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Abstract
Parasitism evokes adaptive physiological changes in the host, many of which take place through gene expression changes. This
response can be more or less local, depending on the organ or tissue affected by the parasite, or else systemic when the parasite
affects the entire host body. The most extreme of the latter cases is intragenomic parasitism, where the parasite is present in all
host nuclei as any other genomic element. Here, we show the molecular crosstalk between a parasitic chromosome (also named B
chromosome) and the host genome, manifested through gene expression changes. The transcriptome analysis of 0B and 1B
females of the grasshopper Eyprepocnemis plorans, validated by a microarray experiment performed on four B-lacking and five
B-carrying females, revealed changes in gene expression for 188 unigenes being consistent in both experiments. Once discarded
B-derived transcripts, there were 46 differentially expressed genes (30 up- and 16 downregulated) related with the adaptation of
the host genome to the presence of the parasitic chromosome. Interestingly, the functions of these genes could explain some of the
most important effects of B chromosomes, such as nucleotypic effects derived from the additional DNA they represent, chemical
defense and detoxification, protein modification and response to stress, ovary function, and regulation of gene expression.
Collectively, these changes uncover an intimate host-parasite interaction between A and B chromosomes during crucial steps
of gene expression and protein function.

Keywords B chromosome . Gene expression .Microarrays . qPCR . Transcriptome

Introduction

Parasitism is very frequent in nature, and can be disguised in
multiple forms and at several levels, from genes to species. As
part of the molecular crosstalk between the different partners,
parasites evoke gene expression changes in the host (Soumana
et al. 2014). The most conspicuous parasites usually focus on
a discrete organ or stage of host life cycle, and as such, host
response can be limited to the affected parts. However,
intragenomic parasites are present in all host cell nuclei;
hence, host response needs to be systemic. Supernumerary
(B) chromosomes are a frequent genomic component of a
wide variety of eukaryotes, behaving as parasitic elements
whose spread in natural populations is based on
transmissional advantage (drive), following the typical arms
race dynamics of host-parasite symbioses (Camacho et al.
2000). As intragenomic parasites, B chromosomes can trigger
gene expression changes at any stage of host ontogeny. On
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this basis, B chromosomes constitute an excellent model to
shed light upon intragenomic adaptive changes in gene ex-
pression during parasitism.

Up to 12 years ago, the only DNA sequences known on B
chromosomes were repetitive DNA sequences such as satellite
DNA, ribosomal DNA, and transposable elements (TEs)
(Camacho 2005). However, from 2005 onwards, protein-
coding genes or pseudogenes have been found in the B chro-
mosomes of several species (Graphodatsky et al. 2005; Teruel
et al. 2010; Yoshida et al. 2011; Martis et al. 2012; Trifonov
et al. 2013; Banaei-Moghaddam et al. 2013; Valente et al.
2014; Huang et al. 2016; Carmello et al. 2017; Ma et al.
2017; Navarro-Domínguez et al. 2017a, b). The general belief
of genic inactivity of B chromosomes (Camacho et al. 2000)
has also changed during last years by the findings of transcrip-
tion of B chromosome sequences (Leach et al. 2005; VanVugt
et al. 2005; Ruiz-Estévez et al. 2012; Carchilan et al. 2009;
Zhou et al. 2012; Trifonov et al. 2013; Banaei-Moghaddam
et al. 2013, 2015; Valente et al. 2014; Huang et al. 2016; Ma
et al. 2017; Navarro-Domínguez et al. 2017a, b).

Gene activity of B chromosomes can potentially elicit a
gene regulation response from the host genome (i.e., A chro-
mosomes), and it has been investigated in the parasitic wasp
Nasonia vitripennis (Akbari et al. 2013), maize (Huang et al.
2016), and rye (Ma et al. 2017) by means of comparative
transcriptome analysis of B-carrying and B-lacking individ-
uals. In N. vitripennis, transcriptome analysis in testes led to
the identification of nine transcripts lacking homology to any
known DNA sequence, which were expressed only in the B-
carrying transcriptome and, by means of fluorescence in situ
hybridization, Akbari et al. showed that at least three of them
were physically located in the B chromosome (i.e., the pater-
nal sex ratio (PSR) chromosome). Contrary to their expecta-
tions, they did not find any traces of gene expression changes
associated to PSR chromosome presence in relation with the
known effects of this B chromosome, such as chromatin struc-
ture or condensation, transposable elements, or small RNA
regulation pathways (Akbari et al. 2013). In maize, B chro-
mosome presence influences A-genome transcription, with
130 differentially expressed genes mainly involved in cell
metabolism and nucleotide binding (Huang et al. 2016).
Differential expression of genes related with metabolism and
ATP synthesis has also been reported for B-carrying rye plants
(Ma et al. 2017). These latter authors suggested that physio-
logical effects, associated with the presence of Bs, may partly
be explained by the activity of B-located genes or
pseudogenes.

Almost all natural populations of the grasshopper
Eyprepocnemis plorans in the circum-Mediterranean region
carry B chromosomes (López-León et al. 2008). The presence
of a same B variant (B1) in populations from Spain, Morocco,
Tunisia, and Sicily suggests a recent spread of B chromo-
somes into these areas (Cabrero et al. 2014). The high success

of B chromosomes in this species results from their transmis-
sion advantage during female meiosis (Zurita et al. 1998) in
spite of slight elimination during spermiogenesis (Cabrero
et al. 2018). Although the presence of these B chromosomes
does not influence body size (Camacho et al. 1980; Martín-
Alganza et al. 1997), some endophenotypic effects have been
found on the activity of the nucleolar organizer regions
(NORs) (Cabrero et al. 1987; López-León et al. 1995; Teruel
et al. 2007), chiasma frequency (Camacho et al. 2002), egg
fertility and clutch size (Zurita et al. 1998; Bakkali et al. 2010),
spermatid formation (Teruel et al. 2009), and heat shock pro-
tein 70 (Hsp70) level (Teruel et al. 2011).

B chromosomes in E. plorans are able to transcribe their
ribosomal DNA and organize a nucleolus (Ruiz-Estévez et al.
2012), but this occurs only in a minority of males in most
populations (Ruiz-Estévez et al. 2013) and the relative
rRNA contribution of the B chromosome is insignificant com-
pared to that of A chromosomes (Ruiz-Estévez et al. 2014),
suggesting that B chromosomes in this species are highly re-
pressed. However, our recent finding of ten protein-coding
genes residing in the B chromosome of this species, six of
which were actively expressed (Navarro-Domínguez et al.
2017a), indicates that B chromosomes are not so silenced as
previously thought, and suggests the possibility that a
transcriptomic crosstalk may be operating between A and B
chromosomes in B-carrying individuals.

To investigate this interesting possibility, we examine here
changes in genome-wide gene expression patterns associated
with the presence and absence of B chromosomes. To do so,
we used two different techniques (transcriptome and microar-
rays analyses) on two types of samples (whole body and ova-
ries) from two populations harboring two different B chromo-
some variants, namely B2 and B24, the latter being derived
from the former (Henriques-Gil and Arana 1990).

Materials and methods

Materials

E. plorans individuals were collected in October 2012 at the
Torrox (Málaga) and Salobreña (Granada) populations, har-
boring the B24 and B2 variants, respectively. All of themwere
collected the same day and were adults.

The number of B chromosomes was determined by C-
banding of interphase hemolymph nuclei in females
(Cabrero et al. 2006). B chromosome presence/absence was
also confirmed by PCR amplification of the B-specific SCAR
marker described in Muñoz-Pajares et al. (2011) on genomic
DNA.

Complete bodies of two females from Torrox (0B and 1B)
were used for the RNA Illumina sequencing experiment; both
had been raised in our lab from individuals collected in
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October 2012. Nine females from Salobreña (four 0B and five
1B) were dissected the same day of field collection in order to
obtain their ovaries which were flash frozen in liquid nitrogen
and stored at − 80 °C until RNA extraction for the microarray
experiment.

Illumina sequencing

Figure 1 shows a summary of the molecular methods
employed here. Total RNA was extracted from each of the
two females, one lacking B chromosomes (0B) and the other
carrying 1B. Both libraries were prepared and sequenced by
Macrogen (Inc.) with 1 μg of each total RNA in a Illumina
HiSeq2000 platform following manufacturer’s standard pro-
tocol, each yielding about 5Gb of paired-end reads (2 ×
101 nt). Illumina sequences are available in NCBI SRA data-
base under accession numbers SRR2969416 (RNA_0B) and
SRR2969417 (RNA_1B).

Transcriptome assembly, annotation, and differential
expression

De novo transcriptome assembly was carried out using Trinity
software release 20131111 (Grabherr et al. 2011). Read prep-
aration prior to assembly and downstream analysis of the de
novo transcriptome were performed following the guidelines
provided byHaas et al. (2013).We used Trimmomatic (Bolger
et al. 2014) to remove adapters, low quality or N bases with

quality lower than Q3 at the beginning and the end of the
reads, nucleotides with an average quality lower than Q15 in
a sliding window of four bases, and those reads which
remained smaller than 36 bases long.

Prior to assembly, we normalized the libraries by k-mer
coverage in order to reduce redundant information from the
deep sequencing reads, with the aim of making assembly eas-
ier, shortening computational time, increasing the chance for
detection of rare transcripts, and avoiding bias derived from
differences in expression between genes (Haas et al. 2013). For
this purpose, we used the normalize_by_kmer_coverage.pl
script provided by Trinity with the –JM 50G, –max_cov 30,
–pairs_together, and –PARALLEL_STATS parameters. This
approach extracts k-mers with the Jellyfish algorithm
(Marçais and Kingsford 2011) so that each transcriptome read
is probabilistically selected based on its median k-mer cover-
age value and the targeted maximum coverage value (Haas
et al. 2013). Reads from the two libraries (0B and 1B) were
assembled as a pooled data set, in order to assemble a reference
de novo transcriptome. Assembled sequences being shorter
than 200 base pairs were discarded.

Contamination in the de novo assembled transcriptome was
examined using the standalone version of DeconSeq
(Schmieder and Edwards 2011). This program aligns the se-
quences of our transcriptome to a database containing se-
quences from possible sources of contamination, using BWA
(Li and Durbin 2009) and discarding matched sequences. We
ran this software using the viruses, bacteria, and human

Fig. 1 Methods workflow for the present research
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databases provided by the developers, plus two custom data-
bases built from the genomes of Saccharomyces cerevisiae and
Arabidopsis thaliana, which were downloaded from the NCBI
FTP server (ftp://ftp.ncbi.nlm.nih.gov/genomes/). Subsequent
analyses were carried out with the decontaminated assembly.

Functional annotation was done following the Trinotate
(release 20140708) pipeline (Grabherr et al. 2011). Protein-
coding sequences (CDS) were predicted using TransDecoder
(Haas et al. 2013), detecting open reading frames (ORFs) with
300 bp minimum length. Sequence homology search was per-
formed with BLASTX of the transcripts and BLASTP
(Altschul et al. 1990, 1997) of the predicted proteins against
UniProtKB/Swiss-Prot and UniProt Reference Clusters
(UniRef) databases (Uniprot Consortium 2014), using default
settings. In addition, protein domains were analyzed with
HMMER (Finn et al. 2011) and PFAM (Punta et al. 2011).

Gene function classifications were performed according to
two standardized methods: Gene Ontology (GO) (Ashburner
et al. 2000) and Eukaryotic Orthologous Groups (KOG)
(Tatusov et al. 2003). GO assignments to predicted proteins
were performed with Trinotate, and KOG classification was
performed with the WebMGA software (Wu et al. 2011),
searching the KOG database of NCBI.

In addition, we screened the de novo assembly tran-
scriptome for known transposable elements (TEs), by means
of RepeatMasker (Smit et al. 1996) in a database including
TEs described in Locusta migratoria (data obtained from
Repbase, Jurka et al. 2005).

Trinity output consists of a set of sequences (called Biso-
forms^ in Trinity release 20131111, but we will call them
simply Bsequences^ to avoid confusion) grouped into Bclus-
ters^. In the case of protein-coding sequences, all sequences
included in the same cluster and coding for homologous pro-
teins will be considered as sequence variants of the same gene,
i.e., a unigene. The sequences within unigenes being most
similar to the homologous sequences in the annotation data-
base were used as representative when needed. In case of
sequences showing homology with transposable elements,
we grouped those showing 80% or higher similarity using
CD-HIT-EST (Fu et al. 2012), with default options except -c
0.8, in order to remove redundancy and assembly artifacts.
Sequences of protein-coding genes putatively located in the
B chromosome were individually inspected.

Differential expression analysis based on Illumina
sequencing

For differential expression analysis, Illumina reads were
mapped against the reference transcriptome in order to get
an estimate of read abundance for each gene or isoform.
Prior to mapping, libraries were trimmed with Trimmomatic
(Bolger et al. 2014), in order to remove adapters, bases with
quality lower than Q3 in the beginning and the end of the read,

and bases with an average quality lower than Q15 in a sliding
window of four bases. After trimming, reads that became
smaller than 36 bases long were discarded. Mapping was per-
formed using the Bowtie algorithm (Langmead et al. 2009)
and read abundance per gene and sequence was estimated by
RSEM (Li and Dewey 2011) and expressed in FPKM (frag-
ments per kilobase per million fragments mapped).
Differential expression was analyzed using edgeR (Robinson
et al. 2010). RSEM, Bowtie, and edgeR were used as imple-
mented in the Trinity pipeline (Haas et al. 2013).

Differential expression analysis based on microarrays

For microarray analysis, we used nine females (four 0B and
five 1B) from Salobreña which were hybridized separately in
three 3 × 1.4 M custom NimbleGen microarrays. Given that,
in this species, B chromosome drive takes place during female
gametogenesis, any effect the B chromosome could have on
the transcriptome would be more conspicuous and interesting
in the ovaries. We extracted total RNA from the ovaries using
the RNeasy Lipid Tissue Mini Kit (Qiagen). Samples were
treated with DNAse I in a column as described above.
Quality and absence of DNA contamination was verified in
an Agilent 2100 Bioanalyzer using RNA Nanochips (Agilent
Technologies). RNA quantity was determined in a NanoDrop
ND-1000 spectrophotometer. 62.5 ng of RNA, which was the
maximum quantity available from the least concentrated sam-
ple, was reamplified and retrotranscribed with a TransPlex
Whole Transcriptome Amplification Kit (Sigma), following
manufacturer’s instructions and the recommendations provid-
ed in the NimbleGen Arrays User’s Guide (Gene Expression
Arrays v6.0).

NimbleGen Custom 3 × 1.4 M Gene Expression arrays
were designed using 434,838 E. plorans sequences, obtained
by the assembly of the Illumina reads with TransABySS soft-
ware (Robertson et al. 2010), which are available at Figshare
(https://figshare.com/s/ddedc61cd7eefa716eec). Probe length
was 60 bp. Layout was outsourced to NimbleGen. Labelling,
hybridization, washing, and scanning of the arrays was
performed following the instructions in the NimbleGen
Arrays User’s Guide for gene expression arrays on an MS
200 microarray scanner.

To allocate expression values from the microarrays to the
Trinity-assembled transcriptome, we searched for homology
between the 434,838 TransABySS-assembled sequences used
for building the microarrays and the 73,889 sequences assem-
bled by Trinity, by means of BLASTN (Altschul et al. 1990).
Considering the number of sequences, each Trinity contig
could show homology with 6 TransABySS contigs, on aver-
age. Therefore, for each Trinity sequence, the microarray ex-
pression values from up to 20 sequences showing high simi-
larity (E value < 1e-100) were averaged.
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RMA normalization of the microarray data was performed
with the oligo R package (Carvalho and Irizarry 2010) and the
differences in expression between the two groups were
assessed by a t test performed with the limma R package
(Smyth 2005). Data analysis was performed following the
steps described for NimbleGen arrays in the related vignette
of the oligo package. Both packages are available in
Bioconductor (Gentleman et al. 2004).

qPCR validation of microarray differential expression
results

To increase the reliability of microarray results, eight
genes (AIG1, DCR1, MYSA, RIN2, NRX4, RDX, S39AE,
and SY65) were selected for qPCR validation, using
cDNA from the same 9 samples hybridized on the micro-
arrays. These genes were chosen on the basis of being
representative of the various functional groups that we
described in the set of differentially expressed genes
(DEGs), as well having diverse expression patterns and
a range of expression fold-change. Primer design and
qPCR were carried out as described in Navarro-
Domínguez et al. (2016, 2017a, b), and are shown in
Online Resource 1. qPCR was performed in a Chromo4
real-time PCR thermocycler (BioRad), using SensiMix
SYBR Kit (Bioline). Efficiency for each primer pair was
calculated by a standard curve performed with serial 1:10
dilutions. Relative expression quantities were calculated
using each gene’s efficiency, referred to a calibrator sam-
ple and normalized by the geometric mean of two refer-
ence genes (actin and RP49), as described in Navarro-
Domínguez et al. 2016.

Results

Illumina sequencing and de novo transcriptome
assembly

Illumina sequencing generated 35,345,561 paired-end reads
for the RNA_0B library and 27,247,068 for the RNA_1B
library, implying about 0.74x and 0.64x coverage for gDNA,
considering a haploid genome size of 10.525Gb for the 0B
individual and 11.885Gb for the 4B individual, according to
Ruiz-Ruano et al. (2011).

After removing potential contaminants, the de novo assem-
bled transcriptome included 73,889 sequences grouped into
45,555 unigenes. Sequence length ranged from 200 to
19,141 bp, with 788 bp median sequence length and N50 =
2302. For the unigenes, median length was 485 bp and N50
was 1702. A comparison of the assembly before and after
decontamination demonstrated a low contamination level (~
0.65%). A summary of Illumina sequencing results and as-
sembly and decontamination statistics is shown in Table 1.
The de novo assembled E. plorans transcriptome can be
accessed in Figshare at https://doi.org/10.6084/m9.figshare.
3408580.v3

Functional annotation of E. plorans transcriptome

About 42% of the 45,555 unigenes showed significant
similarity (E value < 10e-5) with proteins in Uniprot,
Uniref90, or both. In most cases (~ 45%), a single poten-
tial coding sequence (CDS) was found, and a high per-
centage (~ 81%) of the sequences with a single CDS could
be assigned to one or more Gene Ontology terms based on

Table 1 Summarized statistics
from Trinity assembly before and
after removing potential
contaminations with DeconSeq

Item Type Before DeconSeq After DeconSeq

Number of sequences Transcripts 74,378 73,889

Genes (isoform clusters) 45,633 45,555

N50 Transcripts 2330 2302

Longest isoform per gene 1703 1702

Max. length Transcripts 21,010 19,141

Longest isoform per gene 21,010 19,141

Min. length Transcripts 201 201

Longest isoform per gene 201 201

Average length Transcripts 1325.27 1314.8

Longest isoform per gene 914.75 914.65

Median length Transcripts 793 788

Longest isoform per gene 485 485

Total assembled bases Transcripts 98,571,226 97,149,070

Longest isoform per gene 41,742,580 41,666,905

Percent GC 40.37 40.24
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BLAST matches to sequences with known function. In
other cases, more than one CDS (~ 27%) or no potential
CDS (~ 28%) were found. This could be due to the ex-
pression of pseudogenes with fragmented CDS or to se-
quencing, assembling, or ORF prediction artifacts, and
this was taken into account for further analysis. The re-
maining 58% of the unigenes did not show significant
homology with known coding proteins, 91% of them be-
ing apparently non protein-coding transcripts (i.e., lacking
a CDS).

Summarizing, we found 18,999 unigenes with BLAST
hits, 13,570 of which carried one or more CDSs, and 2429
unigenes carrying a putative CDS but failing to show BLAST
hits, whereas a high number of transcripts (24,127) did not
bear any predicted CDS and neither show BLAST hits to
known proteins (Fig. 2a).

In addition, we screened the de novo assembled tran-
scriptome for TEs using RepeatMasker. The number of
unigenes showing homology with the TEs described in
Locusta migratoria (data obtained from Repbase, Jurka et al.
2005) was 5555 (i.e., 12% of total unigenes), the most fre-
quent being Mariner/Tc1 (923), Penelope (749), and RTE
(638) (Fig. 2b).

B chromosome presence triggers differential
expression for 188 unigenes

According to edgeR results, we found that 24,462 sequences
(grouped in 16,013 unigenes) showed significant differential
expression between 0B and 1B females (p < 0.05). We vali-
dated these transcriptome results with a microarray experi-
ment performed on females from a different population
(Salobreña) and using RNA from the ovary instead of the
whole body. The t test performed on microarray data resulted
in 1614 differentially expressed sequences (grouped in 1202
unigenes) (p < 0.05) (see detailed results in Online Resource
2). Statistical corrections for multiple tests (e.g., Bonferroni)
would erase significance for all but one contig showing ho-
mology with the retrotransposable element CR1 and three
non-annotated sequences. Alternatively, we intersected the
significant results obtained in the transcriptome and microar-
ray experiments and considered as significant gene expression
changes only those being present in both cases and in the same
direction. This means that we actually tested differential ex-
pression in ovary. Since the B-carrying females used for the
transcriptome and microarray experiments carried different B
chromosome variants (B24 and B2, respectively), we can infer

Fig. 2 Overview of E. plorans transcriptome annotation. a Results of
BLAST searches in UniProtKB/Swiss-Prot and UniProt Reference
Clusters (UniRef) databases. b Number of Trinity unigenes annotated

by RepeatMasker as different families of Transposable Elements in the
E. plorans transcriptome
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that the changes observed following our approach are com-
mon to both kinds of B chromosomes.

A comparative analysis of the identity of these sequences
between the transcriptome and microarray samples revealed
that 535 sequences showed significant differential expression,
258 of which showed opposite expression patterns, i.e., they
were upregulated according to one of the analyses and down-
regulated according to the other. The remaining 277 sequences
(grouped in 188 unigenes) showed matching expression pat-
terns in both analyses, thus representing gene expression
changes associated with the presence of B chromosomes tak-
ing place in both analyzed populations (Fig. 3). Remarkably,
246 of these differentially expressed sequences (161 unigenes,
i.e., 89%) were upregulated in the presence of the B

chromosome, whereas only 31 sequences (27 unigenes, i.e.,
11%) were downregulated (Table 2).

Among the 188 unigenes corresponding to the differential-
ly expressed sequences, 95 unigenes (122 sequences) failed to
show homology with any protein described in Uniprot or
Uniref90 for any organism or repetitive element described
for L. migratoria in Repbase. However, 42 out of the 93 re-
maining unigenes (66 sequences) showed homology with
transposable elements, and the remaining 51 unigenes (89
sequences) showed homology with protein-coding genes de-
scribed in Uniprot, Uniref90, or both (Table 2). This low pro-
portion of annotations was undoubtedly due to the absence of
a fully annotated genome in E. plorans or other grasshopper
species, since the recently published genome of L. migratoria

Fig. 3 Differential expression
analysis of B-carrying and B-
lacking samples. Volcano plots
(fold-change vs. statistical
significance) for transcriptome (a)
andmicroarray (b) data. MA plots
(fold-change vs. mean
expression) for transcriptome (c)
and microarray (d) data in
E. plorans. Statistical significance
value of differential expression
obtained in the microarray (x-
axis) and in the transcriptome (y-
axis) analysis (e). Fold-change of
differential expression obtained in
the microarray (x-axis) and in the
transcriptome (y-axis) analysis
(f). Colored dots represent the
values of the sequences that were
differentially expressed (p < 0.05)
in coincident expression patterns
in both analysis. Upregulations
are labeled in green and
downregulations in orange. Note
the higher number of green dots,
indicating that B chromosome
presence causes a general increase
in gene expression
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is still in the draft stage (Wang et al. 2014). Our subsequent
interpretation of these results is thus conditioned by this partial
annotation. Anyway, we will concentrate efforts on possible
functional meaning.

Host genome adaptation for B chromosome presence
stands on differential expression for 46 unigenes

Assuming that the five differentially expressed unigenes lo-
cated in the B chromosome (i.e., CIP2A, CKAP2, CAP-G,
KIF20A, and MYCB2) showed upregulation due to the tran-
scription of B-located copies (Navarro-Domínguez et al.
2017a), we can delimit gene expression changes in the host
genome, associated with the presence of the parasitic chromo-
some, to 46 unigenes (30 up- and 16 downregulated), after
discarding these five unigenes. We then analyzed the GO
terms associated with these 46 unigenes and interpreted them
as gene expression changes that the parasitic chromosome
triggers on the host genome. They were related with post-
transcriptional gene expression regulation, endoplasmic retic-
ulum unfolded protein response and endoplasmic reticulum
stress, post-transcriptional gene silencing via small RNA,

histone-methyltransferase activity, DNA conformation
change, protein kinase activity, and regulation of cell death
(see Online Resource 3). Remarkably, some of these terms
define expected functional consequences of the crossfire be-
tween the genome and the parasitic chromosome (see below).
Most of these functions were also apparent in terms of the
KOG classification (Fig. 4). Surprisingly, no gene expression
changes in the host genome were related with cell cycle and
cell division (KOG class D), in contrast with some of the B-
located genes (Navarro-Domínguez et al. 2017a).

Dramatic upregulation of TEs in the B-carrying
transcriptome

About 22% of the 188 unigenes showing differential expres-
sion in B-carrying ovaries were annotated as TEs (Table 2).
Among them, we foundMariner/Tc1 (12), RTE (7), SINE (4),
Unknown (3),Daphne (3), Penelope (3), DNA (2), Gypsy (2),
CR1 (1), hAT (1), L2 (1), R1 (1), Sola (1), and Vingi (1).
Remarkably, 40 out of these 42 unigenes showed upregula-
tion, and only two (one Daphne and one Mariner/Tc1 se-
quences) showed downregulation.

qPCR validation

To validate the microarrays results, eight DEGs (AIG1,DCR1,
MYSA, RIN2, NRX4, RDX, S39AE, and SY65) were selected
for quantitative PCR validation. All of the selected genes but
RIN2 showed concordant expression patterns between the mi-
croarray and qPCR results. Despite this single discordant val-
ue, there was a highly significant positive linear correlation
(R2 = 0.6732; p = 0.0151) among the computational fold-

Table 2 Summary of annotation for the differentially expressed
unigenes

Item Annotated CDS Non-
annotated

TEs Total

Upregulated 35 86 40 161

Downregulated 16 9 2 27

Total 51 95 42 188

TE, transposable element

Fig. 4 Number of differentially expressed unigenes, in the host genome,
within each KOG class, defined as follows: A, RNA processing and
modification; B, chromatin structure and dynamics; J, translation,
ribosomal structure, and biogenesis; K, transcription; M, cell
wall/membrane/envelope biogenesis; O, post-translational modification,
protein turnover, chaperone functions; T, signal transduction

mechanisms; U, intracellular trafficking and secretion; W, extracellular
structures; Z, cytoskeleton; C, energy production and conversion; G,
carbohydrate metabolism and transport; I, lipid transport and
metabolism; P, inorganic ion transport and metabolism; Q, secondary
structure; R, general functional prediction only; S, function unknown
(see also Online Resource 3)
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change calculated from the microarray data and the experi-
mental fold-change measured by qPCR data (Fig. 5), giving
strong support to microarray results. RIN2 exhibits low levels
of change in the microarray data, which is known to be an
important factor in the lack of concurrence between methods
(Morey et al. 2006).

Discussion

B chromosomes are intragenomic parasites being in intimate
contact with host genes within the same nuclei, for which rea-
son they have the chance to elicit a true transcriptomic arms
race with A chromosomes. Our present results show that this is
the case. Recent transcriptomic analyses in interspecific para-
sitisms have unveiled gene expression changes mostly focused
on parasite attack and host resistance (for instance, see
Nishimura et al. 2015 and references therein). The
transcriptomic signature of an intragenomic parasitism, shown
here for B-carrying ovaries, shows that the presence of a para-
sitic chromosome evokes a response in the host genome imply-
ing gene expression changes associated with the presence of
additional DNA (nucleotypic effects), sensing cellular stress,
detoxifying and immune defense, ovary function, and regula-
tion of gene expression (Fig. 6). These changes can be viewed
as a manifestation of a molecular arms race between the para-
sitic and host counterparts of a same genome, which parallels
population dynamics pathways (Camacho et al. 1997).

The presence of additional DNA in the form of B chromo-
somes can passively derive in a series of sequence-
independent physiological changes known as nucleotypic

effects (Bennett 1971). In several cases, B chromosomes have
been shown to increase cell volume and slow cell division (for
review, see Jones and Rees 1982). As Gregory (2000)
remarked, Bthe addition of only one or two B chromosomes
appears not to have a noticeable effect on cell size (John and
Jones 1970), perhaps indicating that cells are able to compen-
sate for the effects of these selfish elements.^ In E. plorans,
cell or nucleus size has not been measured, but body size,
which is frequently positively correlated with cell size
(Gregory 2002), has been measured twice (Camacho et al.
1980; Martín-Alganza et al. 1997) and no association with
the number of B chromosomes was found. It is thus conceiv-
able that some of the observed gene expression changes are
actually revealing how B-carrying cells cope with the pres-
ence of this extra DNA in terms of signal and molecule trans-
port, intercellular communication and trafficking, membranes,
ion transport, signal transduction mechanisms, intracellular
trafficking, secretion, and vesicular transport.

For instance, the observed downregulation of PI3K2 in B-
carrying E. plorans females (Online Resource 3) could be a
response to maintain cell size in spite of the extra DNA added
by the B chromosome, as this gene is involved in the regula-
tion of cell morphogenesis by promoting cell growth (Leevers
et al. 1996;Weinkove et al. 1999), and also in the regulation of
exaggerated trait growth in insects (Lavine et al. 2015). It is
also conceivable that the presence of the extra B-DNA elicits
some changes in how cells communicate themselves, and this
is reinforced by the observed expression changes in genes
with functions related with membranes and ion transport, such
as S39AE and IL16 (Online Resource 3), which play a role in
parasitic infections (Pappu et al. 2011), in strong parallelism

Fig. 5 qPCR validation results
for 8 selected DEGs. The x-axis
represents the log2FC obtained by
qPCR and the y-axis represents
the log2FC values derived from
the microarray analysis for each
gene (labeled dots). Note that the
log2FC shows the same trend in 7
out of the 8 genes, meaning that
they show concordant expression
pattern in both techniques. The
blue line marks the regression line
and the shadowed area delimits
the 95% confidence interval

Chromosoma (2019) 128:53–67 61



with other types of parasitism (for instance, see Nishimura
et al. 2015 and references therein).

It was highly remarkable the abundance of gene expres-
sion changes dealing with chemical defense and detoxifica-
tion observed in presence of the B chromosome in
E. plorans (Online Resource 3). Metazoan genomes contain
many genes involved in responses to environmental
stressors. Chemical defense genes include cytochromes
P450 and other oxidases, various conjugating enzymes,
ATP-dependent efflux transporters, oxidative detoxification
proteins, and transcription factors that regulate these genes
which, as a whole, account for more than 400 genes in the
sea urchin genome (Goldstone et al. 2006). P450 upregula-
tion in B-carrying E. plorans females could thus be a re-
sponse of the host genome against parasitic chromosomes.
However, the downregulation of a related gene, Cytochrome
P450 6A1 (CP6A1) (Online Resource 3), makes it difficult
to assess the net effect of both changes. Anyway, most of
the gene expression changes dealing with chemical defense
were upregulations (Online Resource 3) and could thus

constitute part of the resistance response to the parasitic
chromosome.

It has been suggested that gene expression in host-parasite
interactions is likely to evolve toward greater immunological
surveillance and reduced parasite conspicuousness (Nuismer
and Otto 2005), in a Red Queen dynamics (Barribeau et al.
2014). Remarkably, some of the gene expression changes
found in B-carrying ovaries can be viewed in this way, as
they affect genes involved in protein ubiquitination and deg-
radation by the proteasome (Online Resource 3). Although
we cannot know the precise mechanism of action of these
gene expression changes, it is tempting to speculate that these
changes regarding ubiquitination and endoplasmic reticulum
stress might constitute a host genome response to the pres-
ence of topologically anomalous polypeptides derived from
B-gene or pseudogene transcripts (see Navarro-Domínguez
et al. 2017a, b). The downregulation of a histone methyltrans-
ferase (SE1BA) (Online Resource 3) might constitute a host
genome attempt to reduce the presence of B chromosome
transcripts.

Fig. 6 Graphical summary of gene expression changes observed in B-carrying ovaries
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Several of the observed DEGs are involved in lipid transport
and metabolism, with conceivable consequences on egg fertility
which, in E. plorans, decreases in presence of B chromosomes
(Zurita et al. 1998; Muñoz et al. 1998). Six of these genes were
upregulated in B-carrying females (Online Resource 3).
However, five other genes, also involved in lipid metabolism
and transport, regulation of oocyte development, and contrac-
tion of ovarian muscle, were downregulated (Online Resource
3). Taken together, these gene expression changes might reflect
the harmful effects of the parasitic chromosome on yolk pro-
duction in the eggs and molecule transport between cells, but
more detailed analysis of these gene expression networks is
needed to unveil possible causal relationships between B pres-
ence and the decrease in egg fertility in E. plorans females.

Four other DGEs related with muscle function were
upregulated in B-carrying females (Online Resource 3).
Interestingly, TITIN and MYSA also play a role during
mitosis (Machado and Andrew 2000; Fabian et al. 2007;
Fabian and Forer 2007). Collectively, these four gene ex-
pression changes could be a consequence of higher effort
by B-carrying females in muscle function, probably relat-
ed with ovary function, and/or higher costs of building
mitotic spindles in ovaries due to the higher number of
chromosomes to move apart during cell division.

Among the most interesting gene expression changes
observed in ovaries carrying the parasitic chromosome
were those associated with the regulation of gene expres-
sion. Two DEGs were involved in the biogenesis of the
60S ribosomal subunit, one was upregulated and the other
downregulated in B-carrying females (Online Resource
3). In addition, three upregulated DEGs might reflect the
extra transcription effort due to the higher gene expression
observed in B-carrying females, with double number of
up- than downregulations for protein-coding genes
(Online Resource 3) and extraordinary upregulation for
many TEs (see Table 1). Interestingly, B-carrying females
showed downregulation of Dicer 1 (DCR1), an RNA po-
lymerase III being essential for RNA interference (RNAi)
and microRNA (miRNA) gene silencing. Remarkably, the
downregulation of Dicer 1 in B-carrying females of
E. plorans was associated with an explosive upregulation
for many transposable elements, in high consistency with
the role of RNA interference as an important defense
against viruses and transposable elements (Obbard et al.
2009; Fablet 2014). Recently, it has been shown that the
hpRNA/RNAi pathway plays an important role in the sup-
pression of the intragenomic conflict caused by the selfish
sex-ratio distorters in Drosophila (Lin et al. 2018). The
RNAi pathway could be thus implied in the neutralization
of selfish DNA in general, since previous studies have
also discussed the importance of this pathway in other B
chromosome systems. For instance, Ma et al. (2017)
showed that A- and B-encoded Argonaute (AGO4B)

protein variants possess RNA slicer in vitro activity, thus
demonstrating unambiguously the presence of a functional
AGO4B gene on rye B chromosomes. As Argonaute and
Dicer 1 are two of the principal RNA silencing mecha-
nisms, this parallelism between rye and E. plorans opens
the door to new exciting research lines on possible rela-
tionships between B chromosomes and the RNA silencing
machinery, in line with recent suggestions by Ramos et al.
(2017) and Valente et al. (2017).

Our present results are logically limited by the small sam-
ple size of RNAseq analysis (see Liu et al. 2013; Schurch et al.
2016). This likely hindered the detection of an important frac-
tion of all gene expression changes triggered by B chromo-
some presence. Nevertheless, our results are valuable since
they show that some effects of B chromosomes, previously
reported in this species (see above), can result from changes at
transcriptional level. This opens new lines of thought about
the molecular crosstalk between B chromosomes and the host
genome by converting gene expression in a new arena for this
kind of host-parasite arms race.

Taken together, the gene expression changes observed here
in B-carrying ovaries of E. plorans appear to constitute a
logical response of the host genome (summarized in Fig. 6)
to counteract gene expression of B chromosome genes and
pseudogenes reported by Navarro-Domínguez et al. (2017a,
b)). It is remarkable that some of the active genes in the B
chromosome (e.g., CIP2A and KIF20A), but almost none of
the observed gene expression changes in the host genome,
code for cell division regulation. In contrast, most changes
in host genome gene expression had to do with chemical de-
fense and detoxification, protein modification and response to
stress, ovary function, and regulation of gene expression, sug-
gesting an intimate host-parasite crosstalk during crucial steps
of gene expression and protein function. As a whole, our pres-
ent results illuminate a broad spectrum of future molecular
research on this evolutionarily interesting intragenomic para-
sitism, and the common molecular arena for the two counter-
parts makes this a good model for studies on gene regulation.
Finally, some of the enriched gene ontology categories found
in B-carrying ovaries of the grasshopper E. plorans, reported
here (e.g., microtubule movement, cell division, cell metabo-
lism, gene silencing, and protein stabilization), were also
found for rye B chromosomes (Ma et al. 2017). This interest-
ing coincidence illuminates some adaptive responses of the
host genome to the presence of B chromosomes, at transcrip-
tional level. However, the transcription of genes or
pseudogenes residing in B chromosomes (Ma et al. 2017;
Navarro-Domínguez et al. 2017a, b) makes it difficult to dis-
entangle the conundrum posed by hundreds of DEGswhose A
or B origin can only be distinguished through B-specific se-
quence changes. In E. plorans, we did not have this informa-
tion, for which reason we discarded the ten genes residing in B
chromosomes, shown by Navarro-Domínguez et al. (2017a),

Chromosoma (2019) 128:53–67 63



and observed that B chromosome presence elicits transcrip-
tional changes explaining many of their previously reported
effects at cell and physiological levels.
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