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Abstract Sex determination on skeletal remains is one of
the most important diagnosis in forensic cases and in demo-
graphic studies on ancient populations. Our purpose is to
realize an automatic operator-independent method to deter-
mine the sex from the bone shape and to test an intelligent,
automatic pattern recognition system in an anthropological
domain. Our multiple-classifier system is based exclusively
on the morphological variants of a curve that represents the
sagittal profile of the calvarium, modeled via artificial neu-
ral networks, and yields an accuracy higher than 80 %. The
application of this system to other bone profiles is expected
to further improve the sensibility of the methodology.

Keywords Sex determination - Artificial intelligence -
Neural network - Forensic anthropology
Introduction

A reliable method for the determination of sex from
human skeletal remains is essential for identification both in
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forensic cases and in paleodemographic studies on ancient
populations. Many skeletal traits have been investigated for
this purpose in adult skeletons, with results of various grade
of efficiency. The bones routinely used in sex identification
are pelvis and skull [1], although some researches sustains
that postcranial elements are to be preferred to the skull
for estimating sex when the pelvis is unavailable [21]. The
sexual dimorphism is better recognizable in the pelvis but,
because of its complex shape, the pelvis is often found in
very poor conditions, while the skull (and, particularly, the
cranial vault) is generally better preserved and more easily
reconstructed if found fragmented [15]. The study of sex-
ual dimorphism has been the subject of many morphologic
and metric studies. Morphologic methods are based on the
shape of the skull and have the main disadvantage of being
heavily operator-dependent [14] and incorrect in 10-20 %
of cases [25]. Craniometric methods are generally based
on direct measurement of the skull [16, 19], on teleradio-
graphic projection [10], volume-rendered cranial CT scan
[17], or 3D digital skull [13]. In 1996, Hsiao et al. using 18
variables from cephalometric lateral teleradiographic plots
claimed to be able to determine the sex of an individual with
100 % accuracy [9]. Furthermore, these authors say that
they can determine the sex of a subject to 98 % accuracy
by using only three variables considered more significa-
tive. However, subsequent studies applying this method to
larger European samples seems not to confirm the absolute
validity of the method, reporting a 95.6 % accuracy over
18 cephalometric variables [24]. It worths highlighting that
such cephalometric variables need to be extracted manually
via direct measurement by an expert anthropologist, and no
automatic feature extraction process is feasible to this end.
The purpose of the present study is to explore the poten-
tialities of pattern recognition methods and artificial neural
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network (ANN) to automatically determine the sex in lateral
shape of the calvarium and to value the accuracy obtained.
The perspective is to project, in the future, intelligent auto-
matic pattern recognition systems in the anthropological
domain to effectively support the physical or the foren-
sic anthropologist. This kind of tools, sometimes based
on ANNSs, are not unusual in the field of clinical medical
diagnostic [27]. Note that ANNs (and, pattern recognition
approaches in general) are like “black boxes,” meaning that
they are trained from real data in such a way that they learn
how to make decisions on the sex of the skeletal remains
at hand, but they do not provide the user with any human-
readable understanding of the rationale behind their internal
decision-making process [2].

Material and methods
Dataset

For this study, 1700 lateral CT scanograms of healthy,
adult Caucasian subjects were randomly selected from our
PACS database. This sample was composed of 850 male
and 850 female within an age range of 25-92 years. The
CT scanogram was chosen because it is routinely performed
before a cranial MDCT examination and because for our
specific purposes, i.e., the determination of the external
shape of the skull in norma lateralis, it is basically as reliable
as the lateral cephalometric radiogram [4]. Also, scanogram
is preferred over traditional cephalometric plain film since
it does not suffer from distortion due to the geometry of
cone-beam X-ray that is conventionally used in cephalomet-
ric equipments [12]. The patients were selected on the basis
of their residence in the province of Trieste (North—Eastern
Italy), since the population of this geographical area is the
result of a complex historical genetic crossover between
Italic, Germanic, and Slavic populations. Lateral cranial
scanograms were automatically selected and anonymized
by PACS facilities, registering only the sex and the age.
The MDCT scans were performed at the Department of
Diagnostic Imaging of the Hospital University Enterprise
of Trieste between years 2005 and 2010. All those scans
that show bad lateral positioning were discarded, using as
a criterion of correctness the perfect alignment of the tem-
poromandibular joints and of the gonion. The images were
automatically transformed from DICOM to JPG format,
maintaining the original matrix size. Lateral CT scanograms
were obtained with a 16 or 32 multidetector CT scanner
(Aquilion, Toshiba medical Inc.) using the standard cra-
nial preset (120 kVp, 150 mAs, matrix size 512 x 512)
(Fig. 1a).
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Method

Sex identification is herein formulated in terms of an
automatic pattern recognition task [6]. The latter is faced
according to a four-step procedure, namely:

1. Pattern acquisition: patterns are acquired from CT
scanograms of the skulls, that are represented in the
form of a bit matrix. We must underline that the nature
of the scanogram is inherently suitable for this pur-
pose because its mode of acquisition allows to obtain
an orthostatic projection of the skull, namely without
geometric distortion. Of course, the level of detail of
such images requires a significantly high resolution of
the corresponding bitmaps, involving a heavy burden
in terms of computational space and time on the sub-
sequent processing steps. This entails the need for the
next step, i.e., feature extraction.

2. Feature extraction: each raw image acquired in step
1 is pre-processed in order to come up with a viable
representation x, known as the feature vector (or, pat-
tern). The latter is sought in such a way that (i) the
pattern x extracted from a given CT scanogram X has
a much lower dimensionality than X has; (ii) still, x
preserves as much as possible the useful information
conveyed by X to the end of sex determination. The fea-
ture extraction process used in this study is presented in
“Feature extraction” section.

3. Classifier training: the core of the sex identification pro-
cess relies on a classifier, i.e., a machine realizing a
decision rule which assigns any given feature vector
x to the corresponding expected “class” (either male
or female). Two major families of classifiers are found
in the literature, namely statistical pattern recognition
techniques [6] and machine learning approaches [2].
Both of them revolve around the notion of estimating,
or training the classifier in some statistically optimal
way from a subsample of the dataset. Artificial neural
networks (ANNSs) are the learning paradigm of choice
in this paper. Classifiers, ANNSs, and their training are
reviewed in “Classifier training” section.

4. Pattern classification: once a classifier has been esti-
mated from the data, the corresponding decision rule
can be applied to the actual classification task in the
field. Quantitative evaluation of the statistical robust-
ness of any estimated classifier is fundamental in order
to assess its effectiveness in identifying the sex of
speciements as correctly as possible. To this end, a
subsample of the data is used along with specific statis-
tical model validation procedures. The error rate (that
is, the percentage of misclassifications on the data of
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Fig. 1 Contour partition

(a) Lateral TC scout-view

(b) calvarial shape

(c) frontal shape

a separate, independent test set) is the basic validation
criterion used in the experiments presented in “Results”
section.

While the acquisition of patterns (step 1) in the present
setup is uniquely entailed by the very nature of the task
(i.e., the CT scanograms are the patterns herein), and the
classification (i.e., sex identification) of CT scanograms is
straightforward once a trained classifier is given (step 4),
the following sections cover in some detail the remaining,
crucial topics of feature extraction (step 2) and classifier
training (step 3), providing the interested reader with the
information required in order to replicate the experiments,
and/or to apply the proposed technique to real-world sce-
narios. Although in-depth reviewing and understanding of
image processing and machine learning algorithms is way
beyond the scope of the paper, we try and put forward a
presentation of the proposed techniques which is as sim-
ple, schematic, and self-contained as possible. Readers with
no specific background in this field can find the details
on individual processing steps in the corresponding biblio-
graphic references. Further technicalities on neural network

(d) occipital shape

training for probability density estimation are handed out in
the Appendix.

Feature extraction

Visual feature extraction from the JPG-format scanograms
is accomplished according to the following five-step image-
processing procedure:

1. Scanogram filtering: firstly, the image is filtered, reduc-
ing the presence of noise and enhancing the readability
of the cranial contour.

2. Contour detection: the cranial profile is detected and
singled out from the remaining background image
(Fig. 1b).

3. Contour partition: the cranial profile is partitioned into
portions, obtaining the frontal shape (Fig. 1c) and the
occipital shape (Fig. 1d).

4. Extraction of signatures: for each portion of the profile
and for the whole cranial profile, a reduced- and fixed-
dimensionality set of values is extracted (by sampling
from a specific signature function).
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5. Fourier analysis of signatures: the fast Fourier trans-
form is applied to the sub-sampled set of signa-
tures, obtaining the ultimate visual features at various
frequencies.

The next sections report on these procedural steps.
Contour detection

Starting from the filtered image, the visual contour of
the lateral profile of the calvarium in the scanogram is
determined. This is a two-step process, namely (1) edge
detection. To this end, we developed (LL) a specific edge
detection software in Python. The software detects the con-
tour relying on a preliminary manual identification of the
points corresponding to the nasion and to the opisthion.
Quality control of the software relied on a human expert
visually verifying the correctness of the detected edges dur-
ing a preliminary test stage; (2) connection of individual
edges. The overall process is accomplished by a technique
relying on Canny algorithm [3] followed by thresholding,
further reducing the presence of noise [26]. Eventually, the
resulting length of contours turns out to be in the range of
400-450 pixels per image.

Contour partition

Two portions of the calvarial shape are usually consid-
ered to be relevant in sex identification, namely the frontal
shape (from nasion to bregma) and the occipital shape (from
lambda to opisthion [20]. In this paper, we consider mainly
the complete cranial contour (hereafter referred as “calvar-
ium”), from nasion to opisthion. However, we test also the
diagnostic accuracy of “frontal” and “occipital” shape in
order to verify if these segments can obtain a better per-
formance than the whole cranial shape. Let us underline
that here the terms frontal and occipital have not their strict
anatomical meaning, but they are used to refer informally
to arbitrary sectors of the cranial contour where presumably
the contribution of that specific anatomical shape is suffi-
ciently relevant. Moreover, the correct visibility of the exact
location of bregma and lambda landmarks in scanogram
depends on many variables as, for example, the grade of
their calcification. For each of the two portions of the cranial
profile, the corresponding sub-shapes within the overall cra-
nial contour were localized and extracted as follows. Upon
removal of the maxilla and mandible area (i.e., the lower
part of the image, basically coinciding with the jaw), points
along the contour are assigned to the corresponding sub-
shape by means of an automatic partitioning procedure. The
latter exploits knowledge of the fact that roughly one third
of the contour (starting from the nasion) forms the frontal
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shape and the posterior third (starting from the opisthion) is
the location of occipital shape.

Extraction of signatures

For each cranial portion, a specific family of signature func-
tions [5] is then computed from the corresponding set of
pixels. The centroid-distance signature function is adopted
[26] for several reasons: (i) it is known to be effective in
the representation of generic shapes [23]; (ii) it is simple
to compute; (iii) it is translation-invariant [26]; and (iv)
comparative empirical evaluations reported in [26] point
out that it mostly outperforms its competitors. The result-
ing sequence of signatures is then sub-sampled' at regular
intervals in order to attain low and fixed dimensionality rep-
resentations of the sub-shapes. This is accomplished via the
equal points sampling (EPS) technique, which is proofed
in [26] to be as simple as effective (reducing the noise
in the shape boundary, too). EPS samples are uniformly
spaced along the sub-shape contour. Exploiting the pecu-
liarity of the cranial shape (substantially a convex figure
with no significant discontinuities), in order to represent
the overall cranial contour, we sampled the signatures via
EPS using a pixel-wise step of 3.5 pixels (discretized such
that the signatures located in correspondence with pix-
els in positions 1, 4, 8, 11, 15, ..., were sampled) with
no significant information loss. As reported in “Contour
partition” section, the first and the last third of the overall
profile were considered for the analysis of the frontal and
of the occipital portions of the contour, respectively. Tak-
ing account of the different complexity of the shape of the
contour portions, frontal and occipital portions were sam-
pled via EPS applying a 2.5 step in order to better describe
the shape of the corresponding parts of the contour. In
so doing, we ended up with 128 samples (i.e., signatures)
for the whole cranial contour (including the parietals), and
64 signatures for each of the frontal and occipital regions,
respectively.

Fourier analysis of signatures

Finally, actual visual features are extracted from the sub-
sampled sequences of signatures obtained so far by appli-
cation of the usual fast Fourier transform (FFT), which has
been proven effective in automatic processing of the fore-
head shape of the skull [11]. The first (few) low-frequency
terms of the FFT tend to capture global features of the
cranial contour, while more detailed and local features are

'From now on, we use the terms “sample” and “sub-sample” according
to their statistical meaning, i.e., random data samples drawn from a
population. The specific quantity they refer to (e.g., pixels, signature
functions, ...) is made clear by the context.
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represented by the higher frequency terms [26]. As much as
32 frequency coefficients (in the (0, 1) range) yielded by the
FFT were retained for representing each of the frontal and
the occipital shapes, while 64 frequency coefficients were
used for the cranium. The FFT guarantees rotation invari-
ance, which is hardly achievable in the space domain but
becomes feasible in the frequency domain (by taking into
consideration the magnitude of coefficients of the FFT and
dropping the phase information), as well as scale invariance
(by proper normalization of the magnitude of the first half
of the FFT coefficients) [26].

Classifier training

As we say, sex identification is herein formulated in terms
of a pattern classification problem: given the feature vector
x extracted according to the process described in the pre-
vious section, decide whether x is more likely to belong
to class wg (female) or w; (male). To this end, a discrimi-
nant function g(w;, X) is sought such that the scanogram x
is identified to belong to a female specimen if g(wp, X) >
g(w1, x); otherwise, it is identified to be a male. This deci-
sion rule is implicitly probabilistic in nature, meaning that
regardless the form chosen for realizing g(.), there is an
understanding of its potential inexactness in the general
case. Empirical evaluation is thus required in order to assess
the robustness of any given choice for g(.) in terms of the
empirical estimate of the corresponding probability of error.
Bayes decision rule is used in this paper, which theoreti-
cally minimizes the probability of having misclassifications
[6] turning out to be optimal in principle. Therefore, we let
g(wj, x) = P(w; | xX), where P(w; | X) is the posterior prob-
ability of the specimen belonging to class w; (either female
or male) given the fact that we observed the features x. It
goes without saying that any suitable realizations of Bayes
decision rule shall rely on robust statistical estimates of the
(otherwise unknown) quantity P(w; | X) from a data sam-
ple collected in the field, known as the training set. Two
major alternatives are viable to this end (both of which are
investigated in this study):

1. Direct estimate of P(w; | X) from the training set, rely-
ing on statistical approaches (e.g., k-nearest neighbor
[6]), or on ANNS;

2. Factorization of P(w; | X) via Bayes theorem [6] as

Py | %) = PEL@DP@) 0

p(x)
where the probability density function (pdf) p(x | w;)
expresses the likelihood of the class w; given the vector
of observed features x, P(w;) is the a priori knowledge
on the probability of a specific class, and the evidence

p(x) is a pdf representing the probability distribution
of the observations x in the feature space regardless of
the class they belong to. It is seen that an indirect esti-
mation of P(w; | X) is obtained from the right-hand
side of Eq. 1) once estimates are given for the quantities
p(x | w;), P(w;), and p(x). Since it is straightfor-
ward to see that the latter can be rewritten as p(x) =
Z}:o p(X | wj)P(wj), only the former quantities actu-
ally need to be estimated. While a robust estimate of the
prior probability P(w;) is achieved by just counting the
relative frequencies of the classes in the training set (for
instance, in this study, we let P(wg) = P(w1) = 0.5),
reliable estimates of p(x | w;) are sought, either via
statistical techniques or ANNS.

Albeit both approaches require estimating, or “learning,” a
model (either statistical or neural in nature) of a specific
probabilistic quantity, the former learning problem is pro-
foundly different from the latter. In fact, P(w; | X) is an
actual probability, i.e., it ranges over the (0, 1) interval (fur-
thermore, since the classes of interest are herein disjoint, we
have P(wp | x) + P(w1 | x) = 1, as well). Algorithms
for training regular ANNs to estimate P(w; | X) are pop-
ular in the literature, and quite straightforward. An optimal
approach, relying on the Widrow-Hoff algorithm applied
to a family of ANNs known as the Multilayer perceptron
(MLP), is concisely reviewed in the next section. To the con-
trary, estimating p(X | w;) may be harder since this quantity
is a pdf (i.e., it potentially ranges over the (0, +00) inter-
val) and the constraints to be satisfied in order to respect the
axioms of probability are far less obvious. As a matter of
fact, algorithms for pdf estimation via ANN s are not popular
in the literature, and the few exceptions usually rely on the
practical assumption that the input data are one-dimensional
(while the feature vectors used in this study are necessarily
high-dimensional). For these reasons, we propose a tech-
nique for ANN-based estimation of pdfs. It is sketched out
in “Algorithm for learning p(x | w;) via MLP” section, and
detailed in the Appendix. Good news is that both approaches
can be readily realized, for all practical purposes, using
just any standard, public domain MLP software simulator.
Moreover, their probabilistic-grounded interpretation allows
for a justified, robust combination of both, resulting in their
mutual reinforcement (as shown by empirical evidence, see
“Results” section).

Widrow-Hoff algorithm for learning P (w; | x) via MLP
A review of ANNs and their application to pattern clas-
sification is beyond the scope of the paper. We refer the

interested reader to [2]. For all intents and purposes of
this study, the following background notions are used. An
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Fig. 2 Architecture of a generic
MLP with two hidden layers

Input Layer

Hidden Layer Output Layer

ANN is a learning machine having an architecture struc-
tured like a graph whose vertexes are simple processing
units, and whose edges are pairwise directed connections
between units. Each unit realizes a real-valued activation
function (usually a linear transformation, or a logistic sig-
moid y = 1/(14exp(—x))) transforming its input argument
into an output value. Each connection is characterized by a
specific real number known as the connection weight, with
the understanding that a positive weight pinpoints an excita-
tory effect of the source unit onto the destination unit along
the corresponding connection, while a negative weight rep-
resents an inhibitory effect. As a general rule, the higher
the absolute value of the weight, the stronger the contribu-
tion the source unit gives to the behavior of the destination
unit.

As shown in Fig. 2, multilayer perceptrons (MLPs) are a
specific family of ANN architectures, which are (i) layered,
(ii) feed-forward, and (iii) fully connected. By “layered”
we mean that the overall set of units can be partitioned
into subsets, known as “layers,” such that the units in a
given layer interact with the adjacent” layers but not with
any other layer in the MLP; as well, no (lateral) interac-
tions occur among units within the same layer. The first
(left-most in Fig. 2) layer of the MLP is the input layer,
receiving the input feature vector x that requires being pro-
cessed by the machine. There are as many input units as
the dimensionality of X, and ith input unit takes responsi-
bility for ith feature, say x;. Similarly, the last layer of the
MLP is the output layer, expected to return the response

2 According to the topology of the graph defined by the specific
connections.
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(i.e., the output) y that the MLP associates with the cur-
rent input X upon its internal processing. There is one output
unit for each component of y, according to an ordered one-
to-one relationship. The number of output units is uniquely
determined by the nature of the (input, output) transfor-
mation that the MLP is expected to compute. Since we
are interested in estimating class-posterior probabilities for
sex classification, we rely on MLPs having only one out-
put unit whose output value (when the MLP is fed with
input x) is interpreted as an estimate of P(w, | X) (thence,
P(w1 | x) = 1 — P(w, | X)). All the remaining layers of
the MLP (in the middle between input and output) are said
to be the hidden layers, and realize a cascade of progressive
internal representations and transformations of the original
input until the ultimate output is computed. There may be
one or more hidden layers, each having its own number of
processing units (to be fixed empirically by trial-and-error,
according to some model selection/validation statistics). In
standard MLPs, the logistic sigmoid is used as the activation
function associated with the hidden units, while the linear
(or, identity) transformation y = x is the function of choice
for input and (usually) output units. In this study, we resort
to a sigmoid output, as well, since its ranging over (0, 1)
ensures a proper probabilistic interpretation of the results.
As we said, MLPs are feed-forward ANNs meaning that
there is a fixed direction of consecutive, intermediate repre-
sentations and transformations of the information from the
input layer, through adjacent hidden layers, up to the out-
put layer. This direction is shown in the form of arrows (i.e.,
directed edges of the underlying graph) in Fig. 2. Also, the
machine is fully connected since all the units in any given
layer are connected, via feed-forward connections, with all
of the units in the subsequent layer.
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Besides these architectural aspects, the interesting thing
about ANNSs is that they can learn from examples, mean-
ing that the connection weights are initially set at random
and later adapted automatically by observing the data (the
“examples”) in the training set, example after example, such
that the input-output transformation realized accordingly by
the ANN is progressively refined in order to capture the
implicit relationship underlying the dataset. A supervised
training set 7 = {(x;,y;) | j = 1,...,n} is assumed
in the study, where each feature vector x; (representing
the generic jth CT-scan, out of the n CT-scans at hand) is
explicitly presented to the MLP training algorithm in asso-
ciation with its corresponding target output y;, which is
the expected output value that we wished an educated ANN
yielded when fed with input x;. The popular backpropaga-
tion (BP) algorithm? is then used to train the MLP from
T [2].

It is seen that if the target outputs satisfy a probabilistic
interpretation in the form y i = P(wo | X;), then the MLP
is implicitly expected to learn Bayes decision rule, provided
that a suitable architecture is used and that BP can actu-
ally converge to a suitable set of connection weight values.
To this end, although convergence of BP cannot be always
guaranteed in real-world scenarios, fundamental theoretical
results (namely Cybenko’s universality theorem [8]) proof
that such a MLP exists that approximates the actual func-
tion P(wp | X;) to any desired degree of precision.* At this
point, the only remaining catch is the following: how can we
define the target outputs to be associated with the individual
CT scans such that they represent class posterior probabil-
ities (i.e.,, such that §; = P(wo | x;) for j = 1,...,n),
given the fact that we do not have the knowledge of these
probabilistic quantities in the first place? It is a significant
contribution from Richard and Lippmann [18] to tackle the
issue by resorting to a much simpler, equivalent, yet viable
definition of the target outputs. In fact, according to [18], it
is sufficient to let y; = 1 if x; belongs to class wy (i.e., if
the corresponding CT scan represents a female skull), and
y; = 0 otherwise (i.e., if we are coping with a male sub-
ject), to make sure that BP training of the MLP results in
the approximation sought of Bayes posterior probability. In
practice, this means that in preparing the training set, all
the female CT scans are labeled with the value 1, while
all male CT scans are labeled with 0. Since this labeling
was originally proposed by Widrow and Hoff for estimat-
ing a linear classifier [6], we refer to this training scheme as
Widrow-Hoff training of MLPs (WH-MLP).

3BP is an MLP-tailored instance of the gradient method for online
non-linear optimization. Any MLP software simulator is expected to
provide the user with BP (or one of its many variants).

4Provided that P (wq | x;) is continuous and limited.
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Table 1 LDA: parameters and results
accM (%) accF (%) Accuracy (%)
Calvarium 36.00 86.50 61.25
Occipital 79.50 36.50 58.00
Frontal 14.50 73.00 43.75

Algorithm for learning p(x | ;) via MLP

As we say, BP requires the explicit definition of target out-
puts to be uniquely associated with the patterns representing
the CT-scans in the training set. In the setup reviewed in the
previous section, the targets sought are the posterior prob-
abilities of classes, i.e., P(wo | X;), which are not known
in advance but are effectively replaced by 0/1 surrogates.
Learning the class-conditional pdfs from examples via BP
poses an analogous problem, since the target outputs p(X; |
w;) for j =1, ..., n are unknown likewise. Unfortunately,
no simple workaround along Richard and Lippmann’s line
is available in this respect. Thence, we propose a simple
yet effective technique which stems from an algorithm for
density estimation we first presented in [22]. The algorithm
is concisely reviewed in Appendix. It relies on the idea of
generating the target y; for the generic training pattern x;
as y; = p(xj | w;) where p(.) denotes a statistical esti-
mation of the unknown pdf p(.) by means of an unbiased
variant of a popular nonparametric approach to pdf estima-
tion, namely the Parzen Window method [6]. The resulting
ANN is thence referred to as the PW-MLP. Implementa-
tion of the approach is readily achieved via a BP software
simulator along with any non-trivial statistical toolbox. It is
noteworthy that, once trained, the PW-MLP can be used as
a stand-alone tool for sex identification (relying on Bayes
decision rule), or it may be combined with the WH-MLP in

Table 2 k-NN: parameters and results

k accM (%) accF (%) Accuracy (%)
Calvarium
54.00 68.50 61.25
2 59.00 68.50 63.75
3 63.50 67.50 65.50
Occipital
56.00 50.00 53.00
2 56.00 47.00 51.50
3 57.00 49.00 53.00
Frontal
48.50 57.50 53.00
2 39.00 53.00 46.00
3 30.00 61.00 45.50
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Table 3 Parzen window: parameters and results

h accM (%) accF (%) Accuracy (%)
Calvarium 2 63.50 63.00 63.25
Occipital 3 65.50 64.50 65.00
Frontal 5 70.50 69.50 70.00

order to realize a multiple classifier system turning out to be
more robust than its individual constituents.

Results

The first experimental stage revolves around a traditional
training-test procedure. The dataset was randomly split into
a training set (1300 patterns) and a test set (the remaining
400 patterns), making sure that the sex distributions were
uniform (i.e., P(wg | X) = P(w; | X) on both subsets).
This partitioning results in a test set that is large enough to
be representative of the statistical properties under investi-
gation at the visual level (allowing for a robust validation
of the classifiers performance), without affecting signifi-
cantly the amount of data available for the classifier training.
Five different algorithms were applied (three statistical tech-
niques and two ANN-based methods, plus the combination
of the latter ones), in order to achieve a robust comparison.
A classic linear discriminant [6] estimated with the usual
Widrow-Hoff algorithm was tested first. The learning rate
was set to 0.5 and the algorithm was iterated for 30,000
iterations. Results are reported on in Table 1, where accF
represents the accuracy evaluated over the female popula-
tion only (i.e., the percentage of female patterns that were
correctly classified) and accM is the accuracy evaluated
over the male population.

Next, a standard k-nearest neighbor (k-NN) algorithm
was used. Results are shown in Table 2 as a function of &
(that is, the number of neighbors of the test pattern x that are
considered for classifying x itself). The results worsened for
k > 3, and are not shown in the table. This is not surpris-
ing, since the k-NN is a memory-based approach (which, by
its own nature, may not generalize properly) and its more
complex instances (i.e., having larger k) may as well tend
to reduce its generalization capabilities even further. More-
over, in k-NN, there is a critical trade-off between larger

values of k and the point-wise precision of the estimated
value of the pdf at the specific location of interest [6].

The third (and, last) statistical approach we applied relies
on Bayes decision rule with Parzen-window estimates of the
class-conditional probability density functions. Results are
shown in Table 3, where h represents the initial bandwidth
of the Gaussian window function [6].

Next, the neural models handed out in “Widrow-Hoff
algorithm for learning P (w; | x) via MLP” and “Algorithm
for learning p(x | w;) via MLP” sections were evaluated
individually as well as jointly (according to the multiple
classifier perspective outlined at the end of “Algorithm for
learning p(x | w;) via MLP” section). In the first exper-
iment, the MLP was trained over target outputs defined
according to the Widrow-Hoff technique. A standard deci-
sion threshold 6 for assigning a pattern to either the female
or male classes was used, set halfway as & = 0.5. A three-
layer MLP architecture was used, involving one hidden
layer of sigmoid activation functions. The number hidden
of hidden units and their smoothness smooth, as well as
the major learning parameters (momentum rate mr, learn-
ing rate [r, the number of training iterations epochs) were
selected according to the specific contour partition under
consideration form time to time. Results are presented in
Table 4.

In the next experiment, the training algorithm presented
in “Algorithm for learning p(x | w;) via MLP” section
was applied. Two sex-specific PW-MLPs were used, in
order to estimate the corresponding sex-conditional pdfs.
The PW-MLPs were trained, respectively, on all and only
the CT-scans belonging to the corresponding class. Bayes
decision rule relying on these neural estimates of the sex-
conditional pdfs was applied for classification of the test
patterns, along the guidelines pointed out at the end of
“Algorithm for learning p(x | ;) via MLP” section. At
each experimental run, the two sex-specific MLPs archi-
tectures and training parameters were set identical to each
other, and equal to those we used in the previous exper-
iment. Table 5 hands out the results as a function of the
learning parameters.

Finally, a multiple classifier system was obtained by
combining the three MLPs with each other as follows.
Current CT-scan x is fed to the WH-MLP first, and the
corresponding output is used to estimate the posterior prob-
abilities P(w; | x) for both sex classes (either female or

Table 4 WH-MLP:

parameters and results Hidden mr Ir Smooth  Epochs  accM (%)  accF (%)  Accuracy (%)
Calvarium 16 02 0.1 1.25 20,000 81.50 83.00 82.25
Occipital 12 0.0 0.05 1.3 8000 67.50 63.50 65.50
Frontal 12 0.0 0.01 1.1 6000 79.00 61.00 70.00
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Table 5 PW-MLPs:

parameters and results Hidden mr Ir Smooth  Epochs  accM (%)  accF (%)  Accuracy (%)
Calvarium 12 0.01 0.3 20 20,000  72.50 79.50 76.00
Occipital 12 0.0075 0 17.5 30,000  57.00 66.00 61.50
Frontal 12 0.005 015 10 30,000  51.00 55.00 53.00

male), as explained in “Classifier training” section. Let w;
be the winner class (i.e., the sex having the highest poste-
rior probability). A threshold t on the estimated P(w; | X)
is fixed, such that if P(w; | X) < 7 then the risk involved
(that is, the probability of error 1 — P (w; | X)) is considered
to be excessive (namely, only slightly less than 0.5). In this
case, the two class-conditional PW-MLPs are used instead
for deciding on the sex of x. It is expected that the differ-
ent nature of the probabilistic laws modeled by the former
and the latter MLPs may complement each other to a cer-
tain degree, easing the classification task whenever one of
the networks cannot make a clear decision.

The expectation was confirmed empirically. Results are
reported in Table 6, where #WH denotes the number of test
patterns classified by the WH-MLP, while #PDF represents
the number of CT-scans in the test set that were classified
relying on the PW-MLPs. It is seen that when using a low
threshold (namely, close to 0.5), nearly all the patterns are
classified via WH-MLP. Vice versa, as long as the thresh-
old is increased (becoming higher and higher than 0.5), the
fraction of data whose classification via WH-MLP is con-
sidered untrustworthy increases as well (clearly, not in a
linear manner), and the PW-MLPs are used more intensively
(still playing a minor role, if compared with the WH-MLP).
Experiments with the multiple classifier system were lim-
ited to the whole cranium. Increasing t beyond 0.63 did not
yield any further improvement in terms of accuracy.

Based on the results of the previous investigations,
we eventually evaluated the most significant approaches
emerged so far by relying on a variant of the tenfold cross-
validation strategy with resampling. A separate, additional
fold was generated for automatic model and parameter

Table 6 Multiple classifier system, whole cranium case

Threshold #WH #PDF accM (%) accF (%)  Accuracy (%)
0.510 394 6 82.00 83.00 82.50
0.550 368 32 84.50 85.00 84.75
0.575 359 41 85.00 85.50 85.25
0.580 358 42 85.00 86.00 85.50
0.590 353 47 84.50 86.50 85.50
0.600 350 50 84.50 87.00 85.75
0.610 345 55 84.50 88.50 86.50
0.630 334 66 84.50 89.50 87.00

selection purposes, as well. For each fold, the dataset was
split into a training set (1000 patterns) and a test set (400
patterns) using bootstrap-like Monte Carlo case resampling
[7]. We herewith limit our attention to the whole cra-
nium case. Results are reported in Table 7. The results are
expressed in terms of average accuracy =+ standard devia-
tion. Note that a value of k = 5 turned out to be best for
the k-NN algorithm in this scenario. The reduced amount
of available training data per fold with respect to the tradi-
tional training-test setup (reduction needed in order to split
the overall dataset into reasonably-sized individual folds) is
likely to account for the relative loss observed in terms of
accuracy, which does not affect our general conclusions.

Discussion

In spite of the fact that the aforementioned results turn out to
be lower than the statistical discrimination methods reported
in the literature, the present method suggests several con-
siderations. First of all, it takes into consideration a single,
non-metric characteristic of the skull, namely its shape, lim-
ited to the calvarium, i.e., the opisthion and the nasion are
not taken into account. From the anthropological standpoint,
it is interesting that the whole calvarium shape that is gener-
ally considered of modest relevance to the sex determination
process, seems to contains significant information about
its sexual dimorphism which allows for a statistically sig-
nificant recognition accuracy. With respect to the metrical
approaches in cranial sex diagnosis, where manual extrac-
tion of multiple features (measurements) is required, the
present framework relies on a completely automatic feature
extraction/pattern classification procedure. It is likely that
the satisfying performance of the system are mostly due to
the following facts: (1) the system relies on shapes rather

Table 7 Accuracies (%) over the tenfold cross-validation setup
(whole cranium case): Avg. accuracy =+ std. dev

Model Frontal Occipital Calvarium

k-NN 68.60 +0.79  54.14 +0.68  69.30 + 0.86
Parzen window 68.62+0.78 56.95+0.92 72.05+0.92
PW-MLP 68.71 £ 1.31 5475+1.82 7858 +1.39
WH-MLP 68.93+0.73 64.231+0.75 80.29 £ 1.16
Multiple classifier ~ 69.43 £ 0.54  64.77 £090  81.48 £0.83
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than on measurements, thus resulting more insensitive to
measurement errors and human factors; (2) invariance to
roto-translations in the feature extraction process; (3) sta-
tistical robustness of the proposed ANN-based probabilistic
models.

Non-metrical morphology depends on the experience of
the anthropologist and is based on the perceptive analysis of
the complex shape of the skull. This paradigm of analysis is
not limited to the neurocranial profile but also takes account
of many other parameters as the dimension of the skull, the
zygomatic and temporal morphology, the inion shape and
prominence, and so on. In the case of metric morphometry,
on the other hand, the perceptive analysis of the global shape
of the skull is substituted by a number of measures. There
are, however, some limitations due to the grade of skill of
the operator or to the fuzziness of some cranial landmarks.

In our case, the classifier system is based exclusively
on the morphologic variants of a curve that represents the
lateral profile of the calvarium, analyzed by a system specif-
ically and exclusively trained on that profile. It is very likely
that by adding another or more non-metric parameters of the
skull, such as the lateral profile of the jaw or the profile of
the mastoid process, the results could further improve.

The low performance of the anterior and posterior third
of the profile, even though they contain information about
the profile of the frontal and the occipital bone, are not sim-
ple to explain. More likely the contribution of the parietal
profile, especially in the posterior third, could justify this
low performance. However, the purpose of the comparison
between the whole profile and the other two was simply
to confirm the better significance of the entire profile with
respect to its parts.

Regarding the proposed ANN approach, a significant
contribution lies in the technique for combining two ANN
architectures that model probabilistic quantities that are
intrinsically different in nature, and that complement each
other. Such a mixture of ANNs yields improved deci-
sion boundaries between the classes (namely, male and
female) in the feature space. Accordingly, the overall recog-
nition accuracies obtained in the experiments turn out to be
higher than those yielded by traditional statistical estimation
approaches (LDA, Parzen Window, k-NN). As a corollary,
the results obtained allow us to confirm that the overall
shape of the cranial vault is significantly dimorphic.

Conclusions

The novel approach described in this paper, based on the
automatic modeling of the shape of the calvarium instead
of the usual analysis of metric data, suggests a way to real-
ize fully automated, statistically robust tools for physical
and forensic anthropology based on shape recognition and

@ Springer

analysis. In this case, only the shape of lateral profile of the
calvarium was analyzed, but the same approach could be
applied on other bones and to multiple profiles. The appli-
cation of the system to other bones may be expected to
improve the sensibility of the methodology even further.

From the machine learning point of view, it is worth
observing that the highest recognition accuracy was
obtained with a combination of a supervised and an unsu-
pervised technique.

It is important to observe that although the present
approach relies on cranial shape sex-related variations, it
does not provide us with any information about the nature
of these variations. It is, however, useful in order to provide
the anthropologist with an automatic systems for assisted
diagnosis.
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Appendix: The algorithm for probability density
estimation

Let xq, ..., X, be a collection of n CT-scans, thought of as
d-dimensional random vectors and assumed to be indepen-
dently and identically drawn from an unknown pdf p(.).
Also, let ¢(.) be a proper kernel function (e.g., a stan-
dard Gaussian), and let the corresponding bandwidth % be
any positive real number (to be fixed empirically) [2]. An
unbiased estimate p(.) of p(.) via MLP is proposed, accord-
ing to the following unsupervised algorithm (expressed in
pseudo-code):

Input: T ={x1,...,%X,}, hi.

Output: p(.) /+the MLP estimate of p(.) */
1. Let h,_3 =h1/\f(n— 1)

2. Let Vo =hd |

3. For i=1 to n do /% loop over T x/
3.1 Let 7i =T\ {xi}

3.2 Let Yi = i Yoxer v 9 (GE)
/* target output =*/

4. Let § = {(x5y) | i = 1,...,n} /%

supervised training set x/

5. Train the MLP via BP over S

6. Let p(.) be the function computed by
the MLP

7. Return p(.)

1 1 Xi—X : _
where ——; erT,- 4 ( o ) is the Parzen kernel expan

sion of p(.) over the n — 1 feature vectors in 7;, V,,_ being
the corresponding volume of the window function [6].
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