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Abstract Methamphetamine (METH) is a highly addictive
drug of abuse and toxic to the brain. Recent studies indicated
that besides direct damage to dopamine and 5-HT terminals,
neurotoxicity of METH may also result from its ability to
modify the structure of blood-brain barrier (BBB). The present
study investigated the postmortem brain mRNA and immu-
nohistochemical expressions of matrix metalloproteases
(MMPs), claudin5 (CLDN5), and aquaporins (AQPs) in fo-
rensic autopsy cases of carbon monoxide (n=14), METH (n=
21), and phenobarbital (n=17) intoxication, compared with
mechanical asphyxia (n=15), brain injury (n=11), non-brain
injury (n=21), and sharp instrument injury (n=15) cases.
Relative mRNA quantification using Taqman real-time PCR
assay demonstrated higher expression of AQP4 and MMP9,
lower expression of CLDN5 in METH intoxication cases and
lower expression of MMP2 in phenobarbital intoxication
cases. Immunostaining results showed substantial interindi-
vidual variations in each group, showing no evident

differences in distribution or intensity among all the causes
of death. These findings suggest that METH may increase
BBB permeability by altering CLDN5 and MMP9, and the
self-protective system maybe activated to eliminate accumu-
lating water from the extracellular space of the brain by up-
regulating AQP4. Systematic analysis of gene expressions
using real-time PCR may be a useful procedure in forensic
death investigation.
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Introduction

Methamphethamine (METH) is a highly addictive drug that
acts as a central nervous system (CNS) stimulating recreation-
al drug. METH abuse has become a serious social problem
worldwide. METH-induced direct damage to dopamine and
5-HT terminals was conventionally assumed to play a crucial
role in METH neurotoxicity [1]. Recently, a new concept of
METH-induced brain damage was raised, resulting from its
ability to increase the blood-brain barrier (BBB) permeability
[2, 3], though the potential mechanism has not been fully
clarified.

Matrix metalloproteinases (MMPs) are members of the
metzincin group of proteases that degrade most components
of the extracellular matrix (ECM) in a variety of physiological
and pathophysiological conditions [4]. MMP2 and MMP9,
also called gelatinases, have both positive and negative roles
in the healthy and diseased CNS [5]. Claudin5 (CLDN5) is a
key tight junction (TJ) protein that plays an important role in
modulation of BBB permeability [6]. In addition, aquaporins
(AQPs) are water channels that facilitate water transport from
and to the CNS. AQP1 and AQP4 are presumed as major
contributors to participate in brain water homeostasis [7]. Our
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previous study suggested that systematic analysis of these
markers may be useful to investigate the pathogenesis of brain
damage involving brain edema after severe burns [8].

The present study analyzed the gene expressions of
MMP2, MMP9, CLDN5, AQP1 and AQP4, using reverse
transcription quantitative PCR (RT-qPCR), combined with
immunohistochemical detections, to investigate the molecular
pathology in the brains of forensic autopsy cases with special
regard to METH intoxication.

Materials and methods

Sample collection

Human brains of medicolegal autopsy cases (n=114; within
48 h postmortem with a median of 21 h; survival time, <0.5–
192 h with a median of <0.5 h) at our institute were examined.
The cases comprised 81 males and 33 females, between 18
and 90 (median, 50) years of age. The causes of death were
determined on the basis of autopsy examination, including
macromorphological, histological, toxicological, and bio-
chemical analyses, as follows: mechanical asphyxia (As, n=
15; atypical hanging, n=7, manual/ligature strangulation, n=
8), brain injury (injury-1, n=11), non-brain injury (injury-2,
n=21), sharp instrument injury (injury-3, n=15), carbon mon-
oxide (intoxication-1, n=14) [9], METH (intoxication-2, n=
21), and phenobarbital (intoxication-3, n=17) intoxication. A
thorough neuropathological analysis was performed as part of
our routine investigation, and cases with any preexisting neu-
rological pathologies were excluded in the present study. In
brain injury cases, tissues distant from the primary lesions
were selected. Details are shown in Table 1.

The sample collections and analyses described below were
performed within the framework of our routine casework,
following the autopsy guidelines (2009) and ethical guidelines
(1997 and 2003) of the Japanese Society of Legal Medicine,
approved by our institutional ethics committee.

Toxicological analyses

Postmortem heart blood COHb saturation was analyzed using
a CO-oximeter system (Hemoximeter OSM3, Radiometer,
Westlake, OH) [10, 11].

Drug analytical procedures, including chemicals and re-
agents, sample preparation, and instrumental conditions were
performed by gas chromatography/mass spectrometry, as de-
scribed previously [12].

RT-qPCR

Since the most significant METH-induced morphological al-
terations of the BBB occur in the cortex [3], brain tissue
samples were taken from consistent sites in the cortex of
parietal lobe of the left cerebral hemispheres at autopsy. All
samples were immediately submerged in 1 ml of RNA stabi-
lization solution (RNAlaterTM, Ambion, Austin) and stored
at −80 °C until use. RNA extraction, cDNA synthesis, and RT-
qPCRwere performed as described previously [13], following
the manufacturer’s protocol. Three previously validated refer-
ence genes, PES1, POLR2A, and IPO8, were used for nor-
malization [8, 13]. Details are shown in Supplementary
Material. RT-qPCR reactions were run in 96-well reaction
plates with a StepOnePlus Real-Time PCR System (Applied
Biosystems, Foster City, USA). The threshold cycle (Ct) was
calculated by the instrument software automatically (threshold
value at 0.2). Raw fluorescent data (normalized reporter
values, Rn values) were also exported.

Amplification efficiency calculation and data normalization

Amplification efficiencies were calculated from raw fluores-
cent data (Rn values), using a completely objective and noise-
resistant algorithm, Real-time PCR Miner program [14]. The
Real-time PCR Miner is an objective method using calcula-
tions based on the kinetics of individual PCR reactions with-
out the need of the standard curve. The arithmetic mean value

Table 1 Case profiles (p=114)

PMI, estimated postmortem in-
terval; As, mechanical asphyxia;
Injury-1, brain injury; Injury-2,
non-brain injury; Injury-3, sharp
instrument injury; Intoxication-1,
carbon monoxide; Intoxication-2,
methamphetamine; Intoxication-
3, phenobarbital

Cause of death n Male/Female Age, years
(median)

Survival time,
h (median)

PMI,
h (median)

Control groups

As 15 9/6 25–82 (64) <0.5 9–37 (22)

Injury-1 11 8/3 29–71 (39) <0.5 13–35 (18)

Injury-2 21 17/4 22–90 (56) <0.5 11–41 (23)

Injury-3 15 13/2 27–65 (50) <0.5 13–29 (16)

Intoxication groups

Intoxication-1 14 10/4 18–75 (51) <0.5–3(<0.5) 10–45 (22)

Intoxication-2 21 17/4 29–71 (48) 6–192 (6) 7–42 (25)

Intoxication-3 17 7/10 24–64 (41) 8–96 (12) 9–37 (28)

Total 114 81/33 18–90 (50) <0.5–192 (<0.5) 5–46 (21)
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of amplification efficiencies of each gene was used for data
normalization.

Raw Ct values of targets and three previously validated
reference genes, PES1, POLR2A, and IPO8 [8, 13], were
imported into the qBaseplus software [15]. The qBaseplus algo-
rithm takes amplification efficiencies into account, which dis-
tinguishes it from the 2−△△Ct method [15–17]. Using a calibra-
tor case (acute death due to ligature strangulation, 64-year-old
male; 21 h postmortem), calibrated normalized relative quan-
tity (CNRQ) values were exported from the qBaseplus software
and statistically investigated. The calibrator case was selected
randomly from the control group (As group), and the outcome
will not change no matter which calibrator was selected.

Immunostaining

Paraffin-embedded brain tissue specimens were taken from
the standardized anatomical regions [9, 18, 19]. Serial sections
(5 μm thick) were cut and stained with hematoxylin-eosin
(HE) as part of routine laboratory investigation. In the present
study, parietal lobes of left cerebral hemispheres were used for
immunostaining.

Rabbit polyclonal anti-MMP2 antibody (Abcam, Cam-
bridge, code ab79781, diluted 100-fold), rabbit polyclonal
anti-MMP9 antibody (Abcam, Cambridge, code ab38898,
diluted 800-fold), rabbit polyclonal anti-CLDN5 antibody
(Abcam, Cambridge, code ab53765, diluted 500-fold), mouse
monoclonal anti-AQP1 antibody (Abcam, Cambridge, code
ab9566, diluted 500-fold), and rabbit polyclonal anti-AQP4
antibody (Santa Cruz Biotechnology, Santa Cruz, code sc-
20812, diluted 500-fold), were used.

Following overnight incubation with the primary antibod-
ies described above at room temperature, immunoreactions
were visualized by the polymer method (ChemMate Envision,
Dako, Tokyo, code k5027), and color was developed with
3,3′-diaminobenzidine tetrahydrochloride (DAB liquid sys-
tem, Dako, Tokyo, code k3466), according to the manufac-
turer’s instructions (counterstaining with hematoxylin).

Statistics

Correlation analyses between pairs of parameters were per-
formed using Spearman’s rho. The Kruskal-Wallis test, a non-
parametric test for more than two independent samples, was
used to compare groups, followed by multiple pairwise com-
parisons using the Steel-Dwass-Critchlow-Fligner procedure
[20, 21]. These analyses were carried out using XLSTAT 2012
(Addinsoft, Paris, France) and StatView (version 5.0; SAS
Institute Inc., Cornelius, NC, USA). A p value less than 0.05
was considered significant. The line in each box represents the
median, and the lines outside each box represent the 90 %
confidence interval in Fig. 1.

Results

Gene expression

The amplification efficiencies (mean values) of targets and
reference genes ranged from 88.6 % (CLDN5) to 105.9 %
(IPO8), showing small inter-individual variations (standard
deviation, SD <5%), which were similar to our previous study
[8]. Details are shown in Supplementary Material.

There were no gender-related differences, or age, or post-
mortem interval, or survival time dependence in MMP2 and
MMP9, CLDN5, AQP1, and AQP4 CNRQ values on
Spearman’s rho (R2<0.2, p>0.05). In As group, there is no
statistical difference in CNRQ values of all markers between
atypical hanging and manual/ligature strangulation (p>0.05).

CNRQ values of MMP2 were evidently lower in pheno-
barbital intoxication group than in other groups (Fig. 1a).
Higher MMP9 and AQP4 but lower CLDN5 mRNA expres-
sion levels were detected in METH intoxication cases
(Fig. 1b, e, c). However, there was no significant difference
in CNRQ values of AQP1 among all groups (Fig. 1d).

Immunostaining

Immunostaining showed substantial interindividual variations
in each group. MMP2 was detected clearly in the neurons of
cerebral cortex (Fig. 2a, b). MMP9 was weakly located in
capillary endothelia (Fig. 2c, d). CLDN5was strongly positive
in capillary endothelia (Fig. 2e, f). AQP1 (Fig. 2g, h) and
AQP4 (Fig. 2i, j) were mainly detected in glial cells which
were morphologically identified as astrocytes. However, no
significant differences in distribution or intensity were detect-
ed among the causes of death, including METH and pheno-
barbital intoxication cases.

Discussion

In forensic casework, postmortem diagnosis of death due to
functional deterioration, including fatal intoxication, is some-
times difficult because of poor or nonspecific pathological
findings. Diagnosis of fatal intoxication mainly depends on
toxicological analyses. In such cases, investigation of charac-
teristic functional changes of life-supporting organs may help
to reinforce toxicological and pathological findings, excluding
the contribution of any other traumas and diseases to the death
process [22, 23].

Forensic science has made great strides in the last decade.
More recently, RT-qPCR, using postmortem autopsymaterials,
has become a hotspot in the field of forensic pathology [17,
24–27]. Though there are several limitations to this technique,
RT-qPCR can investigate the systemic pathophysiological
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changes involved in the death process which cannot be detect-
ed directly by morphology.

Up-regulations of MMP2 and MMP9 in the brain can
increase BBB permeability by degrading the endothelial basal
lamina of the BBB, which results in vasogenic edema [28].
Despite the well-documented neurotoxic effects, the impact of
METH on the BBB has been overlooked, and the probable
mechanism has not been fully addressed.

In the present study, using mRNA measurements of cere-
bral MMPs, METH intoxication cases had evidently higher
CNRQ values of MMP9, while phenobarbital intoxication
cases showed significantly lower CNRQ values of MMP2.
These findings suggest independent contributions of MMP2
and MMP9 in the brain tissues of intoxication cases, which
require further investigation.

MMP9 was thought to be a key player in METH-induced
alteration of BBB permeability. Several studies in animal
models have shown that METH increases BBB permeability
by up-regulating MMP9 after METH administration [2, 29,
30]. Both inhibiting MMP9 and deleting MMP9 gene can
attenuate the BBB disruption [31, 32]. MMP-9 can digest TJ
proteins of BBB. Microvascular endothelial cells of human

brain treated with METH demonstrated a decrease in CLDN5
expression, suggesting that TJ alteration may be the cause of
METH-induced BBB permeability [33]. In the present study,
METH intoxication cases showed lower CNRQ values of
CLDN5, indicating that the increase of MMP9 may lead to
the degradation of CLDN5, which can be responsible for the
opening of the BBB.

Of note, characteristic findings were detected for AQP4
CNRQ values, which were higher in METH intoxication
cases. To our knowledge, this is the first report showing that
METH can up-regulate AQP4. As mentioned above, METH-
induced up-regulation of MMP9 can increase BBB perme-
ability, resulting in vasogenic edema. In the vasogenic edema
resolution phase, an increase of AQP4 was observed in some
studies [34, 35]. Therefore, in METH intoxication cases,
AQP4 seems to play a beneficial role in eliminating accumu-
lating water from the extracellular space of the CNS, suggest-
ing an activation of the self-protective system after METH
intoxication in CNS.

On the one hand, the increase of BBB deterioration by
METH can accelerate transmigration of the neurotropic fun-
gusCryptococcus neoformans into the brain parenchyma after

0.01

0.1

1

10

100

A
s

In
ju
ry
-1

In
ju
ry
-2

In
ju
ry
-3

In
to
xi
ca

tio
n-
1

In
to
xi
ca

tio
n-
2

In
to
xi
ca

tio
n-
3

(d) AQP1

C
N

R
Q

0.01

0.1

1

10

100

A
s

In
ju
ry
-1

In
ju
ry
-2

In
ju
ry
-3

In
to
xi
ca

tio
n-
1

In
to
xi
ca

tio
n-
2

In
to
xi
ca

tio
n-
3

C
N

R
Q

(e) AQP4

0.01

0.1

1

10

100

1000

A
s

In
ju
ry
-1

In
ju
ry
-2

In
ju
ry
-3

In
to
xi
ca

tio
n-
1

In
to
xi
ca

tio
n-
2

In
to
xi
ca

tio
n-
3

(b) MMP9

C
N

R
Q

0.01

0.1

1

10

100

A
s

In
ju
ry
-1

In
ju
ry
-2

In
ju
ry
-3

In
to
xi
ca

tio
n-
1

In
to
xi
ca

tio
n-
2

In
to
xi
ca

tio
n-
3

C
N

R
Q

(c) CLDN5

†

0.01

0.1

1

10

100

A
s

In
ju
ry
-1

In
ju
ry
-2

In
ju
ry
-3

In
to
xi
ca

tio
n-
1

In
to
xi
ca

tio
n-
2

In
to
xi
ca

tio
n-
3

(a) MMP2
C

N
R

Q

†

Fig. 1 CNRQ values of MMP2 (a), MMP9 (b), CLDN5 (c), AQP1 (d)
and AQP4 (e) with regard to causes of death. a Significant difference was
detected on Kruskal-Wallis (K-W) test (p<0.05): †significantly lower
(p<0.05), intoxication-3 vs. other groups on Steel-Dwass-Critchlow-
Fligner procedure. b and e Significant difference was detected on K-W
test (p<0.05): *significantly higher (p<0.05), intoxication-2 vs. other
groups on Steel-Dwass-Critchlow-Fligner procedure. c Significant differ-
ence was detected on K-W test (p<0.05): †significantly lower (p<0.05),

intoxication-2 vs. other groups on Steel-Dwass-Critchlow-Fligner proce-
dure. dThere was no significant difference among the groups onK-W test
(p>0.05). CNRQ, calibrated normalized relative quantity; As, mechani-
cal asphyxia; Injury-1, brain injury; Injury-2, non-brain injury; Injury-3,
sharp instrument injury; Intoxication-1, carbon monoxide; Intoxication-2,
methamphetamine; Intoxication-3, phenobarbital
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systemic infection [36]. On the other hand, METH temporar-
ily opens the BBB and therefore may be useful as a novel
therapeutic strategy to allow drugs/chemicals cross the BBB
and entry into brain [37]. Therefore, the METH-induced BBB
opening should be addressed from a dialectic point of view.

In the present study, the immunostaining did not detect any
evident differences in distribution or intensity among all the
causes of death. These findings may be because of the lower
sensitivity of immunostaining in detecting changes in gene
products than that with quantitative analyses of gene expres-
sions using RT-qPCR.

The major limitation of the present study is that the integ-
rity of the extracted RNA has not been checked prior to cDNA
synthesis, though RT-qPCR performance was affected by
RNA integrity [26]. RNA quality from brain tissue might be
seriously affected in cases of brain damage. Both reference
genes and target genes were affected by impaired RNA integ-
rity. Our previous studies showed that postmortem degrada-
tion profiles of some target genes were similar to reference
genes [38] and high correlations among some commonly used
housekeeping genes using human postmortem lung tissue
[39]. Indeed, patterns of RNA degradation have yet to be fully
illuminated. Further cooperation and investigation may be
needed to evaluate the accuracy of relative quantification,
using absolute quantification.

In conclusion, the present study, using postmortem autopsy
brain tissues, suggests that METH-induced increase of BBB
permeability is mediated by up-regulation of MMP9 and
down-regulation of CLDN5. Systematic analysis of gene ex-
pressions using RT-qPCR is a useful procedure in forensic
death investigation.
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