most correct, and this showed that two had wrong
automated rating, whilst three had an error in the manual rating,
i.e. no method was significantly better than the other in these
disputed cases, but interestingly, they were all females.

The root mean square deviations between the bone age
determinations in the bone age ranges above 17 years for boys
and 15 years for girls are summarised in Table 1, which also
includes the root mean square deviations between the two
manual LA raters in this bone age range; the latter was remark-
ably large for males.

For the LA study, there were 96 males in the end-of-
puberty range, and the 95 % confidence interval for the root
mean square error is 0.39–0.52 years.

The conclusion of this validation is that the automated
method performed as well at the end of puberty as in the rest
of the bone age range, except for females in the bone age range
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17–18 years. The accuracy of the automated method for males
in the LA study is significantly better than the agreement
between the two manual raters.

Discussion

Bone age assessment

In the LA study, 11 % of the images were rejected because the
amount of radius included in the exposed image was insuffi-
cient. At least 2 cm is required, so this can be avoided in the
future by specifying a protocol for bone age exams that
includes at least 2 cm of radius, or 3 cm to be safe. Then the
rejection rate will be 2 % or less for normal subjects, but it
could be higher for clinical patients, which can show

deformities in the wrist, e.g. Madelung deformities. It can be
considered acceptable that such images are rejected, as they
should be reviewed by a radiologist, because such deforma-
tions are likely to interfere with bone maturation.

The agreement with manual rating was better in males than
in females, judging from Figs. 3 and 4. For females, the agree-
ment was particularly poor above 17 years of bone age. We
interpret this as support for the view that the GP bone age
scale, which ends at 19 years for males, should perhaps have
ended at 17 years for females, rather than at 18, as suggested
from the 2-year offset of maturation in males and females.

Challenges in age assessment

In forensic [13] and sports medicine [14], bone age is used as
input to an assessment of chronological age. A particularly
important application is to determine whether a male is above
18 years. To discuss this in detail, we introduce the abbrevia-
tions BA for bone age and CA for chronological age. There
are three challenges with this usage.

1. Manual BA assessment is associated with considerable
rater variability.

2. Themedian of BAs observed for subjects of a given CA is
only equal to the CA in the population originally used to
set up the GP scale; other Caucasian populations have
typically been found to have a median BA lower than
CA. For modern European Caucasians, the median BA
is typically 0.2–0.4 years below the CA, whilst for other
ethnicities this population bias can be larger, and one

Fig. 1 The left half shows images
of the distal radius from the same
boy, his left hand to the left and
his right hand (mirrored) to the
right. The five rows correspond to
five subsequent anniversaries
selected such that the manual GP
bone age is 18 in the third row.
Thus, the rows correspond
roughly to GP bone ages 16, 17,
18, 19 and B20^ years. The right
half shows images from another
boy. The images have been
warped to the average shape of
the radius

Fig. 2 In this example, just about enough of radius is included for the
analysis to succeed
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should always take this into account in age assessment
based on BA.

3. The distribution of bone ages observed for subjects from a
given population and with a given age has a SD of typi-
cally 1 year. This implies that when BA is used as a
Bclock^, it is not perfect—the errors in its timing across
a population exhibits a SD of typically 1 year.

Can automated BA determination mitigate these
challenges? As for the first challenge, automated rating
eliminates the rater variation completely. The only
variability left is a precision error associated with the
physical measurement, defined as the SD of BAs obtained
when repeated X-ray images are made and analysed with
the software. The SD of this error is 0.18 years in the BA
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Fig. 3 Bland–Altman plot
showing the agreement between
the automated and manual ratings
in the Erasmus study. The vertical
lines delimit the end-of-puberty
range and the circles indicate the
disputed cases in this range
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Fig. 4 Bland–Altman plot
showing the agreement between
the automated and manual bone
age ratings in the Los Angeles
study. The manual rating is the
average of the two manual ratings
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range 2.5–17 years for boys [15], much smaller than the
manual rater variability of typically 0.58 years [16].

The second challenge can also be addressed efficiently with
the automated method because reference curves for average
BA −CA versus CA are being collected across the world. So
far, curves for six populations have been presented [7, 8, 17].
In this discussion, we will assume BA −CA = −0.3 years, as
found in 1ZLS. The 1ZLS was followed up by the Zurich
Generation Study of children with one parent in the 1ZLS.
This study showed no secular trend in BA −CA from 1ZLS;
in other words, although the 1ZLS is a rather old study, these
children are compatible with modern children. In the Erasmus
study, we also observed an average BA −CA of approximate-
ly −0.3 years, so it appears that BA −CA= −0.3 years is our
best assumption for the BA offset relative to the GP standard
in present-day Caucasian children in Europe.

The third challenge is not alleviated by an automated
method because it relates to the Bimperfection^ of bone
maturation in an individual when used as a clock. It is a
biological limitation, so any age assessment method based
on bone maturity will have a SD error contribution from this
cause of approximately 1 year. So whilst the error of BA
determination has been reduced to SD 0.18 years by the auto-
mated method, age assessment (above age 7) through bone
age can never obtain a SD lower than about 1 year.

There are two additional challenges in age assessment,
related to how the results are presented.

4. The age assessment is conventionally communicated as a
centre value age and a Bconfidence interval^ with poor
rational justification, and not easily understood by the
authorities.

5. Performance measures are not well defined and
standardised.

In the next section, we provide a more satisfactory solution
to the last two challenges.

Inferring the age distribution from a bone age
determination

What we can observe in studies is the distribution of BAs at a
given age. In age assessment, we want to turn this around and

obtain the probability distribution of age corresponding to a
given observed BA [18]. This turning-around is just another
day at the office for a statistician because it is an application of
Bayes’ theorem. But for people not trained in statistics, this
can be difficult to grasp, so in the following we will perform
this inference in a graphical and intuitive manner so that also
non-statisticians can appreciate its validity.

To start with, the observed automated bone ages at five
anniversaries are shown for the 1ZLS in Fig. 5—these are
out-of-bag cross-validated results. It is practical to
parameterise these distributions as Gaussians, and we have
made this possible by transforming the observed BA into a
modified BA*, which stretches the upper end of the BA scale,
so that BA* extends to 20 years, whereas BA extends only to
19.3 years. BA* is defined as

BA* ¼ BA for BA < 18:7
BA* ¼ 18:7 þ 5=3* BA − 18:7ð Þ for BA 18:7−19:0;
BA* ¼ 19:2 þ 8=3* BA − 19:0ð Þ for BA > 19:0:

Figure 5 shows BA*. This trick eliminates the piling up of
values near 19. The observed means and SDs of BA* are
given in Table 2.

The next step in the Bayesian approach is to select a prior
distribution of ages, and here it is customary to use a flat
distribution within reasonable bounds. This describes our
knowledge of age before the test, and the flat distribution is
chosen in order not to bias the inference—we want the data
(i.e. the X-ray image) to speak for themselves.

In Fig. 6, we then generate a population of 20,000 subjects
uniformly in the selected age range, and for each subject, we
sample a BA randomly from a Gaussian with mean and SD
pertaining to that age, obtained by interpolation in Table 2.2

We do not have the BA distribution at age 21, so for ages 20–
21 years we use extrapolation, which seems justified.

If we now observe a BA for a new subject, we use the
simulated population to generate the corresponding age distri-
bution by sampling the density of points along a horizontal
line at that BA.We normalise this density to sum to 1 so that it

2 We actually sample BA* values, which we then transform to BAvalues
in Fig. 6.

Table 1 Root mean square
deviations between bone age
determinations (in years), each
computed from N subjects

Males Females Both sexes

N RMS error N RMS error RMS error

Erasmus: manual − automated 29 0.69 89 0.75 0.73

LA: AverageManual − automated 96 0.45 157 0.59 0.54

LA: Manual1 −Manual2 96 0.78 157 0.52 0.62
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becomes a probability distribution that we can interpret as our
belief in various ages after the measurement. Figure 7 shows
these so-called posterior age distributions for four different
bone ages.3

For an observed BA of 17 years, we see from Fig. 7 that the
age distribution falls to zero at either end and is well described
as a Gaussian and the distribution has mean 17.3 years and SD
1.02, so in this case we can report the age assessment by the
mean and SD of the posterior distribution. We can even
understand these values intuitively: the mean age is 0.3 years
higher than BA because this population is shifted 0.3 years
relative to the GP scale, and the 1.02 years is similar to the
SDs in Table 2.

In general, it is good practice to provide the result of the age
assessment as the posterior age distribution. This indicates
directly what we can know about the age of this person, and
the graphical representation as a bar plot aids the user to assess
the weights of probabilities.

We saw that the bounds of the prior distribution do not
matter for inferring age at BAs 17 and 17.5 years. But at BA
18 years and even more at 18.5, the posterior age distribution
is truncated abruptly at the upper bound. Although the user
will understand that the distribution could be extended beyond
age 21, the choice of bounds matters for the normalisation to a
sum of 1. So if one wants to compute the probability that the
age is larger than 18 years, the bounds matter at BA 18 years
and above whilst they are almost irrelevant at BAs 17 and
17.5 years. To compute such probabilities, one must adopt a
standard for the prior age intervals—this is unavoidable.

It is therefore relevant to argue in more detail for our choice
of an interval ±3 years around the age being tested for. The
argument is that those being tested will in practice have an age
not too far from 18 years, and it is reasonable to assume that
when we get down to 15 years, only about half of the subjects
would be sent for such a test. Likewise, around age 21, it
would start to be clear from the physical appearance that this
person is above 18. So a prior distribution over effectively
6 years seems reasonable, and the choice of a flat distribution
that falls off abruptly at the bounds is appealing by its sim-
plicity—the flatness ensures that the shape of the posterior age
distribution is not affected by the prior.

We conclude this graphical tour of Bayesian age estimation
from BA by relating it to Bayes’ theorem.

P CA

�
�
�
�
�
BA

 !

¼ P BA

�
�
�
�
�
CA

 !

P CAð Þ = P BAð Þ

The components are:

& P(BA|CA) is the BA distribution at a given CA; examples
are shown in Fig. 5.

& P(CA) is the prior distribution of age, a uniform age
distribution with reasonable upper and lower bounds.

& P(CA|BA) is the posterior distribution of age for a given
BA; examples are shown in Fig. 7.

& P(BA) is a mere normalisation factor, ensuring that
P(CA|BA) summed over all CAs yields 1.

3 To generate these, we actually sampled 2 million subjects and measured
the density in a band covering ±0.1 years around BA.

Fig. 5 The observed bone ages at five different anniversaries for the
males in the First Zurich Longitudinal Study. As described in the text,
the bone age scale has been stretched above 18.7 years to render the
distributions compatible with Gaussians, shown superimposed

Table 2 For each age,
this table gives themeans
and SDs of the bone age
distributions in Fig. 5 (in
years)

Age Mean BA* SD BA*

15 14.69 0.99

16 15.82 1.12

17 17.01 1.15

18 17.85 1.02

19 18.50 0.78

20 18.79 0.67

BA* is the Bstretched^ bone age; see text
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Performance measures

Age assessment in forensics or sports medicine is used to
make a decision whether a person is above a certain age;
typically whether a person is an adult, i.e. above 18 years.
This means that one must settle on a certain BA threshold,
above which the subject is classified as an adult, and when
doing this, there is a trade-off between two types of errors
illustrated in Fig. 6.

& False positives: children classified as adults
& False negatives: adults classified as children

If one wants to minimise the total number of misclassi-
fications, the BA threshold should be set at 17.8 years.
This yields 17 % false positives and 17 % false negatives,
meaning that 17 % of the children are falsely classified as
adults and 17 % of adults are classified as children. The
total error rate is also 17 %.
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Fig. 6 Monte Carlo simulation of
20,000 males with age uniformly
distributed in the range 15–
21 years. The bone ages are
generated according to the curves
in Fig. 5. The horizontal line
represents a threshold at bone age
18.2 years. When this is used to
classify the subjects into children
and adults, there are two types of
errors: false positives, i.e. children
classified as adults, and false
negatives, i.e. adults classified as
children
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Fig. 7 Posterior probability
distributions of age corresponding
to observed bone ages 17, 17.5,
18.0 and 18.5 years for males.
This is our recommended format
for reporting the result of an age
assessment based on bone age
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Often there are different costs associated with making the
two types of errors. As an example, we can decide that false
positives are three times more expensive than false negatives,
and the optimal BA threshold is then 18.2 years. Then there
are 10% false positives and 30% false negatives, and the total
error rate is now 20 %.

Using a BA threshold of 18.5 reduces the false positives to
7 %, and with a threshold of 19.0, they drop to 2 %. It is not
possible to find a threshold that yields 0 % false positives,
except by deeming all subjects to be children.

When computing these error rates, the prior distribution of
age is essential. For instance, lowering the lower bound from
15 to 9 years would reduce the total error rate by a factor of 2,
a clearly unreasonable way to Bimprove^ the performance of
the classifier. We believe that our choice of the prior age in-
terval 15–21 years is a reasonable representation of the group
of persons subjected to this age test.

These performance measures are based on the 119 male
subjects in the 1ZLS, and as such, they are associated with
an uncertainty from the limited size of the data set. We have
estimated the 95 % confidence interval on the false positive
rate to be 7–13 % for the situation where we keep the false
negative rate fixed at 30 %. The computation was done using
resampling methods [19], where the analysis is repeated by
sampling 119 males with replacement from the 1ZLS data.

The performance of this method for detecting adults is
summarised here.

& False positive rate: 10 %—the fraction of children classi-
fied as adults

& False negative rate: 30 %—the fraction of adults classified
as children

& Sensitivity: 70 %—the fraction of adults classified as
adults

& Specificity: 90 %—the fraction of children classified as
children

& Positive predictive value: 87 %—the fraction of those
classified as adults, which are indeed adults

& Negative predictive value: 75 %—the fraction of those
classified as children, which are indeed children

& Accuracy: 80 %—the percentage of correctly classified
subjects

Finally, we have computed the performance for detecting
whether the age is above 15 years. Optimising for best accu-
racy, we find an accuracy of 86 % for females and 88 % for
males. Again, we assume a prior age interval of width 6 years
centred at the age in question.

To apply this method of age assessment to populations
other than the European Caucasians, one will need to perform
a study of automated BAs of healthy subjects from that pop-
ulation in order to derive the average BA −CA at the end of
puberty. This was found to be −0.3 years for the Europeans,

and if this is found to be, for instance, −0.5 years in the new
population, the inferred age distributions in Fig. 7 should be
shifted 0.2 years upwards. One will also need to shift the age
axis in Fig. 6, reconsider the BA threshold and evaluate the
percentages of errors committed by the method.

Conclusion

We have presented an extension of the automated determina-
tion of bone age to the end of puberty. The validation of the
method in two studies showed good agreement with manual
rating, with root mean square errors of 0.73 years in the
Erasmus study and 0.54 years in the LA study for the two
sexes combined. The smaller deviations in the latter can be
understood as due to a more precise manual rating, defined as
the average of two independent ratings.

The Bland–Altman plots showed no particular increase of
deviations at 17–19 years for males and at 15–17 years for
females compared to the deviations at lower bone ages. But
for females in the bone age range 17–18 years, the deviations
tended to be larger, which suggests that the GP scale extends a
year too far for the females.

The method was able to analyse 98 % of images with at
least 3 cm of radius included.

The coverage of ages up to 20 years gives a reliable
foundation for a Bayesian inference of the age probability
distribution corresponding to a given observed bone age,
and the result of the age assessment is presented as the entire
probability distribution.

For a population of European Caucasian males uniformly
distributed in the age interval 15–21 years, the automated
bone age method can decide whether a subject is above
18 years with an overall error rate of 20 %, and with 10 %
(95% CI = 7–13%) of the children falsely classified as adults
when operating at the point where 30 % of the adults are
falsely classified as children.
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