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Abstract Developmental data of juvenile blow flies (Diptera:
Calliphoridae) are typically used to calculate the age of im-
mature stages found on or around a corpse and thus to estimate
a minimum post-mortem interval (PMImin). However, many
of those data sets don't take into account that immature blow
flies grow in a non-linear fashion. Linear models do not
supply a sufficient reliability on age estimates and may even
lead to an erroneous determination of the PMImin. According
to the Daubert standard and the need for improvements in
forensic science, new statistic tools like smoothing methods
and mixed models allow the modelling of non-linear relation-
ships and expand the field of statistical analyses. The present
study introduces into the background and application of these
statistical techniques by analysing a model which describes
the development of the forensically important blow fly Calli-
phora vicina at different temperatures. The comparison of
three statistical methods (linear regression, generalised addi-
tive modelling and generalised additive mixed modelling)
clearly demonstrates that only the latter provided regression
parameters that reflect the data adequately.We focus explicitly
on both the exploration of the data—to assure their quality and
to show the importance of checking it carefully prior to con-
ducting the statistical tests—and the validation of the resulting
models. Hence, we present a common method for evaluating
and testing forensic entomological data sets by using for the
first time generalised additive mixed models.

Keywords Forensic entomology . Statistics .Calliphora
vicina . Generalised additive model . Mixed effects model

Introduction

Forensic entomology is the analysis of insect evidence for
forensic purposes [3]. Depending on the level of accessibil-
ity and environmental conditions, necrophagous insects will
promptly colonise a fresh corpse. By calculating the age of
developing insects on a body and by analysing the compo-
sition of its insect fauna, the expert may be able to deduce
the time when insects first colonised the body which can
infer a minimum time since death or post-mortem interval
(PMImin). Establishing this period of time is the most im-
portant task of a forensic entomologist.

Because blow flies are usually the first group to colonise
a body, the focus is often on them when using entomological
evidence to estimate the minimum PMI. Analysing the size
of the larvae or identifying which stage of immature devel-
opment they have achieved allows the approximation of
age, and such methods are well supported by existing re-
search and are widely described and accepted in the forensic
community. However, due to the recent burst in develop-
ment of the forensic sciences, new court criteria require the
evaluation of scientific evidence prior to its submission to
the court. The Daubert Standard states that scientific
evidence should be testable, have a known error rate, be
peer-reviewed and be accepted by the specific scientific
community employing the technique [24]. Moreover, a
2009 US Research Council report indicated a need for major
improvements in many disciplines of forensic science in
order to increase accuracy and meet those standards. Clearly,
one of these improvements may be the introduction of new
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statistical analyses in forensic entomology for the validation
of methods in court proceedings [16]. Estimations of insect
age are calculated using curvilinear regression, isomegalen
diagrams, isomorphen diagrams and thermal summation
models [2, 12, 22]. However, estimation of juvenile age in
forensic entomology suffers due to the fact that blow flies
grow in a non-linear fashion and show, e.g., variable size
distributions at different larval stages which unequally af-
fect the estimation of their age [24]. Not surprisingly,
scientists have reported different growth rates for the same
species of fly, and experts have come to incongruent
conclusions about a PMI based on the same entomological
evidence depending on which growth data were utilised
[24]. This is at least partly due to the wrongful application
and misuse of statistical methods. Several authors real-
ised that problem and have attempted to improve the
methods used [e.g. 20, 21] or introduce new statistical
tools and formulas in forensic entomology [12, 13, 24,
26]. However, it is our belief that a scientific paper used
as a basic principle for a court report should provide detailed
descriptions of the experimental settings, an appropriate pre-
sentation of the data exploration and finally a sound validation
and justification of the applied statistics.

Hence, the present paper exemplary analyses some
growth parameters of the blow fly Calliphora vicina, testing
various statistical methods in order to reveal differences in
the determined regression parameters and to show their
impact on the examined characters of the specimens. Be-
sides the validation of the chosen test, we focus especially
on the evaluation of the data, which should reveal their
quality and the importance of checking it carefully prior to
conducting the statistical tests, a fact which is so far often
neglected when publishing growth data in forensic entomol-
ogy [see [29] for a general discussion of this problem in an
ecological context].

Material and methods

Flies

Two laboratory cultures of Calliphora vicina were reared in
wire cages at the Institute of Forensic Medicine in Frankfurt
am Main, Germany. Flies were fed with sugar and water ad
libitum. Blood was offered as a protein source every two
days. Fresh beef liver was provided as an oviposition medi-
um once a week. After oviposition, the eggs were trans-
ferred to a LinTek MKKL 600/2 incubator, set at 20±1°C
under a lighting cycle of 12:12 h (light/dark). Constant
temperature was validated using a DS1922L Temperatur
Logger iButton (Maxim/Dallas), measuring every 1 h. The
time needed for hatching was not recorded, but larvae were
used soon after emergence.

Sampling

Resulting larvae were reared in population densities of 10,
50 and 100 individuals at three constant temperatures (5°C,
20°C and 30°C). To ensure comparability between the
measurements at the three temperatures, sampling was not
specified in “days after hatching”, but converted to accumu-
lated degree days (ADD). Based on previously published
data regarding developmental landmarks in Calliphora
vicina (larval stages two and three) [4, 5, 8, 10, 15], sam-
pling times were defined as 40 ADD and 120 ADD after
hatching, assuming a minimum developmental threshold of
0°C (Table 1). Each density/temperature/ADD-combination
was repeated five times within a single generation (five
replicates of each combination) (n04800).

Hatched larvae were placed on ground beef in separate
plastic cups (400 mL). To prevent intraspecific competition,
the amount of meat was increased proportionally (10
individuals received 25g minced meat, 100 individuals
received 250g ground beef, respectively).

Each cup was kept in a large plastic container
(5000 mL) which was covered with a fine paper towel
held in place by a rubber band. The container was filled
with 3 cm of sawdust which served as medium for pupar-
iation. The cups were moved daily within the incubators
to count out incubator temperature effects and to prevent
pseudoreplication. A datalogger (DS1922L) was placed
in each incubator to record their temperature stability at
1-h intervals.

For each sample time, all larvae from the meat were
removed and killed with boiling water. Impacts on larval
development by handling effects could be ruled out be-
cause larvae were not disturbed until sampling time.
They were then placed in 95% ethanol to avoid post-
mortem changes [1, 23]. Length measurements were per-
formed using a geometrical micrometer to 0.1 mm [25],
and their weight was estimated using an electronic bal-
ance (reading precision: d00.001 g).

Table 1 Summary of the experimental treatments

Temperature 5°C 20°C 30°C
Sampling time

ADD 40 5×10a 5×10a 5×10a

5×50b 5×50b 5×50b

5×100c 5×100c 5×100c

ADD 120 5×10a 5×10a 5×10a

5×50b 5×50b 5×50b

5×100c 5×100c 5×100c

a 10 individuals
b 50 individuals
c 100 individuals
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Regression analysis

Various regression analyses served to introduce different
statistical methods in order to identify faulty model valida-
tions and to find ways of reproducing the data adequately.

Statistical analyses like linear regression, GAM and
GAMM were carried out using the R statistical package [19].

Length was used as response variable. Weight, Density,
Temperature and Time were used as possible explanatory
variables, where Density consisted of the characteristic val-
ues 10, 50 and 100 (coded in R as: 1, 2 and 3, respectively),
Temperature consisted of the values 5°C, 20°C and 30°C
(coded in R as: 1, 2 and 3, respectively) and Time was
defined through the values 40 ADD and 120 ADD (coded
in R as: 1 and 2, respectively).

To find the optimal model in terms of statistical criteria,
the Akaike Information Criteria (AIC) was consulted, which
is a measure of goodness of fit: The preferred model is the
one with the lowest AIC value [18, 27].

Data exploration

For the detection of outliers, bivariate dotplots [7], boxplots
and scatterplots were used. Collinearity and the relation-
ships between variables were revealed using a pairplot.
Preliminary exploration of the data indicated a strong col-
linearity between Weight and Time. Additionally, a non-
linear relationship between Weight and Length was high-
lighted. Therefore, either Weight or Time should be used in
the fixed part of the model but never both at the same time
as this would lead to difficulties during the model selection
process and give larger p-values.

Linear regression

The non-linear relationship between Length and Weight
caused the elimination of Weight from the analysis. There-
fore, the variables used in this model were Length as re-
sponse and Density, Temperature and Time as nominal
explanatory variables. Additionally, two- and three-way in-
teraction terms were included.

Finding the optimal linear model involves verifying the
main underlying assumptions: homogeneity, independence
and normality [18, 27, 28]. To verify homogeneity, scatter-
plots were used in which the residuals were plotted against
the fitted values as well as against each explanatory variable
that was either used or not used in the model.

To detect dependent structures, the residuals were plotted
againstWeight using a scatterplot. Normality can be checked
by a normal QQ-plot.

Homogeneity and independence are the most important
assumptions, and if one assumption is not confirmed, the
model should be rejected.

Generalised additive model

Because of non-linear relationships and heterogeneous and
dependent structures, the next step was fitting a generalised
additive model (GAM). Instead of a slope parameter, GAMs
use a non-linear smoothing function to summarise the rela-
tionship between X and Y [24, 27].

Due to the collinearity between Weight and Time, the
variables used in this model were Length as response and
Density, Temperature and their interaction terms as nominal
explanatory variables. Time was dropped out and replaced
by a smoothing function of Weight.

Based on the results for the residual plots of this model, a
normal (Gaussian) distribution with an identity link function
was suggested. The optimal number of degrees of freedom
for the smoother was estimated through cross-validation (a
method in which observations are left out and instead are
predicted while the smoother is used for the rest of the data.)

The model validation process is approximately the same as
in linear regression, which means that the main underlying
assumptions have to be verified. Here, the model still showed
dependent structures due to the hierarchical, nested data set (five
batches within one approach). One possible solution to improve
the model without transforming variables, which means a loss
of information, is a generalised additive mixed model.

Generalised additive mixed model (GAMM)

The generalised additive mixed model (GAMM) is an ex-
tension of generalised additive modelling [28]. Unknown
smooth functions of different types of covariates as well as
random effects can be added. Therefore, they provide a
broad and flexible framework for regression analyses in
complex situations.

For this data set, the consecutive number of the batches of
all approaches (BatchID) was included as a random structure.
To deal with heterogeneity, a variance structure for the resid-
uals was included in which each temperature level was
allowed to have a different variance. Because Temperature
was a nominal variable, a VarIdent variance structure was used
[17, 28].

The other variables used in this model were Length as
response and Weight as a smoothing function. The model
validation is still the same as in linear regression and in GAM.

Results and discussion

Data exploration

The exploration of the data was done using all variables. As
three of the explanatory variables were categorical and as
they therefore cannot have any different values than 1, 2 or
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3, it was only checked for outliers in the response variable
and in the continuous variable Weight. The spread in length
was nearly the same in both time regimes, whereas the
spread in weight was bigger for 120 ADD than for 40
ADD. The dotplots indicated that Length is the more accu-
rate measureable variable, and therefore, it presented the
better response variable.

Both boxplots and dotplots showed some points that are
beyond the centre of the data, indicating that these might be
points that could influence the analysis incorrectly. Trans-
formation of data might help here, but this process would
lead to a loss of information as it would compress the data,
and because the points were not that extreme, it was decided
not to transform the data.

Pairplots and conditional plots of Length versus each
individual explanatory variable showed no linear relation-
ship between Length and Density, a weak linear correlation
between Length and Temperature and, as expected, a strong
relationship between Length and Time (Fig. 1). Additionally
a collinear relationship between Weight and Time could be
highlighted which is obvious too as weight increases with
time. A scatterplot of Length versus Weight showed linear
patterns at the start of the development and non-linear
patterns with a wider margin at length values from 1.5 to
2.2 cm, which means that maggots with a weight of 0.1 g,
for example, may have length values between approximate-
ly 1.5 and 1.9 cm (Fig. 2).

Because of the weak correlation between Length and
Temperature and Density, the growth rate patterns do not
change by temperature and density (Fig. 3). Additionally, it
became apparent that individuals who were exposed to the

same amount of accumulated degree days, especially 40
ADD, were longer the higher the temperature was. This
means that despite the supposed equality of development,
the use of the standard ADD method is suspect and should
be taken with care when calculating the age of the larvae as
this may lead to an incorrect estimation of the PMI [4, 5]
(Fig. 4).

After the evaluation of the data, it became clear that
there were no extreme outliers and that Weight and Time
were collinear. So, two options for further analysis
opened up:

1. Drop Weight out, and use Time as the categorical vari-
able for a linear regression.

2. Drop Time out, and use a smoothing function of Weight
for a generalised additive model.

Because of its simplicity, linear regression was the first
analysis carried out.

Linear regression

The model in the linear regression analysis contained the
explanatory variables Temperature, Density, Time and their
interaction terms. The model has the form:

Lengthij¼a þ b1� Densityi þ b2� Temperaturei

þb3� Timei þ b4� Densityi � Temperaturei

þb5� Densityi � Timei þ b6� Temperaturei � Timei

þb7� Densityi � Temperaturei � Timei þ "ij:

ð1Þ

Fig. 1 Pairplot of the response
variable Length against each
explanatory variable

216 Int J Legal Med (2013) 127:213–223



The notation in Eq. 1 means that Length is modelled as a
function of Density, Temperature, Time and their two- and
three-way interaction terms. The variable Lengthij is the
length of individual i in batch j. The index j runs from 1 to
5, whereas the number of individuals per batch differs. The
term εij is the unexplained noise and is assumed to be
normally distributed with a mean of 0 and variance of σ².

The R2 value for the model was 0.859, indicating that
about 86% of the variation in length can be explained

by this combination of predictors (F7,387503389,
p<2.2e−16).

All interaction terms and single variables were highly
significant, which means that the null hypothesis which
states that there is no interaction between Density, Temper-
ature and Time can be rejected (Table 2).

After the model selection process, the model validation
followed, in which the underlying assumptions of linear
regression had to be verified. To test for normality, a QQ-
plot can be used, in which the points should lay on a straight
line. Only in the middle range are the data normally distrib-
uted. However, as this assumption is the least important one,
some discrepancy can be accepted (Fig. 5). To verify homo-
geneity, the residuals were plotted against the fitted values
(Fig. 6). Because the spread of the residuals is not the same
along the gradient, a violation of homogeneity occurred. To
detect the source of this heterogeneity, the residuals were
plotted against each explanatory variable. The graphs of the
residuals versus Density and Temperature showed differ-
ences in spread which was the cause of the variation in the
residuals. To test for independence, the residuals were plot-
ted against Weight (Fig. 7). Although Weight is not applied
in the model, it can be used to check for a possible lack of
independence. The graph shows a clear pattern in which all
samples with very low and very high weight values had
negative residuals, which means that the samples were over-
fitted since the residuals are calculated as observed minus
fitted values. In contrast, samples with weight values lying
in between had positive residuals, indicating that all of these
samples were under-fitted.

Fig. 2 Scatterplot of Length (cm) against Weight (g)

Fig. 3 Coplot for Length
against Weight, conditional on
Density and Temperature
(Density: 1010 individuals,
2050 individuals, 30100
individuals; Temperature:
105°C, 2020°C, 3030°C)
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The overall conclusion is that linear regression is not the
right analysis for this set of data due to heterogeneity and a
lack of independence. Although it provided significant
values and the R² was about 86%, the main underlying
assumptions were not verified. This caused the regression
parameters to be unreliable, and they therefore should not
be used in an expert opinion as the description of the
developmental rate as a linear function of the ambient
temperature may lead to an incorrect age determination of
the specimen and therefore to an erroneous calculation of
the minimum post-mortem interval.

The next step for improving the model was fitting a
generalised additive model which allows for non-linear
relationships.

Generalised additive model

Due to the high collinearity between Weight and Time, the
categorical variable Time was replaced by the continuous
variable Weight. A smoothing function of Weight has been
used to model its effects. Therefore, the model for the
generalised additive model contained the variables Density
and Temperature (and their interaction term) which were

Fig. 4 Coplot for Length
against Weight, conditional
on Temperature and Time
(Temperature: 105°C, 2020°C,
3030°C; Time: 1040 ADD,
20120 ADD)

Table 2 Numerical output from the linear regression model containing
three explanatory variables and their two- and three-way interaction
terms

Coefficients Estimate
β

Std.
error

t-value p-value

(Intercept) −1.90811 0.10348 −18.440 < 2e−16

Density 0.34135 0.03960 8.621 < 2e−16

Temperature 1.13293 0.04762 23.791 < 2e−16

Time 1.86172 0.06550 28.425 < 2e−16

Density: temperature −0.22379 0.01816 −12.323 < 2e−16

Density: time −0.18735 0.02498 −7.500 7.84e−14

Temperature: time −0.57889 0.03076 −18.817 < 2e−16

Density: temperature: time 0.12381 0.01169 10.595 < 2e−16
Fig. 5 Normal QQ-plot checking for normality
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used as factors and a smoothing function of Weight. It had
the form:

Lengthij ¼ a þ b1� Densityi þ b2� Temperaturei

þb3� Densityi � Temperaturei þ f Weightij
� �þ "ij:

ð2Þ
The aforementioned notation is almost like the linear

regression model with the exeption of the smoothing func-
tion of Weight. The term εij is assumed to be normally
distributed with a mean of 0 and variance of σ².

During the model selection process, the Density/Temper-
ature interaction term was the least significant and could be
dropped out. After refitting the model without the interac-
tion, Density was not significant and dropped out too. The
final model included the nominal variable Temperature and
a smoothing function of Weight (Tables 3 and 4).

The equivalent statistic to the linear R2 value in GAMs is
the explanation for deviance. For the final model, this was
97.6%, indicating a very good model fit (GCV00.0059136).
The optimal number of degrees of freedom for the smoother
was 8.51, affirming the non-linear relationship between
Length and Weight (p <2e−16).

For the final model, the null hypothesis which states that
there is no effect for Temperature and Weight can be rejected.

The model validation process is approximately the same
as in a linear regression analysis. To check the normality, the
distribution of the residuals is illustrated in a QQ-plot
(Fig. 8). The plots showed a little discrepancy, but since
normality is not the most important assumption to be veri-
fied, the suggested normal (Gaussian) distribution could be
accepted. The plot of the residuals versus the fitted values
showed no bias in residuals based on Length, which means
that the assumption of homogeneity could be verified. To
test for independence, the residuals were plotted against all
explanatory variables. Their distribution for the variable
Weight showed no dependent structures (Fig. 9).

However, a model misspecification could be highlighted
in the graphs for the residuals versus Temperature. They
showed heterogeneity and a clear violation of independence.
The samples showed more negative residuals than positive
ones. Additionally, the imbalance increased with increasing
Temperature level, indicating a dependent structure (Fig. 10).
The dependent structures in the model were due to multiple
observations within a batch, which means that the five length
values within one approach were more related to each other
than to values from another approach. As a consequence, the
standard errors and variances of the estimated parameters were
inadequate, and therefore, they should not be used in an expert
opinion either.

Fig. 6 Residuals against fitted values. Violation of homogeneity
occurred because the spread is increasing with increasing fitted
values

Fig. 7 Residuals against Weight. Note the lack of independence due to
the pattern of positive and negative residuals

Table 3 Numerical output from the final generalised additive model
containing the numerical variable Temperature

Coefficients Estimate β Std. error t-value p-value

(Intercept) 1.354169 0.003720 364.024 < 2e−16

Temperature 0.009809 0.001781 5.508 3.87e−08

Table 4 Numerical output for the smoothing function from the final
generalised additive model

Smooth term edf Ref. df F-value p-value

s (Weight) 8.512 8.907 16,740 <2e−16
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Because all linear and additive models assume indepen-
dence within the observations, a generalised additive model
is an improvement in terms of the smoother for Weight,
although it is still not the right model. To allow for a
hierarchical data set, the next step was applying a general-
ised additive mixed model.

Generalised additive mixed model

The residual spread in the generalised additive model differed
with Temperature, which means that the assumption of nor-
mally distributed residuals with a mean of 0 and variance of σ²

is wrong. One solution for dealing with heterogeneity is
including a variance structure in the residuals. Since Temper-
ature is included as a factor in the fixed part of the model, it
was possible to use the VarIdent variance structure for Tem-
perature as a variance covariate. The first model had the form:

Lengthij ¼ a þ b1� Temperaturei þ f Weightij
� �þ "ij

where "ij � N 0;σ2
að Þ:

ð3Þ
To take the dependent structures into account, a second

model with the BatchID as the random part was fitted. Both
models were compared using the AIC. The second model
had the form:

Lengthij ¼ a þ b1� Temperaturei þ f Weightij
� �þ ai þ "ij

where ai � N 0; σ2
að Þ and "ij � N 0;σj

2
� �

:

ð4Þ
The aforementioned notations are almost the same as the

generalised additive model with the exemption of the random
intercept aj which allows for variation between batches.

The model, when using a random intercept (4), has the
lowest AIC and is therefore selected as the optimal model
(model (4): −9518.457 compared to model (3): −8837.617).

Fig. 8 Checking for normality with a QQ-plot

Fig. 9 Residuals versus Weight to test for independence

Fig. 10 Residuals versus Temperature. Note that the spread of the
residuals is not the same along the gradient

Table 5 Estimated parameters from the final mixed effect model

Estimate Std. error t-value p-value

(Intercept) 1.316149 0.016696 78.830 <2e−16

Temperature 0.023695 0.007774 3.048 0.00232
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The R2 value for the model was 0.975, indicating that
about 98% of the variation in Length can be explained by
this combination of predictors (F3,3791015995.52, p<
0.0001). The optimal number of degrees of freedom for
the smoother was 8.75, affirming the non-linear relationship
between Length and Weight (p <2e−16).

All variables were statistically significant, which means
that none of these terms can be left out (Tables 5 and 6).

One part of the output from a generalised additive mixed
model shows information about the different multiplication
factors of σ, which means that each Temperature treatment
has different variances. The estimated value for σ is 0.068.
The treatment at 30°C has the largest variance, namely,
(0.068×1.022)², whereas individuals reared at 20°C have
the slightest residual spread (0.068×0.96)². The residual
spread at 5°C lies in between (0.068×1²).

The model validation process is the same as in a linear
regression analysis. The plot of the residuals versus the
fitted values showed no extreme bias in residuals based on
Length, which means that the homogeneity assumption
could be verified (Fig. 11). To test for independence, the
residuals were plotted against all explanatory variables. For
the variableWeight, the residuals showed no dependent struc-
tures (Fig. 12). In contrast, the graphs for the residuals versus
Temperature still showed patterns with more negative than
positive residuals, indicating that a violation of independence

occurred (Fig. 13). As the residuals in the model validation are
not ordinary but standardised residuals, they should not show
any pattern. However, because their distribution is not that
rigorous and all terms in the model are highly significant, the
results are quite robust. According to this, a generalised addi-
tive mixed model is by now the best method for that kind of
data set because it allows for non-linear relationships and
correlation between the batches.

Conclusion and outlook

The common methods for the determination of age in im-
mature blow flies include measurements of the length and

Table 6 Numerical output for the smoothing function from the final
generalised additive mixed model

Smooth term edf Ref. df F-value p-value

s (Weight) 8.751 8.751 2,281 <2e−16

Fig. 11 Normalised residuals versus fitted values to test for homogeneity
Fig. 13 Normalised Residuals of the final model, including a variance
structure. Residuals are grouped per Temperature

Fig. 12 Normalised residuals versus Weight to test for independence
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the principle of the accumulated degree hours or days
(ADH, ADD). The basis of these methods for the determi-
nation of individual age is a continuous assumed linear
relationship between ambient temperature and development.
Since the growth rate of blow flies is only linear during a
small period of development and within a certain tempera-
ture range [3, 14, 24], the applied linear models do not
supply a sufficient reliability. In linear models, the variabil-
ity of a series of individual observations (yi) is explained by
a series of independent variables (x1, x2,…,xn) and a source
of error (ε). One of the greatest limitations of linear models
is the underlying assumption of independent observations
and homoscedasticity [29]. This means that observations
within an experimental approach or vessel have to be inde-
pendent from each other. If the observations show dependent
structures, the required replicates are only pseudoreplicates.
Therefore, the use of linear models with a single region of
variability (ε) becomes inappropriate.

The error values or the variance of the residuals are
negatively influenced and finally lead to incorrect inferences
[6, 9]. In addition, completely independent approaches are
hardly ensured in biological work because individuals that
are reared in the same incubator but in separate vessels
cannot be classified as independent [11].

The objective of this study was to present various statis-
tical methods applied to a forensic entomological data set.
The differences of these methods concerning the validation
of the final model were demonstrated, and a method was
found that reflects the data set most adequately.

After the exploration of the data, a step-by-step analysis
from a linear regression to a generalised additive model was
conducted, finalised by a generalised additive mixed model.

Both the linear regression model and the generalised addi-
tive model provided incorrect regression parameters due to
existing dependence and correlation structures between the
observations. Only with a mixed effects model regression
parameters can be calculated, which reflect the data adequately.

Since laboratory experiments are used for the establish-
ment of reference data for forensic entomological casework,
they are usually carried out with multiple repetitions. These
data sets are automatically nested and imply the use of a
mixed model. This is the only way to provide valid regres-
sion parameters that lead to statistical valid confidence
intervals for the determination of age in insects and there-
fore to an accurate determination of the minimum time
since death.

We used here a simple setting for reasons of clarity, but
our model is certainly useful for producing relevant devel-
opment data for forensically relevant fly species. Amendt et
al. [2] compiled development data published so far for some
forensically important blow fly species. Besides a certain
amount of consensus, it was shown that there is discrepancy
for one and the same species between different authors. This

might be related to possible geographic variability and pop-
ulation specific features, but could be as well the result of
wrong methods and erroneous statistics. However, due to a
lack of transparency, this is not always verifiable and could
lead to difficult situations in court when using such publi-
cations as a reference. Hence, we believe that there is not
just the need for a detailed description of the experimental
settings when publishing development data, but also for an
appropriate exploration of the data and the validation of the
statistics applied in such a study. In a next step toward an
accepted forensic entomological tool, some could allow
for making the published data sets available (and there-
fore checkable) through an online repository. While this
reads desirable at a first glance and might contribute to a
traceable use of entomological data sets, there is the
question how to organise and control such platforms
and repositories. This could be the task of organisations
like the European Association for Forensic Entomology
(EAFE) or the North American Forensic Entomology
Association (NAFEA).
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