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Abstract
Super-resolution microscopy (SRM) is a prime tool to study chromatin organisation at near biomolecular resolution in the 
native cellular environment. With fluorescent labels DNA, chromatin-associated proteins and specific epigenetic states can 
be identified with high molecular specificity. The aim of this review is to introduce the field of diffraction-unlimited SRM to 
enable an informed selection of the most suitable SRM method for a specific chromatin-related research question. We will 
explain both diffraction-unlimited approaches (coordinate-targeted and stochastic-localisation-based) and list their charac-
teristic spatio-temporal resolutions, live-cell compatibility, image-processing, and ability for multi-colour imaging. As the 
increase in resolution, compared to, e.g. confocal microscopy, leads to a central role of the sample quality, important consid-
erations for sample preparation and concrete examples of labelling strategies applicable to chromatin research are discussed. 
To illustrate how SRM-based methods can significantly improve our understanding of chromatin functioning, and to serve as 
an inspiring starting point for future work, we conclude with examples of recent applications of SRM in chromatin research.

Keywords  Chromatin organisation · Super-resolution microscopy · STimulated Emission Depletion microscopy (STED) · 
STochastic Optical Reconstruction Microscopy (STORM) · Chromatin labelling

Introduction

The 3D organisation of chromatin is vital for gene regula-
tion and cell fate. Chromosomes spatially organise into com-
partments during interphase, often referred to as chromo-
some territories (Cremer et al. 2006). Evaluating the level of 
organisation at the megabase length scale, chromatin regions 
can be considered to reside in an inactive, tightly packed 
state (heterochromatin) or in an active, less compacted state 
(euchromatin). Using 3C methods (including Hi-C), chroma-
tin interactions can be mapped (Dekker et al. 2002; Lieber-
man-Aiden et al. 2009), and a 3D model of the genome can 
be reconstructed (Oluwadare et al. 2019) up to a resolution of 
1 kb (Rao et al. 2014) (typical ~ 25–40 kb (Zhang et al. 2018)). 
These high-throughput methods have revealed among oth-
ers the existence of topological associating domains (TADs) 
(Dixon et al. 2012) and chromatin loops (Rao et al. 2014). 

Although a powerful approach to analyse the interactions 
among specific DNA regions, this 3D reconstruction does not 
directly provide the physical compaction or location of chro-
matin regions, nor the location of proteins in these regions. 
Furthermore, the required sample processing inhibits live-cell 
measurements. Where the physical size of periodic chromatin 
structures can be obtained with high precision through small 
angle X-ray scattering (SAXS) (Joti et al. 2012; Langmore 
and Paulson 1983; Nishino et al. 2012; Sperling and Tardieu 
1976), this method detects periodic structures of bulk chro-
mosome samples in solution without the spatial information 
of individual structures in the nucleus. Both the interaction 
and the SAXS studies therefore can be complemented with 
imaging approaches to directly visualise the organisation of 
these structures within the nucleus. The best spatial resolu-
tion can be obtained using electron microscopy (EM), which 
revealed the nanoscale organisation of chromatin (Ou et al. 
2017) and the chromatin hierarchy from the 10-nm beads 
on a string up to the 300–700-nm chromatids during mitosis 
(Eltsov et al. 2008; Finch and Klug 1976; Maeshima et al. 
2010; McDowall et al. 1986; Olins and Olins 1974). The 
drawbacks of this contrast-based method, however, are the 
lack of multi-colour labelling, a relatively low throughput, and 
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the necessity for cell fixation which prevents the detection of 
dynamic rearrangements.

Fluorescence-based microscopy uniquely does allow to 
obtain spatial information in (living) cells with high molec-
ular specificity. Both chromatin and chromatin-associated 
proteins can be localised simultaneously using multi-colour 
labelling. However, the resolution of conventional light 
microscopy is diffraction limited (> 200 nm), only allowing 
to spatially resolve the overarching chromatin organisation. 
With the rise of super-resolution microscopy (SRM) meth-
ods, it became possible to generate images with a resolution 
that surpasses the diffraction limit, awarded with the 2014 
Nobel Prize in Chemistry. Owing to recent developments in 
the microscope engineering, labelling, and analysis, SRM is 
now a viable method to unravel chromatin organisation, as it 
(i) can resolve chromatin structures at the level of a single or 
a few nucleosomes; (ii) has a high molecular specificity; (iii) 
allows for multi-colour imaging; and (iv) depending on the 
method can be live-cell compatible. Therefore, SRM seam-
lessly complements the other applied methods in chromatin 
organisation studies.

The aim of this review is to introduce the field of SRM 
to enable an informed selection of the most suitable SRM 
method for a specific chromatin-related research question. 
To date, there is a large variety of SRM techniques, each 
with its (dis)advantages. Of all the techniques that obtain 
an improved resolution compared to the diffraction limit, 
we focus on the two diffraction-unlimited SRM approaches: 
(i) coordinate-targeted SRM and (ii) stochastic-localisation-
based SRM. We refer to other reviews for an in-depth dis-
cussion of the techniques that have an improved, yet still 
limited, resolution compared to confocal microscopy (e.g. 
structured-illumination microscopy, AiryScan, and lat-
tice light-sheet microscopy) (Bond et al. 2022; Flors and 
Earnshaw 2011; Schermelleh et al. 2019). These techniques 
might be worth considering if their resolutions are sufficient 
and their specific advantages more important for the research 
question.

Of both the diffraction-unlimited SRM approaches, we 
will discuss the fundamental principles and highlight the 
advantages and disadvantages, including the spatial and 
temporal resolution, the live cell compatibility, the avail-
ability of multi-colour imaging, and the complexity of data 
collection and data processing. Due to the importance for the 
applicability, and the final obtained resolution, additionally 
we will discuss labelling and sample preparation strategies 
for chromatin and chromatin-binding proteins. We conclude 
with recent examples of SRM based chromatin research 
to illustrate the type of questions each SRM method can 
address and to serve as inspiration on how the direct visuali-
sation of the spatial chromatin organisation can contribute to 
a holistic understanding of chromatin functioning.

Coordinate‑targeted super‑resolution 
microscopy

Technique

Fluorescence microscopy is very specific, as only the mol-
ecules of interest labelled with fluorophores (e.g. dyes or 
fluorescent proteins (FPs)) become visible. One drawback 
is that due to the diffraction limit (> 200 nm (Abbe 1873)) 
closely positioned fluorophores cannot be identified sepa-
rately. The first solution offered to circumvent this problem 
was to actively switch closely positioned fluorophores to 
a different state (typically switched between an ‘on’ and 
‘off’ state) (Wichmann and Hell 1994) allowing again to 
retrieve their individual locations. As this active switching 
is done at a specific known location, methods based on this 
principle are called coordinate-targeted SRM techniques. 
For chromatin studies, the most used coordinate-targeted 
technique is STimulated Emission Depletion (STED) 
microscopy.

To acquire a super-resolution image in STED micros-
copy, fluorophores are first irradiated by a focussed laser 
spot (~ 250 nm wide, diffraction-limited). Absorption of the 
incoming light brings the fluorophores into an excited state 
(Fig. 1a). Next, the exact same location on the sample is also 
irradiated by the STED beam, a red-shifted doughnut-shaped 
beam with no intensity in the middle of the doughnut. When 
this STED beam passes the already excited fluorophores, it 
triggers these fluorophores to release their absorbed energy 
by emitting light, a phenomenon called stimulated emission. 
Afterwards, only the non-exposed fluorophores in the centre 
of the doughnut can still fluoresce and be detected, reduc-
ing the effective point spread function (PSF), and thus the 
resolution, as illustrated in Fig. 1b. For one specific (known) 
location, an excite-deplete-detect cycle (Fig. 1b) thus detects 
only those fluorophores which were present inside the 
doughnut centre. Pixel-by-pixel scanning (moving either the 
sample or the beams, Fig. 1c) enables the construction of a 
super-resolved image (Fig. 1d) in real-time with a typical 
resolution of a few tens of nanometres.

Besides STED, other coordinate-targeted techniques 
include Ground State Depletion (GSD) microscopy 
(Bretschneider et al. 2007) and REversible Saturatable 
OpticaL Fluorescence Transitions (RESOLFT) micros-
copy (Grotjohann et al. 2011). Both GSD and RESOLFT 
apply switching of states, but instead of stimulated emis-
sion, GSD uses high laser powers to force fluorophores 
into a non-emissive state (triplet or dark state), and 
RESOLFT uses (low) light exposure to switch their spe-
cial fluorophores (mostly FPs) between a fluorescent and 
a non-fluorescent configuration (often cis–trans isomerisa-
tion reactions) (Tang and Fang 2022).
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Spatial resolution

In STED, the spatial resolution is theoretically not limited 
and depends on the power of the depletion laser. The 
higher the power, the smaller the area/volume where fluo-
rophores are not depleted, and thus the better the resolu-
tion (the resolution scales with 1

�

√

sted intensity
 ). Currently, 

the main factor limiting the resolution is the bleaching of 
the fluorophores upon repeated excitation-emission cycles. 
Typical lateral resolutions are 20–40 nm in fixed-cell 
imaging and 50–80 nm in live-cell imaging (Bond et al. 
2022; Godin et al. 2014; Gu et al. 2020), although a reso-
lution of 2.4 nm (Wildanger et al. 2012) has been reported 
for nanodiamonds. The axial resolution can be improved 
from the standard ~ 600 nm by shaping the depletion beam 
such that also fluorophores above and below the focal 
plane are depleted, resulting in typical axial resolutions of 
80–100 nm in commercial setups (Sahl et al. 2017), but 
resolutions of ~ 30 nm have also been reported (Hell et al. 
2015).

Temporal resolution

Fundamental to coordinate-targeted techniques is the 
requirement to know the location within the sample from 
where the detected light originated. Therefore, each image 
is constructed from individual measurements per pixel, 
requiring sample scanning. Hence, the acquisition time of 
a single image linearly depends on the number of pixels 
imaged, and thus on the field of view (FOV). Typically, a 
single super-resolved image takes about a second for FOVs 
below 3 × 3 µm2. Parallelisation of the image acquisition 
effectively decreases the acquisition time for both STED 
and RESOLFT, leading to multiple frames per second even 
for large image areas (50 × 50 µm2), and in three dimensions 
(Bergermann et al. 2015; Bodén et al. 2021; Chmyrov et al. 
2013; Lee and Bewersdorf 2021; Masullo et al. 2018).

Live‑cell compatibility

STED depends on high laser powers for its resolution, requir-
ing photostable fluorophores. As a result, often organic dyes 

Fig. 1   Coordinate-targeted microscopy (STED and RESOLFT). a 
Jablonski diagram showing the excitation of a fluorophore transition-
ing from the ground state (S0) to an excited state (S1) by absorbing 
an incoming photon (kabs). Typically, the energy is again released by 
spontaneous emission of a photon (kfluorescence). Also non-radiative 
processes can occur (e.g. vibrational rotations (kVR), internal con-
version (kIC), or inter-system-crossing (kISC) to, e.g. the triplet state 
(T1)). Fluorophores in S1 can furthermore be forced to go to the 
ground state through stimulated emission (kSTED). b In STED micros-

copy, a focussed beam excites, and a (doughnut-shaped) STED beam 
depletes fluorophores. At each pixel (position indicated in i), fluoro-
phores are illuminated (ii) to excite to S1 (blue in iii), and then be 
depleted (by doughnut beam in iv), after which the remaining excited 
fluorophores (blue in v), are still able to emit. c Pixel-by-pixel scan-
ning results in a super-resolved image. The ‘◈’ and ‘⁕’ signs indicate 
the locations of the examples in b. d By scanning the entire FOV, an 
image with a resolution beyond the diffraction limit is acquired
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are used, which are more photostable than FPs. For live-cell 
imaging, a wide range of non-toxic dyes have been developed 
which enter cells without requiring cell lysis. Most of these 
excite/emit in the red, as red light has a decreased phototox-
icity (lower energy per photon and less non-specific absorp-
tion by the cell) compared to more blue-shifted wavelengths. 
Using these labels, STED indeed showed to be live-cell com-
patible (Kilian et al. 2018). To further decrease the impact 
of light, STED offers adaptive-illumination methods. Two 
main strategies are Dynamic intensity MINimum (DyMIN) 
and Reduction of State transition Cycles (RESCue), which 
adapt the excitation and depletion dose to the necessity per 
pixel, leading to dose reductions up to 90–95% (Heine et al. 
2017; Staudt et al. 2011). RESOLFT already operates at a 
much lower light dose as compared to STED (Chmyrov et al. 
2013). Developments in RESOLFT-compatible probes led 
to decreased bleaching with increased contrast (Konen et al. 
2021). To our knowledge, RESOLFT microscopy has not 
been applied to study chromatin yet, but these lower light 
doses might make it a versatile tool to investigate chromatin 
dynamics in living cells in the near future.

Multi‑colour imaging

To unravel cellular mechanisms, it is often crucial to visu-
alise more than one protein at a time. The large variety of 
dyes makes dual-colour STED microscopy straightforward. 
In combination with large-Stokes-shift dyes (Sednev et al. 
2015), up to three colours can be imaged simultaneously. 
Additionally, lifetime multiplexing could offer options even 
beyond three colours with the same depletion dye, and thus 
without chromatic aberrations (Frei et al. 2022).

Post‑processing

A major advantage of coordinate-targeted techniques is that 
they directly determine the signal per location/per pixel, 
omitting the need for post-processing. Samples thus can be 
evaluated immediately, which in principle also allows for 
high-throughput measurements (Alvelid et al. 2022; Mol and 
Vlijm 2022).

Stochastic localisation super‑resolution 
microscopy

Technique

Stochastic-based localisation super-resolution micros-
copy (often referred to as single-molecule localisation 
microscopy (SMLM)) is camera-based and, unlike coor-
dinate-targeted SRM, does not require sample scanning. 

In SMLM, fluorophores which are in closer proximity than 
the diffraction limit are detected separately by stochasti-
cally switching them between an emissive ‘on’ and ‘off’ 
state. The experimental conditions are tuned such that at 
most one fluorophore per diffraction-limited area is emit-
ting (Fig. 2a). For each detection event, the centre of the 
spot (point spread function (PSF)) is determined (Fig. 2b). 
The most general approach for determining the centre is 
a gauss fit (Stallinga et al. 2010), although there are more 
enhanced methods (Babcock and Zhuang 2017; Li et al. 
2022b; Nehme et al. 2021). By summing many frames 
(typically ~ 50,000), the entire population of fluorescent 
molecules can be localised (Fig. 2c). In SMLM, the reso-
lution thus scales with the number of collected frames, 
coupling the temporal resolution (minutes to hours per 
image (Heydarian et al. 2018)) to the lateral resolution 
(typically 20–50 nm (Bond et al. 2022)).

There are several SMLM techniques which differ in how 
they stochastically switch (subsets of) fluorophores between 
‘off’ and ‘on’ states. Here, we will discuss: (1) fluorescently 
Photo-Activatable Light Microscopy ((f)PALM) (Betzig et al. 
2006; Hess et al. 2006), (2) STochastic Optical Reconstruction 
Microscopy (STORM) (Rust et al. 2006), (3) direct-STORM 
(dSTORM) (Heilemann et al. 2008) or the technical similar 
Ground State Depletion microscopy followed by Individual 
Molecule return (GSDIM) (Bretschneider et al. 2007; Fölling 
et al. 2008), (4) Point Accumulation for Imaging in Nano 
Topography (PAINT) (Sharonov and Hochstrasser 2006), and 
(5) DNA-PAINT (Jungmann et al. 2010).

PALM (TIRF-based microscopy) and (f)PALM (confocal 
microscope) both use FPs. These FPs can have three different 
switching mechanisms, namely photoconversion (Fig. 3a), 
photoactivation (Fig. 3b), or photoswitching (Fig. 3c). Here, 
we will give concrete examples of these mechanisms. Photo-
convertible FPs (EosFP (Betzig et al. 2006)) are fluorescent, 
but upon irradiation with a specific wavelength (390 nm for 
EosFP), they show an irreversible shift in the excitation 
spectrum (from 506 to 571 nm for EosFP (Fig. 3a)). A short 
pulse with the activation wavelength stochastically activates 
a subset of (spatially separated) FPs. Consecutive irradiation 
at the new absorption maximum (571 nm for EosFP) leads to 
a burst of photons until those fluorophores are bleached, and 
a new subset can be activated. Photoactivatable FPs, like PA-
mCherry (Subach et al. 2009), are non-fluorescent until acti-
vated by light (405 nm for PA-mCherry). In their activated 
state, they emit upon irradiation with another wavelength 
(564 nm for PA-mCherry) until they are bleached (Fig. 3b). 
The burst of photons from photoconvertible and photoac-
tivatable FPs allows for the tracking of fast dynamics, e.g. 
live-cell single-particle tracking (sptPALM) (Manley et al. 
2008). Alternatively, FPs can be used which can revers-
ibly switch between a fluorescent ‘on’ and ‘off’ state upon 
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illumination with two different wavelengths (e.g. Dreiklang 
(Brakemann et al. 2011), Fig. 3c).

In STORM, an activator-reporter dye pair is used as 
label. Here, the activator-parts are stochastically activated 
by laser irradiation, upon which energy transfers enable their 
reporter dye to emit. The advantage of this approach is its 
applicability to multi-colour imaging. Often, multi-colour 
SMLM approaches suffer from chromatic aberrations. Com-
bining spectrally different activators with the same reporter 
dye solves this issue (Bates et al. 2007), but these differ-
ent structures have to be recorded consecutively, requiring 
even better drift corrections (Lelek et al. 2021). A disadvan-
tage of this activator-reporter dyes is the often significant 
size (~ 30 nm), which typically limits the resolution (Bates 
et al. 2007). Recent optimisations towards smaller labels 
increased the labelling density and improved the resolution 
(Chen et al. 2016).

In GSDIM/dSTORM, a different mechanism for sto-
chastic switching is used. Here, first all molecules are 
forced into an off-state (metastable triplet states or dark-
states) by applying a high-intensity laser (Fig. 4a). Next, 
the laser power is typically tuned down by a factor of 
ten. The fluorophores reside in this off-state for µs up 

to minutes, after which they stochastically return to the 
ground state, where they can absorb and emit again (on-
state). The constantly present (low) excitation laser then 
enables these on-state molecules to fluoresce, until they 
return to the off-state. This process is often referred to as 
blinking. For GSDIM/dSTORM, typically organic dyes 
are used as fluorophore, as in general FPs are not stable 
enough. To further reduce the photobleaching, special-
ised imaging buffers are added, which unfortunately often 
contain cytotoxic components, making live-cell imaging 
more challenging.

Where previously discussed SMLM approaches mainly 
use covalently bound dyes, PAINT (Fig. 4b) and DNA-
PAINT (Fig.  4c) rely on the exchange of fluorescent 
probes. Here, the probe binding and unbinding kinetics 
dictate the on- and off-switching rates, as the probes only 
fluoresce upon binding. One important advantage is that 
photobleaching no longer poses a problem as bleached 
fluorophores can be replaced. However, the sample sta-
bilisation and drift correction become more challenging, 
as the binding-dependent switching typically results in 
longer acquisition times (Heydarian et al. 2018) compared 
to other SMLM techniques.

Fig. 2   Single-molecule localisation microscopy (SMLM). a In 
SMLM, the target is labelled with fluorophores which stochastically 
switch between an ‘off’ and ‘on’ state. Each detected PSF of a fluo-
rophore should be spatially separated by at least the diffraction limit. 
Stochastic switching for STORM and dSTORM/GSDIM is often 
referred to as blinking, while PALM fluorophores in most cases do 

not blink but instead give a burst of photons upon stochastic ‘on’ 
switching. b By applying a fit (for instance gauss fit) to the PSF of the 
fluorophore, the centre position can be determined. The more locali-
sations (photons) per fluorophore, the better the localisation accuracy. 
c By combining all localisation events, a SRM image can be recon-
structed
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Spatial resolution

Similar to coordinate-based approaches, the resolution is 
theoretically not limited. In SMLM, the resolution scales 
with 1

�

√

detected photons per fluorophore
 , which couples the tempo-

ral resolution to the spatial resolution. Currently, the main 
factors limiting the spatial resolution are fluorophore bleach-
ing, the size and position of the fluorophore, and drift. In 
practice, the lateral resolution of SMLM is typically 
20–50 nm (Bond et al. 2022). Besides the lateral resolution, 

the axial resolution can also be improved to allow for 3D 
imaging (Lelek et al. 2021).

Temporal resolution

The temporal resolution in SMLM is generally minutes 
to hours per image (Heydarian et al. 2018); however, a 
temporal resolution of seconds was achieved using recent 
sCMOS technology (Ma and Liu 2020). The obtained tem-
poral resolution depends on the camera frame rate, the rate 
at which the fluorophores stochastically switch, the (aimed) 

Fig. 3   Switching mechanisms for (f)PALM, using EosFP, PA-
mCherry, and Dreiklang as examples. a Photoconversion: irradiation 
(at 405  nm for EosFP) induces a shift in the spectral absorption of 
a subset of the fluorophores. By consecutive irradiation at this new 
absorption wavelength (e.g. 540  nm for EosFP), only this subset is 

allowed to fluoresce. These are irradiated and detected until they are 
all bleached. b Photoactivation: similar to photoconversion (see a), 
but the initial form does not exhibit fluorescent properties. c Photos-
witching: fluorophores (e.g. Dreiklang) can reversibly switch between 
a fluorescent and non-fluorescent state upon irradiation
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spatial resolution, and the labelling density. To control the 
switching rate, one can vary the laser power density (PALM, 
STORM, dSTORM/GSDIM (Lelek et al. 2021; Tang and 
Fang 2022)), tune the blinking-buffer (dSTORM/GSDIM 
(Nahidiazar et al. 2016)), tune the label properties (Lardon 
et al. 2021) and adapt the label concentration (PAINT/DNA-
PAINT (Schueder et al. 2017)), or the oligo design (DNA-
Paint (Beliveau et al. 2017)).

Live‑cell compatibility

PALM and PAINT are most compatible with live-cell imag-
ing. Other SMLM techniques are more challenging for live-
cell imaging as often toxic imaging buffers are required to 
tune the blinking properties of the fluorophore. However, 
some live-cell protocols have been developed (Jones et al. 
2011; Morozumi et al. 2020; Oi et al. 2020; Teng et al. 2016).

Multi‑colour imaging

Multi-colour imaging with blinking-based methods is chal-
lenging as it requires buffer conditions in which all fluoro-
phores optimally blink. The OxEA imaging buffer in combi-
nation with Alexa dyes was found to allow up to three colour 

imaging simultaneously (Nahidiazar et al. 2016). Another 
approach for three colour imaging is through the use of three 
activator-reporter dye pairs that can be activated separately 
but which have the same reporter dye, ruling out chromatic 
aberrations (Testa et al. 2010). Very recently a method called 
excitation-resolved STORM even enabled four colour imag-
ing (Wu et al. 2023). A complicating factor for multi-colour 
SMLM is the need for specialised fitting algorithms (Kim 
et al. 2013; Li et al. 2022b; Shechtman et al. 2016). PAINT 
approaches however (although bound to fixed samples) can 
label with numerous probes sequentially (Ma and Liu 2020).

Post‑processing

Unlike coordinate-targeted techniques (which directly acquire 
their super-resolution image), SMLM requires computation-
ally intensive pre- and post-processing, although efforts are 
made to reduce the computational power required (Babcock 
and Zhuang 2017). Examples of pre-processing steps include 
applying fitting algorithms and correcting for camera artefacts, 
drift and multiple blinking (Lelek et al. 2021). For post-pro-
cessing many different methods are available to segment and 
quantify the composition of nano-clusters (Bond et al. 2022).

Fig. 4   GSDIM/dSTORM and (DNA-)PAINT. a In GSDIM/dSTORM 
(i), all fluorophores are pushed into (long-lived and non-emissive) 
triplet or dark states, typically by applying high laser powers. When 
all fluorophores are ‘off’, the laser power is significantly reduced 
(~ 10 times). (ii) When fluorophores return to the ground state (in a 
stochastic manner), they can absorb and emit again, which will be 
detected. This cycling between on and off states (blinking) is repeated 

until the fluorophore is bleached. Specialised imaging buffers and 
irradiation by UV light are sometimes used to increase/adapt the rate 
at which fluorophores in the ‘off’ state (dark/triplet state) return to 
the ground state. b PAINT and c DNA-PAINT both use exchangeable 
and fluorogenic (only fluorescent upon binding) probes. The binding 
kinetics dictate the stochastic detection of the molecules
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SRM‑compatible labels for chromatin 
research

Important for microscopy studies on chromatin is the pos-
sibility to label the DNA, chromatin-associated proteins, 
and specific epigenetic states. Here, we will review the 
current labelling strategies applicable to SRM. We refer 
to other reviews for a more extensive discussion on other 
labelling aspects and a more elaborate list of fluorophores, 
including small- (Grimm and Lavis 2022), photoswitch-
able- (Chozinski et al. 2014; Endesfelder et al. 2011), 
organic- (Dempsey et al. 2011), live-cell-compatible- (van 
de Linde et al. 2012), STED-specific- (Jeong and Kim 
2022; Kostiuk et al. 2019), and epigenetic-state-probing 
(Stepanov et al. 2022) fluorophores.

DNA labelling

There are various strategies to label DNA with fluorescent 
markers. One method is through the introduction of thymi-
dine analogues such as 5-ethynyl-2′-deoxyuridine (EdU), 
which is inserted into the DNA upon DNA synthesis. EdU 
itself is non-fluorescent and has to be conjugated with a 
dye, such as azide-CF568 or azide-Alexa 647 (Xu and Liu 
2021), where F-ara-EdU was found to be least disruptive 
(Hao et al. 2021). The click chemistry reaction for conju-
gation requires fixation of the cell. Alternatively, the DNA 
backbone can also be labelled in living cells by introduc-
ing already fluorescent nucleotides (e.g. ATTO 633-dUTP, 
ATTO 565-dUTP) through scratch replication labelling 
(SRL) (Schermelleh et al. 2001). Gentle permeabilisation 
to aid the take-up was found to be beneficial (Xiang et al. 
2018). A second strategy is through fluorescently labelled 
oligonucleotides (OligoPaints). The standard method here 
is to fix cells and denature the DNA to allow for hybridi-
sation with fluorescently labelled oligonucleotides (e.g. 
ATTO 655, ATTO 565, AlexaFluor 488), enabling to 
detect specific sequences (Beliveau et al. 2015; Beliveau 
et al. 2017). This method has been successfully applied 
using SMLM to visualise chromatin from single loops 
up to the 3D chromosome (Nguyen et al. 2020; Parteka-
Tojek et al. 2022). One note for careful consideration is 
that this method might induce changes in the chromatin 
structure during the necessary DNA denaturation (Hao 
et al. 2021). Alternatively, genetic engineering approaches 
omit the need for DNA denaturation and enable live cell 
imaging of repetitive genomic loci (Chen et al. 2013) and 
more recently also nonrepetitive sequences (Clow et al. 
2022; Lyu et al. 2022). A third labelling strategy is to 
label the native DNA with groove-binding or DNA inter-
calating dyes, such as DAPI, Hoechst (Bucevičius et al. 

2018), and cyanine-based dyes (e.g. PicoGreen (Benke 
and Manley 2012) and TOTO®-3 (Xu et al. 2020)). DAPI 
is in general not used for SRM applications as Hoechst 
and cyanine-based dyes have better spectral properties 
and are less cytotoxic (Bucevičius et al. 2018). Various 
Hoechst-derived dyes are optimised for live-cell SRM with 
a reduced cytotoxicity, optimised cell permeability, and 
increased fluorogenicity (only fluorescent upon specific 
binding), including JF646-Hoechst (Grimm et al. 2017), 
SiR-Hoechst, Cy5-Hoechst, HoeSR Rhodamine-Hoechst 
isomers, 5-HMSiR-Hoechst (Bucevičius et  al. 2020), 
4-TMR-Hoechst, and 4-580CP-Hoechst. Which label is 
most suitable depends on the application. For example, 
4-TMR-Hoechst and 4-580CP-Hoechst are well suited for 
live-cell imaging due to their increased biocompatibility, 
requiring a 100-fold lower concentration compared to Hoe-
chst-based predecessors (Bucevičius et al. 2020). Also, the 
highly fluorogenic 5-HMSiR-Hoechst is a good candidate 
for SRM live-cell imaging (both STED and SMLM), as 
it has a good DNA binding constant, low toxicity, and a 
400-fold increase in fluorescence upon binding. A fourth 
approach is to label the DNA indirectly through the his-
tone proteins (see ‘Chromatin-associated protein labelling’ 
section). The increased distance between the fluorophore 
and the DNA backbone could slightly reduce the localisa-
tion precision, but in live-cell imaging this distance could 
prevent/reduce imaging induced DNA damage.

Chromatin‑associated protein labelling

Chromatin-associated or interacting proteins can be labelled 
through immunofluorescence labelling (IF) (e.g. histone 
H2B (Ricci et al. 2015)), endogenous or exogenous expres-
sion of a fluorescent protein (Wu et al. 2019), or by the 
expression of a self-labelling enzymatic tag at the target 
molecule which allows live-cell imaging (e.g. histones H2B-
Halo/H2B-SNAP (Nozaki et al. 2017; Ricci et al. 2015)). 
In immuno-fluorescence approaches, the selected second-
ary antibody should be adequate for the SRM technique. 
For STED microscopy, commercial secondary antibodies 
(e.g. from Abberior) allow for straightforward two-colour 
(STAR 580 and STAR 635) or even three-colour aberration-
free imaging when utilising a long Stokes shift dye (STAR 
460L). Other types of STED-compatible dyes include rho-
damines (such as SiR (Lukinavičius et al. 2013), JF585 
(Grimm et al. 2017), TAMRA-6 and MaP probes (Wang 
et al. 2019), Atto 647N and N-cyanorhodamines (Heynck 
et al. 2022)), Alexa Fluor 595, long Stokes shift dyes such 
as YL578 (Jiang et al. 2022), and photoactivatable SiR or 
xanthones dyes (Lincoln et al. 2022; Weber et al. 2021). The 
most frequently used immunofluorescent label in STORM 
microscopy is Alexa Fluor 647 (many distributors), in 
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combination with other Alexa Fluor dyes for multi-colour 
imaging. Also, CAGED dyes (Belov et al. 2009) are a good 
solution for SMLM, as they are non-fluorescent in their 
caged form and become uncaged and fluorescent upon UV 
irradiation. The previously mentioned rhodamines are also 
compatible with SMLM as their blinking properties can 
be tuned by modifying their spirocyclisation (Lardon et al. 
2021).

Instead of IF, self-labelling can be achieved through 
enzyme tags (like Halo, SNAP, and CLIP) engineered to be 
expressed by the target molecule, in combination with fluo-
rescent dyes which bind to these tags (e.g. SiR-Halo, Jane-
lia Fluor® HaloTag® Ligands, YL578-Halo, 580CP-Halo, 
CPY-Halo or SNAP-Cell® 647-SiR). A major advantage 
is that this method allows for live-cell imaging (Butkevich 
et al. 2017; Grimm et al. 2017) and pulse-chase experiments 
(Gautier et al. 2008; Yamaguchi et al. 2009). Images fur-
thermore show significantly less background compared to 
IF, due to the fluorogenic properties of the dyes (Wang et al. 
2019), and the tendency of cells (in live-cell labelling) to 
remove unbound dyes. Alternatively, in bacteria, Chemoge-
netic Tags with Probe Exchange (CPTEs) (Iyer et al. 2021) 
in conjunction with various fluorophores can be used for 
long-term imaging. More recently, exchangeable HaloTags 
ligands have been developed. By allowing the replacement 
of photobleached fluorophores, better resolutions and/or 
long-term imaging can be achieved (Kompa et al. 2023).

Assessing chromatin compaction and epigenetics

Chromatin compaction can be assessed by analysing the DNA 
density directly (Martin et al. 2021), or by using FRET-FISH 
probes (Mota et al. 2022). Often also more indirect methods 
are applied, using transcription activity (Martin et al. 2021) 
or epigenetic histone modifications (Stepanov et al. 2022) as 
indicators. Alternatively, an assay that probes transposase-
accessible chromatin (ATAC) can be used, as the genome 
accessibility relates to its compaction (Xie et al. 2020).

Important considerations for SRM

Technique selection

Which SRM technique is most suitable depends on the 
research question. To aid the selection process, Table 1 com-
pares important aspects of the SRM techniques included in 
this review.

Sample optimisation

With the increased resolution of SRM, the label size and 
degree of labelling significantly influence the final image. 

Therefore, it is recommended to use small labels for SRM 
(FPs, nanobodies, aptamers, affimers, enzymatic tags or 
unnatural amino acids) (Grimm and Lavis 2022; Sahl et al. 
2017). Additionally, the labelling density should be opti-
mised through a titration of the label concentration and/or 
incubation time as under-labelling results in gaps and over-
labelling in blurring of the structure (Fig. 5) (Lau et al. 
2012). The photon budget and signal-to-noise ratio can 
be maximised by (i) minimising the contact of the fluoro-
phore with water (Maillard et al. 2021); (ii) properly storing 
the fluorophore; (iii) adding photoprotective agents to the 
mounting media for fixed samples or (when non-toxic) to 
the medium in live-cell applications (Gong et al. 2019; Noa 
et al. 2021); (iv) applying adaptive-illumination strategies; 
(v) optimising laser-excitation powers, preventing unneces-
sary high bleaching; and (vi) using phenol-red-free media 
when imaging in the red. Other sample optimisations not 
specific to SRM, such as labelling artefacts, are reviewed 
by, e.g. Sograte-Idrissi et al. (2020).

Multi‑colour imaging

To enable bleed-through corrections in multi-colour imag-
ing, the individual colours should be measured in single-
colour samples using the final excitation and detection 
configurations. Additionally, the more red-shifted label is 
typically to a higher degree also excited by the more blue-
shifted excitation laser than vice versa. Therefore, it is rec-
ommended to label the least abundant protein with the more 
red-shifted fluorophore.

Live‑cell imaging

The chromatin structure and dynamics might be perturbed 
by the presence of a fluorescent label or by laser irradiation. 
When light interacts with cells (get absorbed), a cascade of 
energy transfer events can either change molecular structures 
directly, or it can lead to increased concentrations of reac-
tive oxygen species (ROS), which can induce cellular stress, 
alter cellular processes, or lead to (DNA) damage (Ojha and 
Ojha 2021) (Fig. 6a). To minimise this effect, wavelengths 
in the (far-)red should be chosen as these are less absorbed 
than more blue wavelengths (Arai et al. 2015). For exam-
ple, blue light is phototoxic at a 20-fold lower dose than red 
light (Emon et al. 2021; Waldchen et al. 2015) (Fig. 6b). 
Additionally, light-dose-reducing strategies are strongly 
recommended (e.g. Dymin/Rescue for STED (Heine et al. 
2017; Staudt et al. 2011)). Another source for (increased) 
phototoxicity might be the fluorophore itself (Hofmann and 
Weber 2021; Kowalska et al. 2021), which sometimes can be 
solved by using a variant of the fluorophore with a different 
charge or binding kinetics (Bucevičius et al. 2019; Hao et al. 
2021; Kähärä et al. 2022).
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Table 1   Overview of the different SRM techniques discussed. The reported numbers are taken from Bond et al. (2022), Godin et al. (2014), Sahl 
et al. (2017), and Sahl and Hell (2019)

a Obtained axial resolution depends on the axial improvement method (Sahl and Hell 2019). bThe temporal resolution can be significantly 
improved through parallelised acquisition (Bergermann et al. 2015; Bodén et al. 2021; Chmyrov et al. 2013; Lee and Bewersdorf 2021; Masullo 
et al. 2018); however, these setups are not (yet) commercially available. csptPALM can provide dynamic information of single molecules at mil-
lisecond timescale (Manley et al. 2008). dThree colours can be obtained with commercially available fluorophores of which one should be a long 
Stokes shift dye (Sednev et al. 2015), for additional colours lifetime multiplexing could be considered (Frei et al. 2022). ePossibility of imaging 
three or more colours, recently even four colours (Testa et al. 2010; Wu et al. 2023). fThis multi-colour approach is prone to crosstalk between 
colours and needs correcting (Bates et al. 2007)

Fig. 5   The degree of labelling influences the image quality (Lau et al. 2012)
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Chromatin architecture unveiled by SRM

SRM techniques have been successfully utilised to unveil 
the role of the spatial organisation of chromatin at the sub-
diffraction-limited length scale, leading to a better under-
standing of the functioning of DNA, histone modifications, 
and other chromatin-associated proteins. A major benefit of 
SRM techniques is their ability to obtain spatial information 
at near-biomolecular resolution in the native environment 
within individual cells, allowing to observe subpopulations 
or obtain data from a specific cell-cycle state (e.g. cell divi-
sion). Also difficult to obtain using other approaches, but 
shown by SRM, are investigations on how the epigenetic 
state influences chromatin folding (3D-STORM) (Boettiger 
et al. 2016), and mapping of the methylation content of indi-
vidual telomeres, ribosomal genes or centromeres (STED, 
STORM) (Franek et al. 2021). Additionally, chromatin (re)
organisation as a result of diseases or external mechanical 
or chemical cues can be probed (STORM) (Heo et al. 2022; 
Xu et al. 2022).

Chromatin compartmentalisation

Chromatin interaction maps (3C-based methods) have shown 
in population-averaged data that chromatin compartmental-
ises into megabase-scaled topologically associated domains 
(TADs, Hi-C) (Dixon et al. 2012), kilobase scaled loops, and 
even smaller sub-loops (Hi-C) (Rao et al. 2014). These TADs 
have increased chromatin interactions and a higher density 
of promotors and enhancers within the domain, and reduced 
interactions at their borders (Hi-C) (Dixon et al. 2012). 
SRM imaging has demonstrated that chromatin indeed 
compartmentalises, as shown by clusters of dense DNA 
or DNA interacting proteins. Examples of these clusters 
include condensed mitotic chromosome structures (PALM, 
fixed, ~ 70 nm) (Matsuda et al. 2010); nuclear nanostructures 

(2D localisation light microscopy, fixed, < 100 nm) (Bohn 
et al. 2010); nucleosome clutches or compacted domains 
(PALM and STORM, live and fixed, ~ 160 nm) (Nozaki et al. 
2017; Ricci et al. 2015); TAD-like domains (Multiplexed 
3D-STORM FISH compared with Hi-C, fixed, ~ 300 nm) 
(Bintu et al. 2018); elongated-chromatin ‘blobs’ (Deep-
PALM, live, < 100 nm) (Barth et al. 2020); chromocent-
ers (STED, fixed, 90–150 nm) (Erdel et al. 2020); pack-
ing domains (nano-ChIA: multimodal platform including 
STORM, fixed, 200 nm) (Li et al. 2021a); nanodomains 
(STORM, fixed, 115–160 nm) (Xu et al. 2022); and replica-
tion domains (STORM, live, 150 nm) (Xiang et al. 2018). 
Factors of influence on the size estimation of these domains 
are (i) the type of cells used, as the domain size could be 
affected by disease or pluripotency (STORM, live and fixed) 
(Ricci et al. 2015; Xu et al. 2022); (ii) the acquisition time, 
as sub-second remodelling dynamics could lead to an over-
estimation of the size after prolonged imaging (Deep-PALM, 
live) (Barth et al. 2020); (iii) sample preparations and setup 
limitations; and lastly, (iv) an intrinsic heterogeneity in size, 
morphology, and distribution even within the same cell type 
(STORM and Multiplexed 3D-STORM FISH, live and fixed) 
(Nozaki et al. 2017; Su et al. 2020a).

Nucleosome clutches

Using STORM (live and fixed) microscopy, clusters of 
nucleosomes (clutches) were observed (Ricci et al. 2015). 
The clutch size was shown to be highly heterogeneous and 
the median increased upon cell differentiation (STORM, live 
and fixed) (Nozaki et al. 2017; Ricci et al. 2015). Smaller 
clutches typically had a higher degree of acetylation (Ricci 
et al. 2015) and acetylated histone tails led to more loosely 
packed DNA and a decreased nucleosome occupancy. This 
effect was enhanced in nucleosome-rich areas (STORM-
PAINT, fixed) (Otterstrom et al. 2019). Comparing clutches 

Fig. 6   Live-cell-labelling considerations. a Photons can cause a cas-
cade of energy transfer events, resulting in an increased ROS concen-
tration, inducing cellular stress and damage (Ojha and Ojha 2021). b 

Cells absorb less light towards the (far-)red, reducing the phototoxic-
ity by (far-)red light (Emon et al. 2021)
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with similar acetylation densities revealed that the clutch 
size did not influence the DNA density. Small nucleosome 
clutches (30–50 nm) were found to be typically more tran-
scriptionally active as elongated clusters of RNAP II with 
nascent RNA associated with these clutches (STORM and 
STORM-PAINT, fixed) (Castells-Garcia et al. 2022). Inves-
tigating the effect of hypo-osmotic and hypertonic treatment 
on clutch size resulted in respectively reduced and increased 
DNA condensations (STORM and STED, live and fixed) 
(Nozaki et al. 2017; Olins et al. 2020). SRM thus revealed 
how nucleosomes are clustered in clutches of various sizes, 
with acetylated histone modifications preferentially located 
in small, transcriptionally active clutches.

DNA loop formation

Within TADs, chromatin arranges into loops at the kilobase 
length scale (Hi-C) (Rao et al. 2014). One proposed mecha-
nism for loop formation is the loop extrusion model (Alipour 
and Marko 2012). In this model, cohesin is the loop-extrud-
ing factor, leading to a continuously growing loop. The loop 
stops growing when it encounters an insulating boundary 
element, such as the CCCTC-binding factor (CTCF) (Hi-C) 
(Fudenberg et al. 2016). Hi-C and Chromosome Confor-
mation Capture Carbon-Copy (5C) interaction maps were 
able to show that the formation and properties of TADs are 
affected by CTCF, cohesin, and RNA polymerase II (RNAP 
II) (Nora et al. 2017; Rao et al. 2014; Rao et al. 2017). SRM 
enables to investigate the physical size and localisation of 
chromatin (sub)structures and can help to reveal how the 
spatial organisation is affected by these factors.

CTCF transiently interacts with cohesin to form loops

Live-cell 3D-PALM revealed that TAD loops are highly 
dynamic, and only during 8% of the time are found in a 
CTCF-CTCF looped state (Gabriele et al. 2022). Similarly, 
iPALM visualisation of 13-kb-sized loops showed that they 
have a high heterogeneity in their appearance over time. It 
was suggested that this might be a result of cohesin-medi-
ated extrusions and other factors such as nucleosome stack-
ing (Parteka-Tojek et al. 2022). These recent SRM findings 
complement findings using other techniques, which suggest 
that CTCF undergoes transient interactions with cohesin 
(single-molecule in vitro assay; X-ray crystallography; Cap-
ture-C, Hi-C, 4C-seq and integration site mapping sequenc-
ing) (Davidson et al. 2022; Li et al. 2020; Mach et al. 2022).

The role of cohesin in loop formation

In bulk Hi-C studies, the depletion of cohesin appeared 
to result in a disappearance of TADs (Rao et  al. 2017; 
Schwarzer et al. 2017). Single-cell Hi-C, however, revealed 

that TADs were maintained upon cohesion depletion, 
although the domain boundaries did no longer exhibit a 
preferential position towards CTCF/cohesin sites (Bintu 
et al. 2018). Imaging these domains individually using SRM 
revealed that their physical size increased and their smooth-
ness decreased upon cohesion depletion (3D-PALM and 
ZOLA-3D) (Gabriele et al. 2022; Hao et al. 2021).

The role of RNAP II in loop formation

RNAP II is typically located within TADs at the ‘tops’ of 
the loops formed by cohesin (STORM/DNA-PAINT, fixed) 
(Neguembor et al. 2021). RNAP II transcription modulates 
the cohesin distribution and mobility by altering the negative 
supercoiling. Furthermore, transcription decreases the clus-
tering of CTCF (STED, live) (Gu et al. 2020). These studies 
reveal that transcription by RNAP II affects loop dynamics.

The role of other loop interacting factors

Chromatin organisation is also strongly dependent on 
cohesin interacting factors such as WAPL (responsible for 
cohesin unloading). Using Hi-C, it was shown that WAPL 
depletion (leading to cohesin overloading) leads to an 
increased loop size and the vermicellification of chroma-
tin (Bintu et al. 2018; Neguembor et al. 2021; Wutz et al. 
2017). STORM imaging in WAPL depleted cells revealed 
that RNAP II and topoisomerase activity are responsible for 
this vermicellification and that inhibition of either RNAP II 
or topoisomerases impairs loop extrusion (STORM/DNA-
PAINT, fixed) (Neguembor et al. 2021). Taken together, 
SRM on loop structures showed that (i) cohesin mediates 
loop formation; (ii) these loops are highly dynamic, among 
others due to transient interactions between cohesin and 
CTCF; and (iii) the loop structure is affected by the super-
coiling density resulting from RNAP II transcription.

The spatial organisation of transcription factories

Transcription factories, also called transcriptionally active pock-
ets, are transcription-rich chromatin regions marked by clusters 
of RNAP II, transcription factors, and RNA transcripts. These 
factories have sizes below the diffraction limit (40–200 nm) 
(PALM, STORM, STED, live and fixed) (Castells-Garcia et al. 
2022; Cisse et al. 2013; Gu et al. 2020). The RNAP II cluster-
ing in transcription factories is rather short-lived, with an ini-
tial reported average lifetime of ~ 5 s (PALM, live) (Cisse et al. 
2013). Later, endogenous studies (PALM, live) reported similar 
lifetimes of ~ 8 s for differentiated cell lines (Cho et al. 2016) 
and ~ 11 s for an embryonic mouse stem cell line (tcPALM, 
live) (Cho et al. 2018). Upon differentiation of the cells, the 
size and number of these stable clusters decreased (Cho et al. 
2018). Additionally, external stimuli can (indirectly) induce 
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changes in the RNAP II dynamics. For example, nuclear actin 
has been demonstrated to enhance RNAP II clustering (PALM 
and STORM, live and fixed) (Wei et al. 2020). This dynamic 
and transient RNAP II localisation, depending on many factors 
including the pluripotency of the cell, could explain the broad 
distribution of the total number of factories per cell in earlier 
studies.

The spatial organisation of replication domains

In S-phase DNA replication is initiated at replication ori-
gins. Where bacteria only have a single replication origin, 
mammalian cells have many. Using EM, ~ 200 up to ~ 1000 
replication domains (RDs) have been reported (Hozák et al. 
1993; Koberna et al. 2005), all too few to be single replicons 
(locations of replication) based on the replication speed and 
typical S-phase duration in mammalian cells. Hence, the 
presence of multiple replicons within a single RD (Rivera-
Mulia and Gilbert 2016) was suggested. Early SRM (STED) 
allowed to visualise these RDs in their cellular environment 
revealing a much higher number of RDs per cell (~ 5000) 
with a size of about ~ 150 nm (fixed) (Cseresnyes et al. 
2009). With an estimated 25 k–30 k number of replicons 
per cell, still about five replicons were expected to be pre-
sent inside each RD. Later, with an improved resolution 
(~ 20 nm, STORM) it could be shown that these 150–160-
nm RDs comprise of four replication forks (four replicons) 
each spaced 63 nm apart (fixed) (Xiang et al. 2018). Nucleo-
some clutches colocalised with these RDs and moved coher-
ently (PALM, live) (Nozaki et al. 2017; Xiang et al. 2018). 
Active RDs were furthermore shown to have specific loca-
tions during S-phase, under the influence of CTCF (CTCF 
depletion led to a random distribution) (STORM, fixed) (Li 
et al. 2021b; Su et al. 2020b). Where in early S-phase active 
RDs were found more centrally in the nucleus and comprised 
of four replicons on average, upon progression to mid and 
late S-phase the RD size was found to increase, containing 
respectively 7 and 10 replicons per RD (STORM, fixed) (Su 
et al. 2020b).

Conclusion and outlook

Here, we presented an overview of SRM, how best to apply 
it to chromatin studies, and through a selection of exam-
ples the versatility of SRM for chromatin studies was illus-
trated. The biggest advantage of SRM is the ability to probe 
chromatin organisation in its native cellular environment, 
allowing even live-cell chromatin dynamics studies. The 
high molecular specificity combined with the high resolution 
enable to detect the molecular composition of sub-diffraction 
sized compartments directly and without averaging.

The last decade significant advances with regard to 
super-resolution microscopes, (live-cell) labelling, and 
image analysis have been achieved, enabling to study chro-
matin at resolutions which allow to unravel its mechanistic 
functioning. For coordinate-targeted (e.g. STED) methods, 
these advances include dose-limiting acquisition strategies, 
non-toxic live-cell labelling methods, parallelisation, beam-
shaping for 3D imaging, and labels for many-colour imag-
ing. For stochastic methods (e.g. SMLM), these optimisa-
tions include the development of new labels, faster cameras, 
enhanced localisation-fitting algorithms, better drift correc-
tion, and extended multi-colour approaches.

One method not reviewed here, as it has not been applied 
to chromatin studies yet, is the newly developed MINimal 
fluorescence photon FLUXes (MINFLUX) (Balzarotti 
et al. 2017; Gwosch et al. 2020). MINFLUX is sometimes 
described as a hybrid technique that combines principles 
of both the coordinate-targeted and stochastic-localisation 
methods. Due to the unprecedented lateral and axial resolu-
tion of 1–3 nm both in fixed and living cells, and a temporal 
resolution of ~ 50 µs in single particle tracking, we expect 
this method to become of great value for chromatin research 
in the (near) future. After the initial development of MIN-
FLUX, other approaches that all localise single emitting 
fluorophores have been developed. As these techniques are 
not (yet) commercially available, we refer to another review 
(Reymond et al. 2020) for a more in-depth method evalua-
tion. As each technique has specific advantages and limita-
tions, a careful consideration of the method of choice should 
be made based on the research question. Future technical 
developments in either the microscope, the labelling, or the 
analysis might require a reconsideration.

The emergence of strategies where SRM techniques are 
used in conjunction with other complementing methods is 
also promising for the chromatin field. Examples include the 
combination of expansion microscopy (ExM) with STED 
(fixed cells only) (Gao et al. 2018); SMLM combined with 
EM (srCLEM or srCryoCLEM) (Dahlberg and Moerner 
2021; Derosier 2021; Jeong and Kim 2022); SRM with 
single-cell spatially resolved transcriptomics (Larsson et al. 
2021); and utilising deep learning approaches for optimised 
SRM performance (Narayanasamy et al. 2022; Wang and 
Rivenson 2018). An example of a multi-modal imaging 
technique that has been specifically crafted for studying the 
chromatin structure is ChromSTEM (Li et al. 2022a) which 
has also been combined with STORM and Partial Wave 
Spectroscopy (PWS) in a platform called nanoscale chro-
matin imaging and analysis (nano-ChIA) (Li et al. 2021a).

With these recent technological advances, SRM is expected 
to become an even more important tool for investigating chro-
matin organisation under native cellular conditions at unprec-
edented spatial and temporal resolutions, providing a better 
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understanding of how the chromatin structure enables its 
functioning and how important processes like transcription, 
replication, and repair are influenced by their localisation.
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