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Abstract
DNA double-strand breaks arise accidentally upon exposure of DNA to radiation and chemicals or result from faulty DNA
metabolic processes. DNA breaks can also be introduced in a programmed manner, such as during the maturation of the immune
system, meiosis, or cancer chemo- or radiotherapy. Cells have developed a variety of repair pathways, which are fine-tuned to the
specific needs of a cell. Accordingly, vegetative cells employ mechanisms that restore the integrity of broken DNA with the
highest efficiency at the lowest cost of mutagenesis. In contrast, meiotic cells or developing lymphocytes exploit DNA breakage
to generate diversity. Here, we review the main pathways of eukaryotic DNA double-strand break repair with the focus on
homologous recombination and its various subpathways. We highlight the differences between homologous recombination and
end-joining mechanisms including non-homologous end-joining and microhomology-mediated end-joining and offer insights
into how these pathways are regulated. Finally, we introduce noncanonical functions of the recombination proteins, in particular
during DNA replication stress.

Keywords Homologous recombination . End-joining . DNAdouble-strand break repair .Meiosis . Replication stress . DNA end
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Overview of DNA double-strand break repair
pathways

Formation and types of DNA breaks

Our DNA is under a constant threat of damage from radia-
tion, chemicals, or aberrant DNA metabolic processes
(Jackson and Bartek 2009; Ciccia and Elledge 2010;
Tubbs and Nussenzweig 2017). A large fraction of DNA
lesions involve modifications of DNA bases, such as oxi-
dation, ultraviolet light-induced pyrimidine dimers, meth-
ylation, or creation of abasic sites, which leave the phos-
phodiester backbone intact. Other abnormalities result in

the disruption of the phosphodiester backbone. The most
common of these are DNA single-strand breaks (SSBs),
where only one DNA strand is interrupted (Fig. 1a). SSBs
normally do not compromise the integrity of double-
stranded DNA (dsDNA). However, if an SSB is left
unrepaired and the lesion is encountered by DNA machin-
ery that separates the DNA duplex into two-component
single strands (ssDNA), such as during DNA replication,
an SSB can be converted into a one-ended DNA double-
strand break (DSB) (see Fig. 1b). Both SSBs and DSBs can
arise as a result of ionizing radiation (IR), which may occur
either directly or indirectly via generation of reactive oxy-
gen species (Ward 1988). As a result, radiation-induced
DNA damage results in complex lesions, where both
SSBs and DSBs are accompanied by oxidative DNA dam-
age (Olive et al. 1990; Olive 1998). The most common
source of accidental IR exposure is the radioactive radon
gas that accumulates in certain locations in the basements
of old homes (Jackson and Bartek 2009). IR remains one of
the most effective treatments during anticancer therapy, as
it preferentially affects rapidly dividing cancer cells
(Jackson and Bartek 2009; Baskar et al. 2014). SSBs and
DSBs also arise during aberrant DNA topoisomerase
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reactions, which can occur spontaneously or upon exposure
to specific inhibitors that are often used as anticancer che-
motherapeutics (Holm et al. 1989; Canela et al. 2017).
Finally, DNA breaks under certain conditions result from
a nuclease attacking diverse DNA intermediates, including
stalled DNA replication forks. As will be introduced in the
BRole of recombination proteins in promoting the stability
of DNA replication forks^ section, DSB-like structure may
also arise during a process termed replication fork reversal
without template DNA breakage.

Depending on the mechanism of break formation, a DSB
can either be one-ended or two-ended (Fig. 1b, c). Most one-
ended DSBs arise when DNA replication encounters an SSB
and the replication fork falls apart, or when a DNA replication
fork stalls and one of the arms is cleaved by a nuclease. Two-
ended DSBs typically form when both strands of linear
dsDNA are broken simultaneously, or when two ssDNA
breaks form in an immediate proximity; in this case, the bro-
ken end would contain a short stretch of overhanging ssDNA.
Additionally, depending on the mechanism of the DSB for-
mation, DNA ends may be either chemically Bclean^ or
Bdirty.^ The so-called clean DNA breaks, apart from the bro-
ken phosphodiester backbone, bear normal DNA chemistry.
Dirty DNA ends instead contain additional adducts that may
include anything from small chemical groups to covalently
attached proteins. DNA breaks induced by DNA nucleases
are generally clean, but many DSBs induced by ionizing ra-
diation are dirty (Olive et al. 1990). Likewise, DSBs induced
by aberrant DNA topoisomerase reactions result in a covalent-
ly attached DNA topoisomerase at the break end (Tse et al.
1980). As will be described below, the mechanism of DSB
repair depends largely on whether the break is one- or two-
ended, chemically clean or dirty, as well as the cell cycle stage.

Our cells have developed numerous mechanisms for
repairing DSBs with a minimal loss of genetic information.
However, if a DSB is repaired incorrectly, it can lead to mu-
tations and chromosomal rearrangements, resulting in aberrant

regulation of cellular growth and cancer development or even
cell death (Jackson and Bartek 2009). Therefore, accurate rec-
ognition and repair of DSBs is essential to maintain genomic
integrity and prevent tumorigenesis.

End-joining and homologous recombination
mechanisms repair DNA double-strand breaks

Eukaryotic cells use two main processes for DSB repair: end-
joining and homologous recombination (HR) (see Fig. 2a).
The end-joining pathways can be further divided into canon-
ical non-homologous end-joining (NHEJ) and alternative non-
homologous end-joining (alt-NHEJ), also termed
microhomology-mediated end-joining (MMEJ). The MMEJ
abbreviation will be used hereafter in this review. As the name
indicates, NHEJ and MMEJ involve the direct ligation of two
DSB ends with little or no sequence homology required (see
below for details) (Chang et al. 2017). Therefore, a key feature
of end-joining is that a repair template, such as the sister chro-
matid, is not required, so it can occur during any phase of the
cell cycle. Both NHEJ andMMEJ processes typically lead to a
limited loss of genetic information resulting in short deletions
at the DSB site. Additionally, because NHEJ and MMEJ
mechanisms are template independent, ligation of the incor-
rect ends, if multiple DSBs are present, can generate large
deletions or chromosomal rearrangements (Chang et al.
2017). The end-joining pathways can only repair two-ended
DSBs, and abnormal structures at the break sites (Bdirty^ ends,
especially protein blocks) may inhibit this type of repair. In
summary, end-joining pathways represent fast but potentially
mutagenic DSB repair processes (Fig. 2a).

In contrast, HR requires a homologous sequence as a tem-
plate for repair (Kowalczykowski 2015). This allows the re-
combination machinery to restore any missing genetic infor-
mation in the vicinity of the break site, and as a result, HR is
largely accurate. In most cases in vegetatively growing cells,
the sister chromatid is used as the repair template. This

Fig. 1 An overview of DNA
breaks. a A single-stranded DNA
(ssDNA) break arises when only
one strand of double-stranded
DNA is interrupted. b If an
ssDNA break is encountered by
DNA replication, it gives rise to a
one-ended double-stranded DNA
(dsDNA) break. c A two-ended
dsDNA break forms when
dsDNA is broken into two pieces

188 Chromosoma (2018) 127:187–214



restricts recombination to cell cycle stages when the sister
chromatid is available, which includes the S and G2 phases,
and thus necessitates a strict control mechanism (Orthwein
et al. 2015). HR is capable of repairing both one- and two-
ended DSBs and can also repair dirty DNA breaks, in partic-
ular those with covalently attached proteins. In contrast to
end-joining, HR is mechanistically more complicated, in-
volves a larger number of enzymes, and is thus comparatively
slower but more accurate (Kowalczykowski 2015; Chang
et al. 2017).

Recent years brought breakthroughs in genome editing
technologies, which were spearheaded by the development
of engineered nucleases such as zinc finger nucleases
(ZFNs) or transcription-activator like effector nucleases
(TALENs) (Lombardo et al. 2007; Bedell et al. 2012). The
majority of genome editing applications now exploit the bac-
terial clustered regularly interspaced short palindromic repeats
(CRISPR)-Cas9 system (Jinek et al. 2012; Mali et al. 2013).
The common denominator of these approaches is the capacity

to induce a site-specific DSB. The choice of the DSB repair
pathway then dictates the result of editing (Fig. 2b). Imprecise
repair by NHEJ or MMEJ gives rise to Bindel^ mutations
(insertion or deletions, although deletions are much more
common) at the break site, which may disrupt the reading
frame of the targeted gene and thus result in a loss of function.
Conversely, if a DNA template is provided, the recombination
machinery may get involved, which can mediate precise alter-
ation of the DNA sequence, including introduction of DNA
segments or correction of a pathogenicmutation (Fig. 2b). The
advance of these genome editing technologies brought
renewed interest in understanding the balance between the
DSB repair pathways, as the inhibition of MMEJ and NHEJ
repair promotes HR-based precise genome editing (Chu et al.
2015; Mateos-Gomez et al. 2017; Schimmel et al. 2017;
Zelensky et al. 2017).

The key process that stands at the crossroads between end-
joining and HR is the initial processing of the DNA break
(Cejka 2015). NHEJ and MMEJ require little DNA end

Fig. 2 An overview of the two
main pathways for DNA double-
strand break repair in human cells.
a Main differences between end-
joining and homologous
recombination pathways. b DNA
double-strand break repair
pathway usage gives rise to
different outcomes during
genome editing with CRISPR-
Cas9. Whereas end-joining often
results in random mutations in the
vicinity of the break site that may
disrupt the reading frame of the
targeted gene, homologous
recombination may mediate the
precise replacement of genetic
information
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processing (see BProcessing of DNA breaks for repair^ sec-
tion for more details). In contrast, HR (including all its
subpathways) is initiated by DNA resection at the break site
that exposes long tracts of ssDNA. This ssDNA is then used in
search for a homologous dsDNA sequence (such as the sister
chromatid) that serves as a template for the largely accurate
repair of the DSB by the recombination pathway. At the same
time, extended DNA end resection makes the DNA break
generally nonligatable and inhibits end-joining. Therefore, ex-
tensive DNA end resection commits DSB repair to the HR-
mediated pathway, and accordingly, the initiation of DNA end
resection is strictly controlled (Symington and Gautier 2011;
Chapman et al. 2012; Shibata 2017). This control mechanism
allows HR to be initiated only when a repair template is avail-
able (S/G2 phase), and thus limits the potential for illegitimate
recombination (i.e., recombination between not fully homol-
ogous DNA sequences). This is elegantly achieved through
the activation of key resection factors by cyclin-dependent
kinase (CDK)-catalyzed phosphorylation (Ira et al. 2004;
Huertas et al. 2008). It should be pointed out that this simple
model has been challenged, and there is evidence that limited
or even extended DNA end resection, occurring in the G1
phase, is involved in the canonical NHEJ pathway (Biehs
et al. 2017). Elucidating the details and the regulation of these
processes will be an exciting direction of future research.
Since misregulation of these DSB repair pathways is believed
to result in genome rearrangements that are typical in many
cancer types, understanding these processes is highly relevant
for human health.

End-joining and recombination processes involve
several subpathways

Both HR and end-joining processes are not simple linear path-
ways. Both can be divided into several subpathways, which
significantly differ in terms of repair mechanisms and enzyme
requirements. Here, we will introduce the basic principles of
these repair processes; a more detailed description that in-
cludes the key enzymatic players will be provided in subse-
quent sections.

With regard to the end-joining mechanisms, canonical
NHEJ significantly differs from MMEJ (Fig. 3). Whereas ca-
nonical NHEJ requires no or very limited homology (less than
4 nt) between the broken DNA molecules, MMEJ was found
as a DNA end-joining event that occurs independently of the
key NHEJ factors and usually involves short stretches of
microhomology (2–20 nt) between the two broken DNA ends
to mediate repair (Seol et al. 2017). Therefore, MMEJ is
sometimes considered a separate process that stands between
the NHEJ and HR pathways.

Recombination processes, in a broad sense, can be divided
into single-strand annealing (SSA), synthesis-dependent
strand annealing (SDSA), break-induced replication (BIR),

and canonical HR (also called canonical DNA double-strand
break repair, DSBR) (Kowalczykowski 2015). The main con-
ceptual differences between the mechanisms of these
subpathways are schematically illustrated in Fig. 4.
Depending on whether the flanking sequences of the
recombining DNA molecules are exchanged or not, recombi-
nation leads to crossover or noncrossover recombination prod-
ucts. A crossover is defined as an event where the distal arm of
the broken DNA is swapped with the distal arm of the tem-
plate DNA molecule. As schematically depicted in Fig. 4d, a
crossover results in the Bblue^ DNA molecule ultimately
joined with the Bred^ one. Crossovers that occur between
two homologous loci of sister chromatids give rise to Bequal^
sister chromatid exchanges, which are mutagenically silent
(Fig. 4). In contrast, crossovers that occur between two ectopic
loci (non-homologous loci, such as in repetitive sequences) of
sister chromatids give rise to Bunequal^ sister chromatid ex-
changes. Likewise, crossovers resulting from recombination
between nonsister (homologous) chromosomes also lead to
gross genome rearrangements. Furthermore, events when ge-
netic information from one DNA molecule gets unidirection-
ally transferred into another DNA molecule are referred to as
gene conversions. This occurs when a DNA sequence is cop-
ied from a donor template to the brokenDNAmolecule during
BIR, SDSA, or canonical HR. As above, gene conversion can
be mutagenic when an ectopic site of a sister chromatid or
nonsister chromosome is used as a template. Mutations arising
in the course of DSB repair by either NHEJ or HR may give
rise to a loss of heterozygosity, which is a key driver of tu-
morigenesis (Fearon and Vogelstein 1990).

SSA involves DNA end resection to reveal repetitive DNA
sequences, which are subsequently annealed. The resulting
DNA flaps are cleaved and the strands are ligated. SSA leads
to the deletion of the DNA sequence between the two repeats
and is thus a very mutagenic repair process (Fig. 4a). SSA is
restricted to situations when two repeats flank the break site,
and can successfully restore the integrity of DSBs within
repetitive DNA sequences. Although SSA is conceptually
similar to MMEJ, it is usually grouped together with recom-
bination mechanisms because of enzyme requirements (see
below). Additionally, unlike MMEJ, SSA requires extensive
DNA end resection, which is shared among all recombination
subpathways (Bhargava et al. 2016).

In most cases, DNA end resection is followed by the inva-
sion of the resected DNA into the dsDNA template, forming a
joint molecule intermediate (Kowalczykowski 2015). This
initiates DNA synthesis, which restores missing genetic infor-
mation at the break site. In SDSA, the joint molecule interme-
diate is destabilized and the nascent DNA is annealed to the
other end of the brokenDNAmolecule (Fig. 4b). SDSA is one
of the least mutagenic recombination subpathways, resulting
in a noncrossover repair product. In BIR, DNA synthesis pro-
ceeds all the way to the end of the template DNA, copying the
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sequence of the entire chromosome arm (Fig. 4c). BIR is thus
a unique pathway for repair of one-ended DSBs resulting from
collapsed DNA replication forks (Sakofsky and Malkova
2017). Additionally, BIR allows telomere lengthening in the
absence of telomerase (Sakofsky and Malkova 2017). The
genetic result of BIR is a nonreciprocal crossover.

In the canonical recombinational DSBR pathway, the joint
molecule (D-loop) intermediate is processed into double
Holliday junctions (dHJs), which may be processed into non-
crossovers or crossovers, depending on the dHJ processing
pathway utilized (see section BProcessing recombination
intermediates^) (Fig. 4d) (Szostak et al. 1983). Although the
various repair events described above share some processing
steps, they have different degrees of mutagenic potential. To
date, many of the key repair factors for each pathway have
been identified; however, how a cell determines which path-
way to use for DSB repair is still poorly understood. The
initial processing of broken DNA ends seems to be the key
step that determines which pathway is used to repair a DSB,
and will be described in the next section.

Processing of DNA breaks for repair

DNA end resection involves the degradation of the 5′-termi-
nated DNA strand in the 5′ to 3′ direction from the break site to
generate a 3′ ssDNA overhang. Generation of this 3′-terminat-
ed ssDNA is essential to allow for the usage of homologous
DNA sequences for repair. The homology may be either be-
tween the two resected ends of the broken DNA molecule,

such as in the case of MMEJ or SSA, or between the resected
broken DNAmolecule and an intact dsDNA template, such as
in the case of BIR, SDSA, and canonical recombinational
DSBR. Nucleolytic resection of DNA ends typically inhibits
canonical NHEJ.

Processing of DNA ends for canonical NHEJ

Many canonical NHEJ events involve little or no processing
of the broken DNA ends. The initial step of NHEJ involves
the binding of the DNA ends by the Ku70-80 heterodimer,
which forms a ring that encircles the duplex DNA (Gottlieb
and Jackson 1993; Ramsden and Gellert 1998). This protects
DNA ends from degradation and recruits additional NHEJ
components (Fig. 3a). Next, the Ku70-80-bound ends are teth-
ered by DNA-dependent protein kinase catalytic subunit
(DNA-PKcs), followed by ligation of the broken DNA ends
by the XRCC4-XLF complex and DNA ligase IV. The yeast
Mre11-Rad50-Xrs2 (MRX) complex has a structural role to
promote ligation, while the function of the human MRE11-
RAD50-NBS1 (MRN) complex in NHEJ is less apparent
(Chen et al. 2001; Huang and Dynan 2002; Zhang et al.
2007; Rass et al. 2009; Xie et al. 2009).

In the case of DNA ends that are not directly ligatable,
which may include those with DNA overhangs, gaps, or
blocking chemical groups, limited DNA end processing may
be required. This involves a nucleolytic removal of overhangs
or chemical groups by the human Artemis nuclease, which
cleaves at the junctions of single- and double-stranded DNA,
and is activated by DNA-PKcs (Ma et al. 2002; Chang et al.

Fig. 3 An overview of DNA end-joining repair mechanisms. a Overview and main factors of non-homologous end-joining. b Overview and main
factors of microhomology-mediated end-joining
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2017; Lobrich and Jeggo 2017). Artemis may not be the only
NHEJ nuclease; other proteins, including APLF, Werner’s
syndrome helicase (WRN), the MRN complex, FEN1, and
EXO1 may also play a role in some cases (Chang et al.

2017). Alternatively, the filling of DNA gaps at breaks may
facilitate ligation, which is carried out by DNA polymerases μ
and λ (Bebenek et al. 2014; Moon et al. 2014). Additionally,
polynucleotide kinase (PNK) may remove 3′ phosphate

Fig. 4 An overview of homologous recombination pathways. A
schematic representation of a single-strand annealing, b synthesis-
dependent strand annealing, c break-induced replication, and d
canonical DNA double-strand break repair pathway that involves
generation of a double Holliday junction, which can be processed by

either topologic dissolution (d1) or nucleolytic resolution (d2). The
various pathways differ in terms of mutagenic potential and whether
they lead to crossover or noncrossover products, as indicated. The
green triangles indicate DNA replication sites. Newly synthesized DNA
is illustrated using dashed lines
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groups and phosphorylate 5′ OH groups, which may be nec-
essary for ligation (Chappell et al. 2002). Finally, one recent
study found that extended DNA end resection can occur prior
to NHEJ in G1 (Biehs et al. 2017), but further mechanistic
analysis is required to fully understand this process.

Processing of DNA end for homologous
recombination

In contrast to NHEJ, extended DNA end resection is an obli-
gate step that initiates all recombination pathways. DNA end
resection of the 5′-terminated DNA strand occurs in two main
steps (Mimitou and Symington 2008; Zhu et al. 2008). The
first step is catalyzed by theMRN complex and CtIP in human
cells, and MRX and Sae2 in S. cerevisiae (Johzuka and
Ogawa 1995; Keeney and Kleckner 1995; Paull and Gellert
1998; Sartori et al. 2007). The nucleolytic processing by these
proteins is limited to the vicinity of the DNA end (generally up
to 300 nt in yeast) and is thus referred to as short-range DNA
end resection (Zhu et al. 2008). The most likely mechanism
for the short-range resection byMRX/N is illustrated in Fig. 5.
Resection is initiated by the endonucleolytic cleavage of the
5′-terminated DNA strand away from the DNA end, followed
by 3′→5′ exonuclease that proceeds back toward the DNA
end.

Both exonuclease and endonuclease activities during the
first resection step are likely catalyzed by MRE11/Mre11 in
human and yeast cells (Neale et al. 2005; Garcia et al. 2011;
Cannavo and Cejka 2014; Shibata et al. 2014).MRE11/Mre11
first endonucleolytically cleaves 5′-terminated DNA in the
vicinity of the DNA end. This endonucleolytic cleavage re-
quires the ATPase activity of RAD50/Rad50 as well as
CtIP/Sae2 and NBS1 (but not strictly Xrs2 in yeast) as co-
factors (Cannavo and Cejka 2014; Anand et al. 2016;
Deshpande et al. 2016; Oh et al. 2016; Kim et al. 2017).
Importantly, the capacity of Sae2 and CtIP to promote
MRE11/Mre11 depends on phosphorylation of key residues
in CtIP/Sae2, at least some of which are under cyclin-d-
ependent kinase CDK control (Huertas et al. 2008; Huertas
and Jackson 2009; Cannavo and Cejka 2014; Anand et al.
2016; Deshpande et al. 2016). Cell-cycle-dependent phos-
phorylation of CtIP/Sae2 represents one of the key control
mechanisms that allow resection (and hence recombination)
to initiate only in S and G2 phases of the cell cycle when a
sister chromatid is available as a template for repair (Orthwein
et al. 2015). Downstream of the endonuclease cut, MRE11/
Mre11 subsequently uses its 3′→5′ exonuclease activity to
proceed back toward the DNA end, generating a 3′ ssDNA
overhang. Additionally, another nuclease, EXD2, may func-
tion alongside MRE11 exonuclease in human cells (Broderick
et al. 2016). It has been also proposed that CtIP/Sae2 are
nucleases (Lengsfeld et al. 2007; Makharashvili et al. 2014;

Wang et al. 2014), but their potential catalytic functions in
resection remain undefined.

The initial endonucleolytic cleavage away from the DNA
end allows the resection machinery to bypass end-binding
factors or noncanonical structures that may be present at the
break end. This includes protein blocks, such as Spo11 in
meiosis, stalled topoisomerases, or Ku (Keeney and
Kleckner 1995; Keeney et al. 1997; Neale et al. 2005;
Bonetti et al. 2010; Mimitou and Symington 2010; Langerak
et al. 2011; Chanut et al. 2016). Indeed, the efficiency of 5′
DNA end cleavage in vitro by MRN-CtIP or MRX-Sae2 is
stimulated by the presence of protein blocks at DNA ends
(Cannavo and Cejka 2014; Anand et al. 2016; Deshpande
et al. 2016). The short-range DNA end resection pathway is
absolutely required for the processing of protein-blocked
DNA ends but may be dispensable for the resection of clean
DNA ends in yeast (Neale et al. 2005; Zhu et al. 2008;
Mimitou and Symington 2010). Instead, both MRE11 and

Fig. 5 An overview of DNA end resection in human cells. The first
(short-range) resection step involves the MRE11 nuclease and the
second (long-range) step either EXO1 or DNA2 nuclease. DNA end
resection leads to the generation of 3′ overhanged DNA at DNA
double-strand break sites. The dashed blue lines indicate degraded DNA
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CtIP are required for all resection events in human cells, al-
though it remains to be defined whether resection always de-
pends on the nuclease of MRE11 (Sartori et al. 2007).

The initial endonucleolytic cleavage byMRE11/Mre11 cre-
ates entry sites for the long-range resection enzymes. These
subsequently catalyze resection in the 5′→3′ direction away
from the DNA end to generate extended ssDNA overhangs
(up to several kilobases in length) and represent the second
step of the resection process. The 3′→5′ exonucleolytic DNA
degradation by MRE11/Mre11 and the 5′→3′ degradation by
the long-range enzymes downstream of the endonucleolytic
cut have been termed Bbidirectional^ resection. In addition to
the nuclease function, the MRN/MRX complex has
noncatalytic (i.e., structural) roles to recruit the long-range re-
section enzymes (Cejka et al. 2010a; Nicolette et al. 2010; Niu
et al. 2010; Nimonkar et al. 2011). The long-range resection
factors include either of two nucleases, EXO1/Exo1 or
DNA2/Dna2, which are well conserved between human and
yeast cells (Gravel et al. 2008; Mimitou and Symington 2008;
Zhu et al. 2008). EXO1/Exo1 is a dsDNA-specific exonucle-
ase (Tran et al. 2002), which specifically degrades the 5′-ter-
minated DNA strand within dsDNA, generating 3′ ssDNA
overhangs. In contrast, DNA2/Dna2 is an ssDNA-specific
5′→3′ nuclease that cannot process dsDNA on its own, and
requires a cognate RecQ family helicase partner (Bae et al.
1998; Zhu et al. 2008; Levikova et al. 2013). This includes
Sgs1 in yeast and either Bloom syndrome helicase (BLM) or
WRN in human cells (Sturzenegger et al. 2014; Pinto et al.
2016; Levikova et al. 2017). Sgs1/BLM/WRN unwinds
dsDNA to generate ssDNA, which becomes rapidly coated
by replication protein A (RPA). RPA-coated ssDNA is subject
to degradation by DNA2/Dna2 (Cejka et al. 2010a; Niu et al.
2010). RPAwas found to promote 5′DNA end degradation by
DNA2/Dna2, while at the same time inhibiting 3′ end degra-
dation. RPA, which physically interacts with the RecQ family
helicase and DNA2/Dna2, is thus a critical factor that enforces
the correct DNA polarity of DNA end resection by DNA2/
Dna2 (Cejka et al. 2010a; Niu et al. 2010). Both human
DNA2 and yeast Dna2, in addition to their essential nuclease
activity, contain a helicase domain, which likely functions as
an ssDNA translocase to facilitate the degradation of 5′-
overhanged DNA by the DNA2/Dna2 nuclease (Levikova
et al. 2017; Miller et al. 2017). The individual subunits of the
Sgs1-Dna2-RPA, BLM-DNA2-RPA, and WRN-DNA2-RPA
complexes stimulate the activities of their partners to form
integrated molecular resection machines (Cejka et al. 2010a;
Niu et al. 2010; Pinto et al. 2016).

Multiple DNA end resection mechanisms described above
lead to the formation of 3′-tailed ssDNA coated by RPA. The
key function of RPA is to protect ssDNA from the action of
nucleases and prevent the formation of secondary structures
that might arise by self-annealing of ssDNA (Wold 1997). As
will be described in the section below, in SDSA, BIR, and

canonical recombinational DSBR pathways, RPA must be
replaced with the strand exchange protein RAD51. In contrast,
SSA shares the initial DNA end resection with other recom-
bination subpathways but is RAD51-independent. Instead of
using intact dsDNA as a template, SSA functions by anneal-
ing the two resected strands of DNA, using large stretches of
sequence homology to form a stable complex between the two
resected broken DNA molecules (Fig. 4a). This is dependent
on RAD52/Rad52, which has a capacity to anneal RPA-
coated ssDNA. After annealing, the noncomplementary se-
quences are cleaved by XPF-ERCC1 (Rad1-Rad10 in yeast),
and any remaining gaps are filled and ligated to complete the
repair of the DSB (Bardwell et al. 1994; Ivanov et al. 1996;
Mortensen et al. 1996; Shinohara et al. 1998).

Broken DNA molecules signal the presence of DNA dam-
age to the cellular checkpoint machinery. Generally, DSBs
activate the ATM (Tel1 in yeast) kinase. In both systems,
MRN/MRX plays a structural role to activate ATM/Tel1
(Carson et al. 2003; Uziel et al. 2003; Lee and Paull 2004;
Lee and Paull 2005). Upon resection, RPA-coated ssDNA
then activates the ATR-ATRIP (Mec1-Ddc2 in yeast) pathway
(Zou and Elledge 2003). ATM/Tel1 and ATR/Mec1 sensors
phosphorylate hundreds of protein targets at SQ/TQ motifs,
which activate the proper response to DNA damage. This
includes regulation of DNA repair components and check-
point proteins, leading to cell cycle arrest and thus providing
time for repair (Jackson and Bartek 2009). Additionally, un-
successful repair and prolonged cell cycle arrest lead to the
activation of apoptosis in higher eukaryotes (Jackson and
Bartek 2009).

Processing of DNA ends for alt-EJ (MMEJ)

In the absence of the key canonical NHEJ factors, including
Ku70-80, DNA-PKcs, XRCC4, XLF, and DNA ligase IV, cells
can still repair DSBs through an end-joining event referred to
as MMEJ (Simsek and Jasin 2010; Chang et al. 2017)
(Fig. 3b). The frequency of MMEJ in DSB repair is not very
clear yet (Sfeir and Symington 2015), but it has been
established that the process is more common in human cells
compared to yeast. One of the hallmarks ofMMEJ is the use of
shared sequence microhomology between the break points,
which is generally limited to ~ 2–20 nt in length (Chang
et al. 2017). Overlapping homologies were observed in junc-
tion points upon translocations in human cancers (Stephens
et al. 2009), suggesting that they may arise due to MMEJ.
Currently, only a few factors have been implicated in mediat-
ing human MMEJ, including FANCA, PARP1, DNA ligase
III, CtIP, DNA2, and Pol θ (Pol theta, also known as PolQ), but
none of these appear to be absolutely essential for MMEJ
(Audebert et al. 2004; Bennardo et al. 2008; Simsek et al.
2011; Howard et al. 2015; Mateos-Gomez et al. 2015, 2017).
The use of microhomology for repair indicates that MMEJ and
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recombination-based mechanisms may share elements of
DNA end resection. This is also supported by observations that
Ku70-80 inhibits MMEJ, and Ku is known to be inhibitory for
DNA end resection (Mimitou and Symington 2010). The end
resection factors CtIP and DNA2 in human cells have been
identified as being important to promote MMEJ events, but it
is still unclear if this is due to a direct role in DNA end resec-
tion (Zhang and Jasin 2011; Howard et al. 2015). Likewise, the
genetic requirements for MMEJ remain to be defined in yeast.
Interestingly, MMEJ was increased in mre11, sae2, and sgs1
exo1 mutants, indicating that the absence of the canonical
DNA end resection factors is not limiting for MMEJ (Wang
et al. 2006; Deng et al. 2014).Whether another yet unidentified
nuclease is essential for MMEJ is not clear. RPA is clearly a
strong inhibitor ofMMEJ in both yeast and human cells (Deng
et al. 2014; Mateos-Gomez et al. 2017). This shows that the
more extensive resection creating ssDNA of lengths that
strongly associate with RPA channels repairs toward HR. In
accord, the motor activity of human Pol θ was found to dis-
place RPA to promote MMEJ, showing that the balance be-
tween HR and MMEJ is controlled by the opposing activities
of Pol θ and RPA (Mateos-Gomez et al. 2017).

Formation of RAD51-ssDNA filament
on resected DNA

Resection of the 5′-terminated DNA strand at DSBs leads to
the formation of 3′-overhanged ssDNA, which is initially
coated by RPA. In a subsequent step, RPA is replaced by the
key recombination protein RAD51 (Rad51 in yeast) (Fig. 6).
RAD51 and ssDNA form a nucleoprotein filament, also called
a presynaptic filament. This catalyzes the signature step of the
recombination pathway, which includes homology search,
pairing with the intact donor (also called template) dsDNA
and strand invasion (Benson et al. 1994; Sugiyama et al.
1997). The transient interaction of the RAD51 nucleoprotein
filament with the template dsDNA is referred to as a synaptic
complex. This ultimately leads to the displacement of one of
the template DNA strands forming a displacement loop (D-
loop, also called joint molecule) intermediate (Fig. 6), which
represents the postsynaptic stage. All these steps are con-
trolled (both positively and negatively) by a number of recom-
bination regulators, which often physically interact with
RAD51 and allow recombination to occur only in the proper
context.

To understand the mechanisms underlying the regulation of
RAD51, it is important to understand that RAD51 has a ca-
pacity to bind both single- and double-stranded DNA, but
only ssDNA binding is thought to promote recombination,
while dsDNA binding by RAD51 is generally inhibitory
(Zaitseva et al. 1999). Furthermore, RAD51 binds and hydro-
lyzes ATP. ATP binding, but not ATP hydrolysis, by RAD51

is required for stable RAD51-DNA binding; in contrast, ATP
hydrolysis by RAD51 is required for the steps downstream of
DNA invasion (Sung 1994; Baumann et al. 1996; van
Mameren et al. 2009). RAD51 can also hydrolyze ATP
nonproductively (i.e., without catalyzing strand invasion); al-
so in this case, ATP hydrolysis leads to a reduction in its
capacity to bind DNA. Recombination can be stimulated on
several levels by affecting these RAD51 activities. This in-
cludes RAD51 loading on RPA-coated ssDNA (i.e., exchange
of RPAwith RAD51), reduction of RAD51’s capacity to bind
dsDNA, stabilization of the nascent nucleoprotein filament by
inhibiting its disassembly, as well as remodeling of the
RAD51 nucleoprotein filament into a conformation that is
optimally permissive for DNA strand exchange. These control
mechanisms are in place to prevent aberrant recombination
(Heyer 2015). This includes recombination between non-
homologous sequences, which may lead to DNA transloca-
tions and genome rearrangements, or recombination during
physiological processes of DNA metabolism when ssDNA
is present, such as during unperturbed DNA replication or
transcription. The proper interplay of both positive and nega-
tive recombination regulators ascertains that recombination
occurs only when it is needed to optimally maintain genome
stability (Heyer 2015).

The first of the control mechanisms is the replacement of
RPA with RAD51 on resected ssDNA. Due to the higher af-
finity toward ssDNA, RPA initially outcompetes RAD51 for
ssDNA binding. To overcome this apparent inhibitory effect
of RPA, cells have various recombination mediator proteins
that help load RAD51 onto ssDNA, displacing RPA in the
process. In yeast, the key recombination mediator that dis-
places RPA from ssDNA is Rad52. The interaction of Rad51
with Rad52 is required for this process (Benson et al. 1998;
Song and Sung 2000). Human RAD52, in contrast, possesses
no recombination mediator activity, and its contribution to
recombination in human cells is much more subtle than in
yeast, while Caenorhabditis elegans and Drosophila
melanogaster lack RAD52. The main mediator protein in
higher eukaryotes, including worms, flies, and humans, is
the product of the breast cancer susceptibility gene 2
(BRCA2) and its homologs (Yang et al. 2005; Petalcorin
et al. 2007; Jensen et al. 2010). Depletion of BRCA2 in cells
treated with IR leads to persistent RPA and decreased RAD51
foci formation on broken DNA, clearly indicating its role in
RAD51 loading (Yuan et al. 1999). BRCA2 contains eight
BRC repeats (conserved motifs of about 35 amino acids),
which can all independently interact with RAD51, although
only four to five repeats associate with RAD51 at a given time
(Carreira et al. 2009; Jensen et al. 2010). The repeats 1–4 bind
RAD51 with a high affinity and promote RAD51 nucleation
on ssDNA; repeats 5–8 show a lower affinity to free RAD51
and rather stimulate the growth of the nascent RAD51 fila-
ment (Jensen et al. 2010; Liu et al. 2010; Thorslund et al.
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2010). Mechanistically, the BRC repeats 1–4 of BRCA2 pro-
mote ssDNA binding of RAD51 by inhibiting its ATPase
activity, which stabilizes ssDNA binding of RAD51.
Additionally, BRCA2 promotes recombination by inhibiting
RAD51’s dsDNA binding activity (Jensen et al. 2010). The
displacement of RPA from ssDNA by BRCA2 is further fa-
cilitated by DSS1, a direct interaction partner of BRCA2
(Yang et al. 2002; Zhao et al. 2015). BRCA2 also interacts
with PALB2, which was shown to promote RAD51-mediated
DNA strand exchange on its own (Buisson et al. 2010). In
cells, PALB2mediates BRCA2’s recruitment to DNA damage
and bridges BRCA2’s interaction with BRCA1 (Sy et al.
2009). Cellular assays established that these interactions are
critical for recombination, although the mechanisms on how
BRCA1 and PALB2 proteins affect BRCA2’s recombination
mediator activity remain to be defined. RAD51 nucleoprotein
filament assembly is also stimulated by RAD54, independent-
ly of RAD54’s ATPase activity (Wolner and Peterson 2005).
Additional proteins including the MMS22L-TONSL complex
may promote the RAD51 nucleoprotein filament assembly
during perturbed DNA replication (Piwko et al. 2016).

The activity of RAD51 is also promoted by a group of
proteins termed RAD51 paralogs. The respective genes likely

arose during evolution through a duplication of the RAD51
gene and share around 20 to 30% of sequence homology with
RAD51. The paralogs are represented by five polypeptides in
human cells: RAD51B, RAD51C, RAD51D, XRCC2, and
XRCC3, which form two major complexes: RAD51B-
RAD51C-RAD51D-XRCC2 (BCDX2) and RAD51C-
XRCC3 (CX3) (Masson et al. 2001). Neither of the paralog
proteins nor complexes exhibits DNA strand exchange activity
on their own, and all likely function via regulating RAD51.
Phenotypically, depletion of these complexes generally results
in fewer RAD51 foci in response to ionizing radiation. This
resembles, although to a lesser extent, the depletion of
BRCA2. The paralogs likely function in the same pathway as
BRCA2 as indicated by epistatic interactions (Qing et al.
2011). The first mechanistic report indicated that the
RAD51B-RAD51C proteins, similar to BRCA2, have a re-
combination mediator activity to facilitate loading of RAD51
on RPA-coated ssDNA, displacing RPA in the process
(Sigurdsson et al. 2001). In yeast, the RAD51 paralogs include
Rad55 and Rad57 (Sung 1997; Liu et al. 2011a). Rad55-Rad57
physically interact with the Shu complex, comprising of Csm2,
Psy3, Shu1 and Shu2 polypeptides, and Rad52. The subunits
of the supercomplex synergize in their capacity to displace

Fig. 6 An overview of the RAD51 filament formation (presynaptic phase) and the invasion of template dsDNA (postsynaptic phase) in human cells.
Both positive and negative regulators of the process are indicated
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RPA and facilitate Rad51-ssDNA nucleoprotein filament for-
mation (Gaines et al. 2015). The human ortholog of Shu2 is
SWS1, which forms a complex with SWSAP1 (Martin et al.
2006; Liu et al. 2011b). The heterodimer binds DNA and in-
teracts with RAD51, RAD51D, and XRCC2. Depletion of
SWS1 results in a reduction of spontaneous and radiation-
induced RAD51 foci. This suggests that SWS1 in humans also
likely functions in conjunction with the RAD51 paralogs, but
their interplay, as well as their relationship to BRCA2’s func-
tion, remains undefined. Evidence from the C. elegans model
system instead suggests that the RAD51 paralogs, represented
by RFS-1 and RIP-1, function downstream of BRCA2, specif-
ically in the stabilization of the RAD51 nucleoprotein filament
and its remodeling into a species that is optimally capable to
invade template dsDNA (Taylor et al. 2015, 2016). RAD51
filaments are also stabilized by the SWI5-SFR1 complex
(Akamatsu and Jasin 2010; Tsai et al. 2012).

It is well established that there is a balance between factors
that promote the formation and disrupt RAD51/Rad51 nucle-
oprotein filaments (Heyer 2015). In yeast, Srs2 can dismantle
Rad51 filaments due to its ATP-powered DNA translocase
activity and additionally via stimulating the ATP hydrolysis
of Rad51 through a direct physical interaction, which destabi-
lizes the nucleoprotein filament (Krejci et al. 2003; Veaute
et al. 2003; Liu et al. 2011a). In humans, no direct homolog
of Srs2 has been identified, yet the most probable candidates
for this function are RECQ5, FBH1, PARI, or BLM helicases
(Bugreev et al. 2007b; Hu et al. 2007; Fugger et al. 2009;
Schwendener et al. 2010; Moldovan et al. 2012; Patel et al.
2017). To elucidate the functional interplay of the various
RAD51 regulators represents a challenge for future research.
The proper balance between pro- and antirecombination fac-
tors is required to execute recombination only when it is need-
ed and thus prevent illegitimate recombination and genome
rearrangements.

Homology search and DNA strand exchange

Once the presynaptic filament is formed and stabilized, it be-
gins the search for a homologous sequence. In most cases in
vegetative cells, the sister chromatid is used as a repair tem-
plate. A recent report demonstrated that the human BRCA1
protein, which is similar as BRCA2, a tumor suppressor that
is frequently mutated in familiar breast and ovarian cancers,
directly promotes DNA invasion. This likely occurs through
promoting the assembly of the synaptic complex or promoting
the homology search (Zhao et al. 2017). Despite the complex
nuclear environment, the course of the homology search—the
process that occurs immediately before the synaptic phase—is
relatively fast. In yeast, it has been demonstrated that the mo-
bility of a cut chromosome is increased, which allows the
Rad51 filaments to explore a larger nuclear volume (Dion

et al. 2012; Mine-Hattab and Rothstein 2012). Additionally,
broken DNA relocalizes to the nuclear periphery (Oza et al.
2009; Chiolo et al. 2011; Horigome et al. 2014; Ryu et al.
2015). Although the exact mechanism of homology search is
still undefined, it is suggested that the presynaptic filament
randomly probes the genome by making multiple temporary
contacts with different DNA duplexes (Forget and
Kowalczykowski 2012; Renkawitz et al. 2014; Qi et al.
2015). Contacts with very short microhomologies are unstable;
instead, contacts with more than 7 nt of homology are more
stable, which allows the presynaptic complex to probe flanking
sequences for additional homology. Once homology is identi-
fied, the presynaptic filament invades the duplex DNA, dis-
places the original strand, and binds its complementary se-
quence by Watson-Crick pairing. It has been estimated that
the efficiency of repair in yeast was decreased to ~ 14% when
template sequence diverged by about one in every eight nucle-
otides (Anand et al. 2017). Following strand invasion, the
displaced ssDNA within the D-loop structure is stabilized by
RPA, which prevents reversal of the D-loop formation (Lavery
and Kowalczykowski 1992; Eggler et al. 2002). Additionally,
RAD51 is removed from the heteroduplex dsDNA of the D-
loop structure. This function is catalyzed by RAD54, a dsDNA
translocase that uses its ATPase-powered motor activity to dis-
place RAD51 from dsDNA (Solinger et al. 2002; Mason et al.
2015) (Fig. 6). RAD54 thus promotes D-loop stability, which
allows DNA synthesis and facilitates canonical HR (Ceballos
and Heyer 2011; Wright and Heyer 2014).

The 3′-terminated strands within D-loop structures that re-
sist disassembly can prime DNA synthesis. Although
translesion polymerases have been implicated in HR
(Kawamoto et al. 2005; McIlwraith et al. 2005), most of
DNA synthesis during recombination is likely catalyzed by
either polymerase δ or polymerase ε (Li et al. 2009; Hicks
et al. 2010; Wilson et al. 2013). However, the DNA synthesis
during recombination is about three orders of magnitude more
error-prone than in DNA replication, most likely due to limit-
ed activity of DNA mismatch repair during recombination-
dependent repair DNA synthesis (Hicks et al. 2010). DNA
synthesis extends the length of the paired duplex, which fur-
ther stabilizes the joint molecule, leading to the recovery of the
missing genetic information in the broken DNA molecule by
using the invaded molecule as a template. Downstream of
strand invasion and DNA synthesis, recombination proceeds
into either of three recombination subpathways: BIR, SDSA,
and canonical HR (see section BEnd-joining and recombina-
tion processes involve several sub pathways^ for a general
introduction to these pathways and Fig. 4). In BIR, the invad-
ed DNA molecule is stabilized, and DNA synthesis proceeds
along the whole length of the template DNAvia a bubble-like
structure to the chromosome end (Llorente et al. 2008;
Sakofsky and Malkova 2017). The extended DNA synthesis
is likely catalyzed by polymerase δ, in conjunction with the
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Pif1 helicase, which promotes the strand displacement activity
of polymerase δ (Wilson et al. 2013). Interestingly, DNA syn-
thesis during BIR occurs conservatively and thus dramatically
differs from canonical DNA replication (Donnianni and
Symington 2013). How exactly the synthesis of the comple-
mentary strand is achieved remains undefined. The BIR path-
way occurs at the cost of elevated mutagenesis and is thus
primarily utilized when no alternative is available, such as in
the absence of the second DNA end.

In SDSA, the extended invadedDNA strand separates from
the template DNA and anneals to the second end of the broken
DNAmolecule. DNA synthesis and ligation then complete the
repair process. In canonical HR instead, through a process
termed second DNA end capture, the second broken DNA
end anneals to the displaced ssDNA strand of the D-loop
structure (Fig. 4). The strand annealing employs the Rad52
protein in yeast (Nimonkar et al. 2009). Although human
RAD52 also possesses the strand annealing activity
(McIlwraith and West 2008; Jensen et al. 2010), the effects
of RAD52 deficiency are modest and are particularly revealed
only in the absence of BRCA2 (Feng et al. 2011). This raises
questions whether the second end capture in human cells is
mediated by annealing or a secondDNA strand invasion event
(Kowalczykowski 2015).

The balance between SDSA and canonical recombinational
DSBR is regulated by activities that either disrupt or promote
stability of the D-loop structure. In most cases, the stability of
D-loops is dictated by motor proteins such as DNA helicases
that act by moving the junctions. Mph1 in yeast cells and
BLM, RECQ1, and RTEL1 in human cells have been impli-
cated in D-loop dissociation and promotion of SDSA (Bugreev
et al. 2007b, 2008; Barber et al. 2008; Prakash et al. 2009;
Daley et al. 2013; Mitchel et al. 2013). In yeast, D-loops can
also be disrupted or Bdissolved^ by an alternative mechanism
that involves topoisomerase III (Top3), which is also thought
to promote SDSA (Fasching et al. 2015). Whether this process
also functions in human cells is not yet clear. Additionally,
RAD54’s branch migration activity has been implicated to
disrupt D-loops downstream of RAD51-mediated strand inva-
sion in vitro (Bugreev et al. 2007a), but the biological signifi-
cance of this function may be restricted to limiting recombina-
tion with non-homologous DNA (Ceballos and Heyer 2011;
Wright and Heyer 2014). Regulating the balance between
SDSA and HR is important, as it affects the genetic outcome
of recombination. Whereas SDSA only leads to noncrossover
products, canonical HR is a pathway that can potentially pro-
duce crossovers, as will be described in the next section.

Processing recombination intermediates

D-loop stability determines the pathway choice between
SDSA and canonical recombinational DSBR. In SDSA, the

D-loop is disrupted, whereas in recombinational DSBR, the
D-loop is stabilized and becomes a substrate for annealing
with the second resected dsDNA end (Fig. 4). This gives rise
to a Bdouble^ or Bcomplement-stabilized^ D-loop. This struc-
ture forms as a result of annealing activity catalyzed by Rad52
in yeast and does not represent a second strand invasion step
(Nimonkar et al. 2009). Rad52 was shown to promote anneal-
ing of ssDNA to D-loops generated by cognate Rad51 and
Rad54 in the presence of RPA, indicating that the process
likely requires direct protein-protein interactions. This func-
tion of Rad52 is apparent in unicellular eukaryotes, while
RAD52 in human cells has a much less defined function
(Feng et al. 2011). It is possible that in high eukaryotes, other
proteins such as BRCA2 might be involved in second end
capture in addition to RAD52. It remains to be established
whether second end capture in human cells employs annealing
and/or strand invasion mechanisms.

Following second end capture, DNA synthesis and ligation
gives rise to a central intermediate of canonical HR, termed a
dHJ (Duckett et al. 1988). As both DNA molecules are phys-
ically linked at the junction points, HJs need to be processed
prior to separation of both DNAmolecules (Fig. 7). A failure to
process HJs leads to chromosome segregation defects and may
be one of the mechanisms responsible for genome instability
(Wechsler et al. 2011). Due to the homology between the
recombining DNA molecules, a key feature of endogenous
HJs is their mobility: the junction points can move in either
direction to a limited extent spontaneously, ormore extensively
in ATP-hydrolysis-driven reactions catalyzed by molecular
machines, such as DNA helicases or translocases. Double
HJs can be processed by resolution or dissolution-based mech-
anisms. As will be described below, these processes are enzy-
matically distinct and lead to diverse genetic outcomes.
Whereas dissolution leads to noncrossover products, resolution
gives rise to both crossovers and noncrossovers (Figs. 4 and 7).

Dissolution of double Holliday junctions

Dissolution separates the recombiningDNAmolecules without
exchanging the flanking sequences. As somatic cells employ
mechanisms to maximally preserve genome integrity, dissolu-
tion is the default mode of dHJ processing. In yeast, dissolution
is carried out by the Sgs1-Top3-Rmi1 (STR) complex (Cejka
et al. 2010b), while in human cells, the Bdissolvasome^ con-
sists of BLM, topoisomerase IIIα, and RMI1-RMI2, forming
the BTRR complex (Wu and Hickson 2003; Singh et al. 2008;
Xue et al. 2013). As Sgs1, BLM can unwind various DNA
structures and branch migrate HJs in vitro (Wu and Hickson
2003). The dissolution reaction involves migration of the two
Holliday junctions toward each other (i.e., convergent branch
migration) by the combined activity of the RecQ family BLM/
Sgs1 helicase and the strand passage activity of the TOPOIIIα/
Top3 type IA topoisomerase (Fig. 7a). As both Holliday
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junctions link twoDNAmolecules of long lengths, the ends are
not free to rotate, and the dHJ structure is topologically
constrained. Therefore, a branch migration activity of Sgs1/
BLM is not sufficient to migrate endogenous HJs (Cejka
et al. 2010b; Chen et al. 2014). It has been demonstrated that
the strand passage activity of TOPOIIIα/Top3 is required to
relieve positive supercoiling that would otherwise form ahead
of (between) the convergently migrating junctions and prevent
further movement (Chen et al. 2014). Mechanistically, Top3/
TOPOIIIα creates a transient nick in ssDNA that allows the
other ssDNA strand to pass through it, thereby allowing the
relaxation of the torsional stress forming between the junctions
during convergent branch migration. RMI1/Rmi1 does not sig-
nificantly affect the initial DNA branch migration step, but
seems to specifically promote a late step just prior to dissolu-
tion (Cejka et al. 2010b; Bocquet et al. 2014). The last predict-
ed intermediate of convergent branch migration is a
hemicatenane: this structure represents a junction between
two dsDNA molecules, where one strand of one duplex is
wrapped around another strand from the second DNA duplex
(Fig. 7a). It has been proposed that RMI1/Rmi1 specifically
promotes the processing of a hemicatenane (Cejka et al.
2012). RMI2, which is only present in high eukaryotes, likely
has only a minor function in dHJ dissolution and may have
other roles such as to target BLM to blocked DNA replication
forks (Singh et al. 2008). Finally, RPA, which physically

interacts with BLM/Sgs1 and RMI1/Rmi1 subunits of the
STR/BTRR complexes, also stimulates dissolution (Cejka
et al. 2010b; Xue et al. 2013). This likely stems from RPA’s
capacity to promote the helicase of BLM/Sgs1 and strand pas-
sage of TOPOIIIα-RMI1/Top3-Rmi1, likely through its
ssDNA binding activity to prevent reannealing, as well as be-
cause of the direct physical interaction of RPA with RMI1/
Rmi1 (Brosh et al. 2000; Plank et al. 2006; Cejka et al. 2012;
Xue et al. 2013). The unique mechanism of dHJ processing by
dissolution exclusively results in noncrossover events, which
maintains genome stability in vegetative cells (Fig. 7a). BLM-
deficient cells are characterized by elevated levels of sister
chromatid exchanges, which are a hallmark of genome rear-
rangements and may contribute to cancer predisposition of
Bloom syndrome patients (Chaganti et al. 1974). These rear-
rangements result from elevated usage of pathways that are
alternative to dissolution and that are dependent on the
structure-specific nucleases described in the next section.

Resolution of double Holliday junctions

Double HJs that evade dissolution are resolved by structure-
specific nucleases later in the cell cycle to give rise to both
crossover and noncrossover recombination products.
Nucleolytic cleavage also represents the only option for the
processing of single HJs. These may form during DSB repair

Fig. 7 An overview of double Holliday junction processing mechanisms
in the canonical recombinational DSBR pathway. In vegetative cells,
double Holliday junctions can be processed by either dissolution (a)
that involves helicase-coupled topoisomerase or by resolution (b) that
involves nucleolytic cleavage of the junctions. Meiotic cells in most
organisms preferentially use a dedicated crossover pathway (c), and to a
smaller degree nucleases that are common to both meiotic and mitotic

cells (b). For simplicity, human nomenclature is used. The involvement of
nucleases listed in panels b and c in human (or mouse) meiotic cells
generally remains to be defined. Yeast S. cerevisiae cells use a
crossover-specific pathway that involves the Exo1-Mlh1-Mlh3 complex
and the structure-specific nucleases Mus81-Mms4, Slx1-Slx4, and Yen1.
See text for details
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where only one strand invades template DNA, or when one of
the D-loop arms has been cleaved prior to second end capture
(Wechsler et al. 2011; Shah Punatar et al. 2017). To date, three
structure-specific nucleases capable of processing HJs or sim-
ilar structures have been identified in eukaryotic cells, includ-
ing human MUS81-EME1 and yeast Mus81-Mms4, human
SLX1-SLX4 and yeast Slx1-Slx4 as well as humanGEN1 and
yeast Yen1 (Dehe and Gaillard 2017). The Mus81-Mms4
complex in yeast was found to be essential for viability in cells
lacking Sgs1-Top3, indicating its role in the processing of
recombination intermediates that would have otherwise been
processed by the Sgs1-Top3 complex (Hickson and Mankouri
2011). Mus81 belongs to the XPF family of nucleases and
represents the catalytic subunit of the heterodimer. Both yeast
and human Mus81-Mms4/MUS81-EME1 complexes prefer
to cleave replication forks, 3′ flaps, and nicked HJs (Gaillard
et al. 2003; Ehmsen and Heyer 2008). MUS81-EME1/
Mus81-Mms4 cleave intact HJs inefficiently in an asymmetric
manner by introducing a nick a few nucleotides away from the
junction, producing gapped and flapped DNA products,
which are unsuitable for ligation and necessitate further pro-
cessing (Wyatt et al. 2013). In human cells, MUS81 forms
another complex with EME2, which has a broader substrate
specificity than MUS81-EME1, and has roles in replication
fork restart (Pepe andWest 2014b). SLX1/Slx1 belongs to the
GYI-YIG family of nucleases and is the catalytic subunit of
the SLX1-SLX4 heterodimer. The SLX1-SLX4/Slx1-Slx4
complex can cleave branched structures with a preference to-
ward Y-structures, 5′ flaps, and replication forks. While it can
cleave intact HJs, the cleavage is inefficient and asymmetrical
and creates poorly ligatable products (Fricke and Brill 2003;
Fekairi et al. 2009; Svendsen et al. 2009; Wyatt et al. 2013).
Both MUS81 and SLX1 complexes are thus noncanonical HJ
resolvases. The only bona fide eukaryotic HJ resolvase is
GEN1/Yen1, which belongs to the RAD2/XPG family of nu-
cleases. As the Escherichia coli RuvC, GEN1/Yen1 dimerizes
on HJs and cleaves HJs by a dual incision mechanism that
produces two ligatable products (Dunderdale et al. 1991; Ip
et al. 2008; Rass et al. 2010). However, both GEN1 and Yen1
are capable of cleaving other branched DNA structures as
well. The random nature of HJ cleavage by the various nucle-
ase complexes gives rise to both crossover and noncrossover
recombination products (Shah Punatar et al. 2017) (Fig. 7).

In human cells, both the SLX1-SLX4 and MUS81-EME1
dimers associate to form the SLX1-SLX4-MUS81-EME1 tet-
ramer (SM complex). The formation of the SM complex is
mediated by the interaction between MUS81 and SLX4 poly-
peptides (Wyatt et al. 2013). Biochemical studies demonstrat-
ed that the SM complex exhibits higher HJ resolution activity
compared to its individual subunits. Mechanistically, SLX1-
SLX4 makes the first nick in the HJ creating a substrate for
MUS81-EME1, which then makes a second counter-nick in
the opposing strand, allowing for efficient HJ resolution

(Castor et al. 2013; Wyatt et al. 2013). This activity is further
enhanced by interaction with a third nuclease complex, the
XPF-ERCC1 dimer, which has a structural (i.e., noncatalytic)
role to promote HJ cleavage (Wyatt et al. 2017) (Fig. 7b). The
catalytic subunit within the XPF-ERCC1 dimer is XPF, which
has established functions in nucleotide excision repair. It
should be pointed out that the functions of MUS81-EME1/
Mus81-Mms4 and SLX1-SLX4/Slx1-Slx4 are not specific to
processing recombination products, and both enzyme com-
plexes may cleave structures arising during other DNA repair
processes, as well as during replication or telomere mainte-
nance. Likewise, the SLX1-SLX4-MUS81-EME1-XPF-
ERCC1 (SMX) trinuclease complex has a broad substrate
specificity that is not restricted to HJ cleavage and likely func-
tions in multiple DNA metabolic pathways (Wyatt et al.
2017). The formation of the nuclease complexes appears spe-
cific to higher eukaryotes, as no such collaborative action of
nucleases has been observed in yeast.

Regulation of Holliday junction processing

To maximally preserve genome stability, vegetative cells
evolved mechanisms that facilitate dissolution pathway usage
over resolution, which limits crossover formation.
Additionally, the activity of the nucleases capable of cleaving
branchedDNA structures must be carefully controlled to avoid
promiscuous DNA cleavage. The preferential employment of
dissolution over resolution by structure-specific nucleases is
governed by tight spatial and temporal control (Matos and
West 2014). The STR/BTRR complex is likely active in any
phase of the cell cycle and, thus, processes themajority of dHJs
from S phase to mitosis in both yeast and human cells. The
activity of yeast Mus81-Mms4 is instead low in S phase and
becomes elevated at the onset of mitosis by phosphorylation of
the Mms4 subunit by CDK and Cdc5 (Matos et al. 2011;
Matos et al. 2013). In human cells, the phosphorylation of
EME1 does not activate MUS81 directly but rather promotes
the formation of the SLX1-SLX4-MUS81-EME1 (SM) com-
plex with increased activity toward HJs (Wyatt et al. 2013).
Yeast Yen1 is inactive in its phosphorylated state in S phase
and becomes activated by Cdc14-mediated dephosphorylation
late in mitosis. Interestingly, phosphorylation of Yen1 not only
inhibits its catalytic activity by limiting its association with
DNA but also prevents nuclear import (Kosugi et al. 2009;
Blanco et al. 2014). Nuclear exclusion appears to be the pri-
mary mechanism that restricts human GEN1 activity (Chan
and West 2014). The nuclear export sequence within GEN1
ascertains that GEN1 can process recombination intermediates
only when the nuclear envelope breaks down during mitosis.
These regulatory mechanisms collectively ascertain that the
structure-specific nucleases are only activated late in the cell
cycle to remove any residual junctions that were not processed
by the dissolvasome complex. Although potentially
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mutagenic, efficient processing of all joint molecules by reso-
lution mechanisms is essential to prevent chromosome
missegregation in mitosis (Wechsler et al. 2011).

Specialized roles of DSB repair pathways

Cells evolved mechanisms to repair accidental DNA breaks to
achieve maximal efficiency and accuracy in the maintenance
of genome integrity. However, not all DSBs are pathological,
and there are several cases when DSBs are introduced delib-
erately, which serves specific physiological purposes. The best
examples are processes occurring during lymphocyte devel-
opment and in meiosis. As will be seen below, during these
events, cells make use of the DSB repair pathways to instead
generate diversity. Both processes represent fascinating exam-
ples of the plasticity of the DSB repair systems.

DSB repair pathways in the immune system

V(D)J recombination is a process that occurs during B and T
lymphocyte development and involves a random rearrange-
ment of the variable (V), diversity (D), and joining (J) seg-
ments of immunoglobulin genes (Arya and Bassing 2017)
(Fig. 8a). The random assembly of these VDJ segments al-
lows producing a wide variety of antigen receptors from a
limited number of gene segments. Despite its name, V(D)J
recombination is facilitated by canonical NHEJ factors and
does not involve homologous recombination. Disruption of
key NHEJ factors results in severe immune disorders in
humans and mice, indicating their essential role in V(D)J
recombination. The MRN complex was found to have a func-
tion in V(D)J recombination, but this appears to be dependent
on its capacity to promote checkpoint signaling via activation
of the ATM kinase, and not a role in HR (Uziel et al. 2003;
Helmink et al. 2009).

V(D)J recombination is initiated by the recombination-
activating genes 1 and 2 (RAG1 and RAG2), which are
expressed in developing lymphocytes and therefore restrict
this process to these cells (McBlane et al. 1995; Schatz and
Swanson 2011). RAGs bind to the recombination signal se-
quences (RSS) flanking the V, D, and J gene segments and
first create an ssDNA nick at the junction between the coding
region and the RSS. There are two types of RS sequences,
which differ with respect to the length of a spacer region
between the two identical sequences. The spacers are of 12
or 23 bps in length, giving rise to RS12 and RS23 sequences
(Fig. 8a). Next, RAGs catalyze the formation of a paired
complex, where the RS12 and RS23 sequences associate with
the same RAG complex. The free hydroxyl group of the
nicked strand then invades the phosphodiester bond of the
intact strand, generating a DSB with different DNA ends.
The coding end of the DSB contains a hairpin loop, whereas

the signal end is blunt. Next, the blunt signal ends are ligated
together to form a circular piece of DNA that is lost during
subsequent cell divisions. The hairpin coding ends are proc-
essed and joined by the NHEJ machinery to fuse the respec-
tive gene segments. First, Ku70-80 and DNA-PKcs bind to
the coding ends and recruit other additional NHEJ factors,
including Artemis, XRCC4-XLF, and DNA ligase IV
(Fig. 8a). Next, the Artemis nuclease is activated upon auto-
phosphorylation of DNA-PKcs and opens the hairpin loop of
the coding ends, which can then be ligated to the other coding
ends by the XRCC4-XLF and DNA ligase IV complex (Li
et al. 1995; Casellas et al. 1998; Ma et al. 2002). The creation
of DSBs with different ends and the requirement for associ-
ation of the 12- and 23-RS sequences in human B and T cells
are essential for regulated processing to ensure that coding
sequences of V, D, and J, but not homotypic gene segments,
are joined. The final product of V(D)J recombination is a
DNA coding sequence consisting of randomly rearranged V,
D, and J gene segments (Schatz and Swanson 2011).

Class switch recombination (CSR) and somatic
hypermutation (SHM) only occur in activated germinal center
B cells. CSR leads to the change of antibody isotype and thus
its effector function, while SHM affects the variable regions
of the immunoglobulin genes to promote diversity of antibod-
ies. Both CSR and SHM are independent of RAGs and in-
stead are triggered by activation-induced cytidine deaminase
(AID) (Muramatsu et al. 2000; Arakawa et al. 2002; Petersen-
Mahrt et al. 2002) (Fig. 8b). AID specifically deaminates
cytosines into uracils, resulting in the formation of U:G mis-
matches. During CSR, the Cμ exon is exchanged by Cγ/ε/α
exons, resulting in the change of the antibody isotype from
IgM to IgG, IgE, or IgA (Methot and Di Noia 2017). Unlike
RAGs that are targeted to very specific sequences, AID in
CSR is active on large regions (1–3 kb) of repetitive DNA
sequences upstream of CH genes (coding for constant regions
of immunoglobulin heavy chains), called the switch (S) re-
gions. The U:G mismatches are mainly processed by the base
excision repair machinery (BER), which creates ssDNA
breaks as intermediates of the repair process (Rada et al.
2002; Imai et al. 2003; Schrader et al. 2005). Closely spaced
ssDNA breaks then give rise to staggered DSBs (DSBs with
ssDNA overhangs) (Fig. 8b). Additionally, a smaller fraction
of DNA breaks may form as a result of a noncanonical func-
tion of the DNA mismatch repair machinery, which involves
the exonuclease activity of Exo1 (Ehrenstein and Neuberger
1999; Schrader et al. 2007; Bregenhorn et al. 2016). The
exonucleolytic processing of one DNA strand then collides
with a nick in the opposite DNA strand, leading to DSBs
(Fig. 8b). Irrespectively of the exact mechanism, the resulting
DSBs often contain ssDNA overhangs, which need to be
either filled or cleaved prior to joining by the canonical
NHEJ machinery. DSBs with overhangs bearing
microhomologies may also be joined by the MMEJ pathway
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(Lee-Theilen et al. 2011). As with V(D)J recombination, CSR
is also dependent on end-joining mechanisms, and it is thus
not a homologous recombination process. Interestingly, MRN
was found important for CSR, where it likely has a structural
role to promote both canonical NHEJ and MMEJ pathways
(Dinkelmann et al. 2009).

Somatic hypermutation is, as CSR, dependent on AID
(Arakawa et al. 2002; Pham et al. 2003). In contrast to
CSR, SHM leads to antibody diversification through mu-
tagenesis in the V regions of light and heavy chains of
immunoglobulins. It has been estimated that the mutation
rate in the V regions during SHM is about 6 orders of
magnitude higher than in the rest of the genome. The ma-
jority of mutations are single base substitutions, with a
small fraction of short insertions or deletions. This sug-
gests that the formation of a DSB is not an obligate step
in SHM, and in fact NHEJ-deficient cells do not show
significant defects in SHM. However, some DSBs form
during SHM (Papavasiliou and Schatz 2000). To this point,
it has been demonstrated that DSBs during SHM can be
repaired by homologous recombination (Papavasiliou and

Schatz 2000; Zan et al. 2003); furthermore, HR has been
implicated as a safeguard against off target AID activity
(Hasham et al. 2010; Zahn et al. 2014). Interestingly,
MRN was found to promote SHM, but the underlying
mechanisms remain unclear (Yabuki et al. 2005).

Finally, the insertion of DNA fragments of various sizes
has been recently reported to occur in the switch region of
immunoglobulin genes (Tan et al. 2016; Pieper et al. 2017).
The DNA sequences originate from another part of the ge-
nome, and the transfer occurs via a copy-paste rather than a
cut-paste process. This may represent a novel mechanism for
antibody diversification, although the molecular pathways re-
quired for these transactions are unknown. Interestingly, inser-
tions of fragments from the collagen receptor LAIR1 into
immunoglobulin genes lead to antibodies that are broadly re-
active to malaria (Tan et al. 2016; Pieper et al. 2017). It is
important to point out that during B cell maturation, clones
that produce high affinity antibodies are positively selected
while low affinity clones are eliminated. Due to the selection
process, even infrequent events may thus become physiolog-
ically relevant (Pieper et al. 2017).

Fig. 8 An overview of specialized roles of the DSB repair pathways in
human lymphocytes. aMechanism of V(D)J recombination, where DNA
breaks are introduced by RAG1-RAG2. b Mechanism of class switch

recombination, where DNA breaks are indirectly caused by the action
of AID. In both cases, end-joining, but not homologous recombination
pathways, is responsible for DNA break repair
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Homologous recombination in meiosis

Meiosis is a specialized cell division that is required for ge-
nome haploidization (Keeney et al. 2014). This is essential to
form spores or gametes in sexually reproducing unicellular or
multicellular eukaryotes, and makes sure that ploidy is main-
tained with each successive generation (Fig. 9). DSBs are
introduced during meiosis and become substrates for the ho-
mologous recombination machinery (Sun et al. 1989, 1991).
The function of meiotic recombination in most organisms in-
cluding yeast and vertebrates (but not Drosophila and
Caenorhabditis) is to make physical connections between ho-
mologous chromosomes to facilitate their proper alignment
and subsequent segregation. Additionally, recombination cre-
ates genetic diversity in the population by exchanging DNA
regions betweenmaternal and paternal chromosomes. The key
mechanistic differences between HR in vegetative cells and
duringmeiosis are (a) the formation of DNA breaks, which are
induced in a programmed manner during meiosis; (b) the
preferential usage of the homologous chromosome as a tem-
plate for repair; and (c) a bias for preferential resolution of
recombination intermediates into crossovers that are
nonrandomly spaced (Fig. 9) (Hunter 2015).

DSBs are introduced during the first meiotic division by the
SPO11/Spo11 transesterase, which is evolutionarily con-
served from yeast to mammals (Keeney and Kleckner 1995;
Keeney et al. 1997; Mahadevaiah et al. 2001; Robert et al.
2016). SPO11 is a topoisomerase-like protein that cleaves
both strands of dsDNA, but remains covalently attached to
the 5′-terminated DNA strand upon cleavage. In yeast, at least
nine other proteins are required for Spo11 to cleave DNA,
including the MRX complex (Keeney 2008). Interestingly,
the nuclease activity of MRE11 is dispensable for DNA cleav-
age by Spo11 in yeast, but it is instead essential to initiate the
processing of Spo11-bound DNA breaks (Borde et al. 2004;

Lam and Keeney 2014). As with other protein-blocked DNA
ends, the first resection step requires the nuclease activity of
the MRN/MRX complex with its co-factor CtIP/Sae2 to re-
move SPO11/Spo11 from the break ends (Keeney and
Kleckner 1995; Neale et al. 2005). Resection by MRX-Sae2
can proceed up to several hundreds of nucleotides in length.
This is followed by long-range resection, which appears to be
exclusively carried out by the Exo1 branch in yeast meiotic
cells (Zakharyevich et al. 2010; Mimitou et al. 2017). In mice,
the average resection length is 0.9 kb (Lange et al. 2016),
which is similar to the value obtained in yeast (Zakharyevich
et al. 2010).

The resected 3′ DNA tail is bound by RPA and succes-
sively replaced by DMC1 (a meiosis-specific strand ex-
change protein) together with RAD51 (Bishop et al.
1992; Cloud et al. 2012). Whereas RAD51 is the only
strand exchange protein in vegetative cells, meiotic cells
employ both RAD51 and DMC1. In addition to the recom-
bination mediators such as yeast Rad52 and human
BRCA2 that function during recombination in both vege-
tative cells and in meiosis, meiotic cells make use of an
additional regulator, the HOP2-MND1 complex (Leu et al.
1998; Petukhova et al. 2005). The heterodimer stabilizes
the RAD51/DMC1 complex on ssDNA, reduces the affin-
ity of RAD51 to dsDNA, and modulates the conformation
of the nucleoprotein filament to promote DNA strand ex-
change (Chi et al. 2007; Pezza et al. 2007).

The second key dissimilarity between meiotic and mitotic
HR is the template choice for repair. Meiotic cells preferen-
tially use the homologous chromosome instead of the sister
chromatid in order to fulfill the requirement to generate genet-
ic variability (Schwacha and Kleckner 1994; Baudat et al.
2000; Peoples et al. 2002). How this is achieved is not yet
fully understood. The template bias is regulated by cohesion
(Kim et al. 2010), depends in part on the role of DMC1 to

Fig. 9 An overview of the specialized roles of the homologous recombination pathway in meiosis. The main differences between recombination in
meiotic and vegetative cells are indicated
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promote strand exchange between homologs, and requires the
DNA damage response cascade involving Mec1, Tel1, and
meiosis-specific components such as Mek1 (Schwacha and
Kleckner 1997; Niu et al. 2005; Carballo et al. 2008).

The third key characteristic of meiotic HR is a more fre-
quent resolution of joint molecule intermediates such as dHJs
or their precursors into crossovers. Most meiotic noncrossover
products appear early and result from the processing of unsta-
ble intermediates by SDSA (Allers and Lichten 2001; Bishop
and Zickler 2004). The joint molecules that can be readily
observed are termed single-end invasions (containing presum-
ably D-loop structures), which later mature into dHJs (Hunter
and Kleckner 2001). Most of these joint molecules are re-
solved synchronously later, which is triggered by the phos-
phorylation of yet undefined targets by the Cdc5 kinase
(Allers and Lichten 2001; Sourirajan and Lichten 2008).
Although the molecular mechanism remains unclear, the pref-
erential processing of joint molecule intermediates into cross-
overs is achieved by the usage of a meiosis-specific
procrossover pathway, which is responsible for up to ~ 80%
of meiotic crossovers in S. cerevisiae (Zakharyevich et al.
2012). This pathway ensures that every chromosome receives
at least one crossover (positive crossover interference), there-
by assuring the exchange of genetic information between the
homologous chromosomes. At the same time, the formation
of one crossover suppresses the formation of additional cross-
overs in its vicinity (negative crossover interference), making
sure that the crossovers are evenly spaced, as two crossovers
in immediate vicinity limit the exchange of genetic informa-
tion between the homologous chromosomes. The proper num-
ber of crossovers and their distribution is thus balanced to
enable efficient chromosome segregation and genetic ex-
change (Hunter 2015).

The exact mechanism of crossover interference remains to
be defined. It is apparent that it is regulated by the components
of the synaptonemal complex that juxtaposes homologs along
their entire length (Sym and Roeder 1994; Hunter 2015). The
interference signaling involves Tel1 (Garcia et al. 2015).
Crossover interference also requires topoisomerase II, sug-
gesting that interference may be regulated by mechanical or
topological stress along the meiotic chromosome axes (Zhang
et al. 2014). The meiotic crossover-specific pathway involves
the ZMM group of proteins, which includes Zip1, Zip2, Zip3,
Zip4, Spo16, Mer3, and Msh4-Msh5 in S. cerevisiae (Lynn
et al. 2007; Shinohara et al. 2008). These proteins form or
facilitate the formation of the synaptonemal complex, or func-
tion more downstream to stabilize D-loop structures in a way
that protects their disassembly by motor proteins (Mazina
et al. 2004; Snowden et al. 2004). Similarly in mice, the pu-
tative SUMO-conjugating factor RNF212 was found to stabi-
lize meiotic recombination factors including MSH4-MSH5 at
designated recombination sites, which is essential for crossing
over. This is likely achieved via sumoylation of selected

targets along the chromosome axes, which functionally inter-
acts with HEI10-dependent ubiquitination and proteasomal
degradation (Wei et al. 2003; Reynolds et al. 2013; Rao
et al. 2017).

The crossover-specific resolution in budding yeast, plants,
and mammals depends on the nuclease activity of Mlh3,
which is a part of the Mlh1-Mlh3 heterodimer (Lipkin et al.
2002; Nishant et al. 2008; Zakharyevich et al. 2012; Ranjha
et al. 2014; Rogacheva et al. 2014). Unexpectedly, Exo1 was
found to have a noncatalytic function in crossover resolution
together with Mlh1-Mlh3 (Zakharyevich et al. 2010). How
the ZMM proteins and Mlh1-Mlh3 achieve the crossover-
specific resolution of dHJs or their precursors remains to be
described (Fig. 7c). Interestingly, only crossovers from the
ZMM-Mlh1-Mlh3 pathway—termed class I crossovers—dis-
play interference. Joint molecules that are processed by the
structure-specific nucleases (Mus81-Mms4, Slx1-Slx4, and
Yen1 in yeast) result in both crossovers and noncrossovers.
Crossovers resulting from these nucleases are interference
independent and account for ~ 20% of crossovers in
S. cerevisiae (de los Santos et al. 2003; Zakharyevich et al.
2012). In contrast, Mus81-Eme1 generates most meiotic
crossovers in the budding yeast Schizosaccharomyces
pombe, while the MEI-9, an XPF-like protein, resolves mei-
otic joint molecules in Drosophila (Boddy et al. 2001; Yildiz
et al. 2002).

Role of recombination proteins in promoting
the stability of DNA replication forks

In addition to repairing DSBs, recombination proteins have
critical functions in other pathways of DNA metabolism.
Specifically, recombination is one of the pathways that con-
tribute to the repair of DNA cross-links, which has been
covered elsewhere (Hinz 2010). Furthermore, recombination
in multiple ways promotes the stability of replicating DNA
(Branzei and Szakal 2017). Abnormalities such as protein
blocks, chemical modifications, abnormal secondary struc-
tures, or collisions of replication forks with the transcription
machinery can impede DNA replication. Depending on the
nature of the replication stress, cells utilize various mecha-
nisms that help them deal with these situations (Fig. 10a–d).
This includes repriming of DNA replication and/or
translesion DNA synthesis, which lead to lesion bypass.
Postreplicative repair can fill any gaps left behind by the
replication machinery (Bianchi et al. 2013; Garcia-Gomez
et al. 2013; Mouron et al. 2013; Branzei and Szakal 2016;
Guilliam and Doherty 2017; Vaisman and Woodgate 2017).
In some cases, the replication fork can fall apart, resulting in
a single-ended DSB, which is repaired as described in the
BEnd-joining and recombination processes involve several
subpathways^ section. Here, we will focus on two related
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functions of recombination proteins that were uncovered on-
ly in recent years, namely in the replication fork reversal and
the protection of DNA from nucleolytic degradation at
stalled replication forks.

Replication fork reversal is the conversion of a stalled
DNA replication fork into a four-way junction (Fig. 10b).
Fork reversal is achieved by the annealing of the two nascent
DNA strands and the reannealing of the two parental strands,
which resembles a DNA double-strand break. Fork reversal
can thus lead to DSB formation in the absence of template
breakage (Fig. 10b). Although arising through a very different
mechanism, the resulting four-way junction is structurally
identical to a Holliday junction that forms duringDNA recom-
bination (Fig. 10b). The concept of replication fork reversal
has been proposed a long time ago (Higgins et al. 1976). In
bacteria, it has been established as a way that contributes to the
restart of stalled replication forks. In E. coli, the actions of
RecA (a homolog of RAD51), followed by branch migration
by RuvAB, or the motor activity of RecG, can drive replica-
tion fork reversal (Seigneur et al. 1998; McGlynn and Lloyd

2001; Gupta et al. 2014). For a long time, this process was
believed to represent only a pathological reaction in eukary-
otic cells (Sogo et al. 2002; Hu et al. 2012). Specifically, fork
reversal in yeast was described to occur in checkpoint-
defective cells (Lopes et al. 2001). Only recently, it has been
demonstrated that replication fork reversal can be beneficial to
prevent DNA template breakage in human cells, and that it is a
global response to DNA replication stress (Ray Chaudhuri
et al. 2012; Neelsen and Lopes 2015; Zellweger et al. 2015).
Electron microscopy revealed that the regressed arms of the
replication forks can reach and occasionally exceed 1 kb in
length, implicating that they form in the course of an active
and enzyme-driven process.

One of the first proteins shown to promote replication fork
reversal in vivo was RAD51 (Zellweger et al. 2015). In ac-
cord, RAD51, to a limited extent, can drive migration of
Holliday junctions via polymerization on DNA (Rossi et al.
2011). However, RAD51 per se has no motor activity, so it is
unlikely that RAD51 can drive fork reversal on its own. The
best candidates for this function are motor proteins such as

Fig. 10 An overview of pathways that relieve DNA replication stress in
human cells. a When a DNA replication fork encounters an obstacle, it
may be bypassed by translesion synthesis. b A DNA replication fork can
also reverse, which may temporarily protect DNA from breaking.
Replication fork reversal can also lead to lesion bypass. Factors that
may regulate the various steps of replication fork reversal and restart are

indicated. RAD51 likely mediates replication fork reversal and protects
reversed replication forks from degradation by the MRE11 nuclease. c
Replication repriming downstream of a lesion is another mechanism of
DNA damage tolerance. d Replication forks can also break and become a
substrate for homologous recombination as indicated in Fig. 4
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DNA helicases or translocases. To this point, the motor pro-
tein RAD54 was shown to catalyze fork reversal in vitro in a
way that was stimulated by RAD51 (Bugreev et al. 2011).
Other proteins, including SMARCAL1, ZRANB3, HLTF,
FBH1, RECQ5, and FANCM, were proposed to function in
fork reversal in vitro or in vivo (Kanagaraj et al. 2006; Gari
et al. 2008; Betous et al. 2012; Ciccia et al. 2012; Bhat et al.
2015; Fugger et al. 2015; Kile et al. 2015; Kolinjivadi et al.
2017; Taglialatela et al. 2017; Vujanovic et al. 2017).
However, the interplay of these factors with RAD51 is not
defined, and it is not clear to which extent these motor proteins
can function in a redundant manner. Interestingly, fork rever-
sal likely does not require BRCA2, showing that, unlike in
DSB repair, the function of RAD51 in promoting fork reversal
is BRCA2 independent (Prakash et al. 2015; Kolinjivadi et al.
2017; Mijic et al. 2017). Fork reversal allows time for DNA
repair ahead of the fork, or may result in DNA damage bypass
(i.e. damage tolerance, in case when one reversed arm tem-
plates DNA synthesis of the complementary strand). Once this
is completed, DNA replication must resume. Several mecha-
nisms have been described that promote the restoration of
reversed replication forks, which involve motor proteins such
as RECQ1, RAD54 or the nucleolytic degradation of the re-
versed arms by MRE11, EXO1, the DNA2-WRN nuclease-
helicase pair or by the MUS81-dependent cleavage, with dif-
ferent implication for genome stability (Bugreev et al. 2011;
Berti et al. 2013; Pepe andWest 2014a; Thangavel et al. 2015;
Lemacon et al. 2017). While replication fork reversal may be
pathologic in some cases, it has been demonstrated that inhi-
bition of fork reversal results in increased DNA breakage and
genome instability, underpinning the role of this process in
preventing genome rearrangements (Neelsen and Lopes
2015; Mijic et al. 2017).

As described in the BFormation of RAD51-ssDNA fila-
ment on resected DNA^ section, RAD51 is the main DNA
strand exchange protein in eukaryotes. It remains to be defined
whether RAD51 has a structural or a catalytic function in
replication fork reversal. There is, however, one key function
of RAD51 that is DNA repair and recombination independent.
It has been demonstrated that BRCA1, BRCA2, and RAD51
function together to protect stalled—and possibly reversed—
DNA replication forks from degradation by the MRE11 nu-
clease (Hashimoto et al. 2010; Schlacher et al. 2011, 2012;
Mijic et al. 2017). It has been shown that a stable RAD51
nucleoprotein filament is required to protect DNA from
MRE11 (Kolinjivadi et al. 2017; Zadorozhny et al. 2017).
The BRCA1 and BRCA2 factors likely act directly or indi-
rectly to stabilize the RAD51 nucleoprotein filament. It is
being discussed whether the essential function of BRCA2 is
to prevent DNA degradation at stalled forks by stabilizing
RAD51, or to promote canonical DSB repair (Ray
Chaudhuri et al. 2016; Feng and Jasin 2017). At the same
time, unrestricted RAD51 activity at stalled forks is equally

detrimental: the RADX factor was recently identified as a
negative regulator of RAD51 at stalled forks (Dungrawala
et al. 2017). These experiments collectively demonstrated that
in DNA replication, the RAD51 protein, in addition to
performing canonical Brecombination^ functions has other,
previously unrecognized roles in replication fork reversal
and protection from nucleolytic degradation. To elucidate
the underlying molecular mechanisms of these processes rep-
resents a challenge to researchers in the coming years.
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