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Abstract The genome of proliferating cells must be precisely
duplicated in each cell division cycle. Chromosomal replication
entails risks such as the possibility of introducing breaks and/or
mutations in the genome. Hence, DNA replication requires the
coordinated action of multiple proteins and regulatory factors,
whose deregulation causes severe developmental diseases and
predisposes to cancer. In recent years, the concept of
Breplicative stress^ (RS) has attracted much attention as it im-
pinges directly on genomic stability and offers a promising new
avenue to design anticancer therapies. In this review, we sum-
marize recent progress in three areas: (1) endogenous and ex-
ogenous factors that contribute to RS, (2) molecular mecha-
nisms that mediate the cellular responses to RS, and (3) the
large list of diseases that are directly or indirectly linked to RS.
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Fundamental aspects of eukaryotic DNA replication

The first steps toward genome duplication occur before any
new DNA is synthesized. Starting in late telophase and during
G1, prereplicative complexes (pre-RCs) are assembled at ge-
nomic points called origins, whose number fluctuates between
several hundreds in unicellular yeasts and tens of thousands in

mammalian cells. Pre-RC formation, also called origin
Blicensing,^ involves the origin recognition complex (ORC),
CDC6 and CDT1 proteins, which attract and engage the ring-
shaped minichromosome maintenance (MCM) DNA helicase
with the DNA. Then, the coordinated action of two kinases
(CDK and DBF4-CDC7) promotes the recruitment of addi-
tional factors including Sld2 (yeast)/RecQL4 (mammalian),
Sld3/Treslin, Dbp11/TopBP1, Cdc45, GINS, and DNA poly-
merases along with their accessory factors. Each origin gives
rise to two replication forks that synthesize new DNA while
moving in opposite directions (Fig. 1; reviewed byMasai et al.
2010). The past year has seen remarkable advances in the
elucidation of the origin activation pathway, including three-
dimensional structures of ORC (Bleichert et al. 2015) and
MCM (Li et al. 2015), as well as the full reconstitution of
plasmid replication in vitro with purified yeast components
(Yeeles et al. 2015).

The protein complexes responsible for DNA synthesis at the
forks are called Breplisomes^ and include a DNA helicase that
separates the parental DNA, at least three DNA polymerases (α,
δ, and ε), a DNA polymerase processivity factor called prolifer-
ating cell nuclear antigen (PCNA), single-stranded DNA
(ssDNA) binding replication protein A (RPA), and proteins that
tether the polymerases to the helicase such as Tipin, Tim1,And1,
and Claspin (Gambus et al. 2006, 2009; Errico et al. 2009).
Several proteomic studies have identified many other replisome
components in mammalian cells, whose functions are related to
chromatin remodeling or remain to be elucidated (Alabert et al.
2014; Lopez-Contreras et al. 2013; Sirbu et al. 2013).

Importantly, replication forks slow down or completely
pause when they encounter Bblocks^ in the template or when
the concentration of free dNTPs is limiting. Under this cir-
cumstances, replisomes that stay stably associated with the
DNA may restart DNA synthesis after the problem has been
solved. However, when the arrest persists for a long period of
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time, replisomes collapse and the aborted forks are processed
into DNA double-strand breaks (DSBs).

An evolving definition of replicative stress

Despite its interest and implications, the DNA replication and
DNA damage fields are yet to reach a consensus definition for
replicative stress (RS). Early usage of the term referred to ab-
errant events in cells undergoing rapid proliferation, such as
uridine incorporation into DNA by Ehrlich ascites tumor cells
(Yost et al. 1976). Later on, RS was used to describe Bthe
vulnerability to genotoxic insults and other stochastic events
that impede the proper replication and segregation of their ge-
nomes to daughter cells,^ and it was established that it triggered
specific cellular responses (Osborn et al. 2002). In recent years,
RS has referred specifically to DNA replication disturbances
that generate stretches of ssDNA that is covered by RPA (Zou
and Elledge 2003). The strength of the cellular response is
influenced by the amount of ssDNA-bound RPA
(MacDougall et al. 2007). A rather minimalistic definition of
RS has been recently put forward by Zeman and Cimprich
(2014): Bthe slowing or stalling of replication fork progression
and/or DNA synthesis^. To this elegant description, we would
only add that, depending on the extent and duration of fork
slowing or stalling, a specific checkpoint response is activated.

Causes of RS

Lessons from chromosome fragile sites

Common fragile sites (CFSs) are chromosomal points prone
to break in the presence of DNA replication inhibitors such as
aphidicolin. CFSs facilitate gross chromosomal rearrange-
ments and may contribute to cancer development (reviewed
by Durkin and Glover 2007). While CFSs were originally
identified in blood cells (Glover et al. 1984), they have also
been detected in fibroblasts and epithelial cells (Le Tallec et al.
2011, 2013). Interestingly, CFSs are largely tissue-specific; a
similar DNA sequence can be stable in one cell type and
fragile in another (Letessier et al. 2011).

The genomic features of CFSs provide clues into the ele-
ments that pose a risk for the DNA replication machinery. For
instance, AT-rich regions found at some CFSs can form sec-
ondary structures that stall replication forks (Zlotorynski et al.
2003). Some CFSs are located in very long (>800 kb) genes in
which collisions between the replication and transcription ma-
chineries are unavoidable (Helmrich et al. 2011; Le Tallec et
al. 2013). However, not all CFSs contain AT-rich regions, and
long genes are stable in some cell types. The specific replica-
tion program of each chromosomal domain is a major deter-
minant of the Bexpression^ of CFSs. Late-replicating domains
with a low density of origins are prone to fragility because
forks cover long distances, and in the event of collapse, the
chances of activation of a nearby origins are minimal
(Letessier et al. 2011; Ozeri-Galai et al. 2011). In contrast,
the recently discovered early-replicating fragile sites (ERFS),
responsible for >50 % of the translocations observed in B-cell
lymphomas, are located in early-replicating, highly expressed
gene clusters. In these cases, frequent replication-transcription
encounters may account for the fragility (Barlow et al. 2013).

This large body of work with fragile sites point at special
DNA structures, low origin density, and replication-
transcription collisions as probable causes of RS. These
causes, and others, are compiled in Fig. 2 and briefly de-
scribed in the next sections.

Endogenous causes of RS

Special DNA structures In addition to the AT-rich domains
present in some CFSs, other DNA sequences can form special
structures such as cruciforms, hairpins, G-quadruplexes, H-
DNA, or Z-DNA, all of which are natural barriers for replica-
tion forks (reviewed in Mirkin and Mirkin 2007). Replication
through G-quadruplexes, formed in quartets of guanines sta-
bilized in the same plane by noncanonical Hoogsteen hydro-
gen bonds, is facilitated by Pif1, BLM, and WRN helicases
(Kamath-Loeb et al. 2001; Huber et al. 2002; Paeschke et al.
2011). Short tandem nucleotide repeats (microsatellites) are
not a physical barrier but favor the slippage of DNA

Fig. 1 Replication origin activation pathway. Schematic of the different
proteins that license replication origins in G1 and activate them in S
phase, giving rise to two replication forks from each origin. See text for
details

2 Chromosoma (2017) 126:1–15



polymerases, leading to high error rates. Defective replication
of trinucleotide repeats has been linked to neurodegenerative
diseases (reviewed by Kim and Mirkin 2013), and microsat-
ellite instability is one of the causes of colon cancer (reviewed
in Markowitz and Bertagnolli 2009).

Endogenous DNA damage DNA can be damaged as a con-
sequence of Bnatural^ reactions such as depurination, base oxi-
dation, or interstrand cross links (ICLs) caused by aldehydes
(reviewed by Hoeijmakers 2009). Generally, damaged DNA
bases and bulky adducts are not recognized as valid templates
by replicative DNA polymerases, creating a classic source of
RS: the uncoupling of DNA synthesis from DNA unwinding
by helicases, which exposes stretches of ssDNA (Byun et al.
2005). ICLs are an exception because they do not create exten-
sive areas of ssDNA (Huang et al. 2010). Cells use the Fanconi
anemia (FA) pathway to signal and repair ICLs (Knipscheer et
al. 2009; reviewed by Smogorzewska 2013). The majority of
FA pro te ins fo rm a core complex invo lved in
monoubiquitylation of FANCD2 and FANCI (Smogorzewska
et al. 2007; Taniguchi et al. 2002), which localize to damaged
sites and coordinate the repair of ICLs using a combination of
homologous recombination (HR), nucleotide excision repair
(NER), and translesion synthesis (TLS; Budzowska et al.

2015; Klein Douwel et al. 2014; Long et al. 2011; Räschle et
al. 2008, 2015).

Centromeres, telomeres, and DNA-bound nonhistone pro-
teins Replication forks also operate on genomic regions with
special chromatin structures and encounter nonhistone pro-
teins bound to the template DNA. Budding yeast forks slow
down at some of these elements, e.g., centromeres
(Greenfeder and Newlon 1992), telomeres (Ivessa et al.
2002), and the silent mating type locus (Ivessa et al. 2003).
Yeast Rrm3 is an ancillary helicase that assists the replisome
in progressing through such potential blocks (Ivessa et al.
2003). In mammalian cells, it is not yet clear whether these
regions represent a challenge for the replisome.

Replication-transcription collisions: topological conflicts
and R-loops Collisions between replication and transcription
forks can lead to transcription-associated recombination
(TAR) and chromosomal rearrangements (reviewed by
Aguilera and Gaillard 2014). Therefore, cells have evolved
strategies to minimize these encounters, including temporal
and spatial separation between both processes.Most transcrip-
tion takes place in G1 while replication occurs in S phase, and
genes transcribed during S phase may be physically separated

Fig. 2 Common causes of RS.
Schematics show different DNA
replication challenges that lead to
RS. See text for details
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from active replication forks (Wei et al. 1998; Helmrich et al.
2011). Actually, some highly transcribed regions are depleted
of active origins (Martin et al. 2011). In the tandem repetitions
or highly transcribed ribosomal DNA (rDNA) genes in Sac-
charomyces cerevisiae, collisions are prevented by the forma-
tion of a replication fork barrier after each copy of rDNA,
leading to effective unidirectional replication (reviewed by
Tsang and Carr 2008). In addition, DNA replication can be
inhibited in special situations requiring increased transcrip-
tion. For instance, S. cerevisiae triggers the activation of
~600 genes in response to osmotic stress, concomitant to the
inactivation of Mrc1/claspin to minimize DNA replication
(Duch et al. 2013).

A first problem that arises in head-on encounters between
replication and transcription machineries is the positive
supercoiling generated between them. For this reason,
topoisomerases are essential to prevent instability at transcrip-
tionally active sites in S phase (Bermejo et al. 2009). Topolog-
ical constrains are also caused, at least in yeast, by the process
of gene gating that brings transcribed genes to the nuclear
pores. The Rad53 pathway is needed to release transcribed
genes from the nuclear pore, preventing replication forks from
stalling at supercoiled regions (Bermejo et al. 2011).

R-loops are three-stranded structures formed by a DNA-
RNA duplex and an excluded ssDNA strand that arise during
regular transcription and after replication-transcription colli-
sions (reviewed byHamperl and Cimprich 2014). G-rich areas
and G-quadruplexes are prone to R-loop stabilization
(Belotserkovskii et al. 2010). R-loops promote TAR and ge-
nome instability in mitotic and meiotic cell cycles (Huertas
and Aguilera 2003; Castellano-Pozo et al. 2012). Besides the
intrinsic vulnerability of the exposed ssDNA, R-loops can be
processed into DSBs by the transcription-coupled nucleotide
excision repair pathway (Sollier et al. 2014).

The THO/TREX and THSC/TREX-2 complexes that medi-
ate the processing of messenger RNAs (mRNAs) and their
export through the nuclear pore complex are required to avoid
replication-transcription conflicts (reviewed by Aguilera and
Gaillard 2014). THO/TREX may also prevent R-loop forma-
tion (Gómez-González et al. 2011). In its absence, the accumu-
lation of R-loops leads to hyperrecombination that can be alle-
viated by RNAseH, which degrades the RNA component of R-
loops (Huertas and Aguilera 2003). In addition to RNAse H,
other proteins involved in mRNA processing and RNA biogen-
esis can minimize the RS associated to R-loops (Wahba et al.
2011; Stirling et al. 2012). Their protective function may rely
on their ability to interact with mRNA and prevent its annealing
with DNA. For instance, DNA topoisomerase I, splicing factor
ASF, and DNA repair protein BRCA2 prevent R-loop forma-
tion (Tuduri et al. 2009; Bhatia et al. 2014). Other proteins may
facilitate the resolution of R-loops, including helicases Aquar-
ius and Senataxin that are capable of unwinding DNA-RNA
structures and the FACT chromatin reorganizing complex

(Alzu et al. 2012; Herrera-Moyano et al. 2014; Sollier et al.
2014). Finally, RecQL5 helicase prevents transcription-
associated RS by controlling RNA polymerase II progression
(Saponaro et al. 2014).

Exogenous causes of RS

DNA lesions caused by irradiation or cytotoxic agents Ion-
izing radiation (IR) is a classic cause of DSBs, while ultravi-
olet (UV) irradiation leads to the formation of photoproducts
such as cyclobutane pyrimidine dimers (CPD) and 6-4 pyrim-
idine pyrimidone ((6-4)pp) that cannot be replicated by DNA
polymerases δ or ε, thus causing forks to stall.

Certain drugs used in chemotherapeutic regimes, such as
cisplatin, etoposide, and derivatives of camptothecin, are very
efficient in killing fast-proliferating tumor cells but also have
secondary effects related to RS. Cisplatin is an alkylating
agent that interacts with nucleophilic N7-sites of purinic bases
to form ICLs and intrastrand cross links (Eastman 1987). As
mentioned before, the FA pathway is largely responsible for
the repair of ICLs. Camptothecin and etoposide inhibit
topoisomerases I and II, respectively, by trapping them in an
intermediate step between the DNA break and religation reac-
tions (Hsiang et al. 1985; Osheroff 1989). In addition to che-
motherapy drugs, it has been hypothesized that continued ex-
posure to low doses of many chemicals present in modern life,
including heavy metals and acrylamide, may contribute to
genomic instability by interfering with DNA replication and
repair (Langie et al. 2015).

Nucleotide attrition or imbalance Hydroxyurea (HU), a
drug used to treat resistant chronic myelocytic leukemias
and other tumors, inhibits ribonucleotide reductase (RNR)
and creates imbalances in the cellular pool of dNTPs that
affect DNA polymerases and contribute to RS. Prolonged ex-
posure to HU results in irreversible fork collapse and DSBs
(Petermann et al. 2010). The pathways of dNTP biosynthesis
are carefully controlled in vivo and may be affected by onco-
genic activation (reviewed by Aye et al. 2014). In yeast,
checkpoint kinase Dun1 activates RNR in response to DNA
damage and increases the dNTP pool, improving cell survival
(Chabes et al. 2003) but also increasing mutation rates
(Davidson et al. 2012; Poli et al. 2012). Interestingly, a mouse
model carrying an extra allele of RNR small subunit RRM2
reduces breakage at fragile sites, suggestive of enhanced re-
sistance to RS (Lopez-Contreras et al. 2015).

Aberrant replication triggered by oncogenes Strictly
speaking, oncogene activation is not an exogenous event
but is included in this section as a nonphysiological cause
of RS. Oncogenic stress activates the DNA damage re-
sponse (DDR) as a first line of defense against cell
transformation (reviewed by Halazonetis et al. 2008).
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Oncogenes affect the activity of replication origins, either
repressing or hyperactivating them, depending on the cel-
lular context and experimental conditions. Premature ex-
pression of CycE during G1 restricts the licensing process
and accelerates entry into S phase under suboptimal con-
ditions, creating chromosomal instability (Ekholm-Reed
et al. 2004). In this situation, cells enter mitosis with
under-replicated DNA, promoting the loss of specific ge-
nomic regions (Teixeira et al. 2015). It has been hypoth-
esized that cells have an Borigin licensing checkpoint^
that prevents entry into S phase until a sufficient number
of origins have been licensed; the precise mechanism be-
hind this checkpoint remains unknown, but logic dictates
that it may be lost in many cancer cells (Shreeram et al.
2002; reviewed by Hills and Diffley 2014).

On the other hand, examples of origin overusage upon
oncogene activation have also been reported, which may gen-
erate DNA damage in different ways: (1) origin refiring events
leading to DSBs (Di Micco et al. 2006), (2) accumulation of
active forks that rapidly exhaust dNTPs or other replisome
components (Bester et al. 2011; Toledo et al. 2013), and (3)
increased probability of collisions between replication and
transcription machineries (Jones et al. 2013).

In summary, RS can arise as a consequence of normal
cellular reactions involving DNA, upon exposure to external
agents or after oncogene activation (Fig. 2). In the next sec-
tion, we discuss how cells react to RS.

Cellular responses to RS

Some of the responses to RS do not require checkpoint acti-
vation, such as the bypass of DNA lesions by restarting DNA
synthesis downstream of a damaged template, or the activa-
tion of Bdormant^ origins proximal to stalled forks. Above a
certain threshold of RS, a systemic response is activated that
shares components with other cellular checkpoints
(MacDougall et al. 2007).

Repriming DNA synthesis ahead of a lesion

The persistence of unreplicated ssDNA gaps after S phase
hints at the possibility that forks paused by different obstacles
could bypass them by reinitiating DNA synthesis at a down-
stream position. Short ssDNA gaps have been observed by
electron microscopy in NER-deficient yeast cells irradiated
with UV (Lopes et al. 2006). Reinitiation events have also
been described in bacteria (Heller and Marians 2006) and
human cells after UV irradiation (Elvers et al. 2011). As
DNA polymerases do not initiate DNA synthesis de novo, this
mechanism depends on a primase activity (Fig. 3a). The ca-
nonical Polα/Primase complex initiates Okazaki fragments in
the lagging strand, but whether it could perform the repriming

task in the leading strand is unclear. The recently discovered
PrimPol protein (a primase-polymerase) is rapidly recruited to
chromatin upon UV irradiation to facilitate fork restart
(Bianchi et al. 2013; García-Gómez et al. 2013; Mouron et
al. 2013; Wan et al. 2013). Interestingly, a mutant version of
PrimPol retaining TLS activity but lacking primase activity
failed to recover fork progression, suggesting that its primase
activity is fundamental (Mouron et al. 2013). PrimPol is an
error-prone enzyme (Guilliam et al. 2015; Martínez-Jiménez
et al. 2015); therefore, rapid fork restart may occur at the
partial expense of replication fidelity. A role for PrimPol in
reinitiating DNA synthesis downstream of G-quadruplexes
has also recently been proposed in avian DT40 cells
(Schiavone et al 2015). Interestingly, yeasts do not encode
PrimPol homologues, so these reactions must depend on
Polα/primase (Fumasoni et al. 2015).

Activation of dormant origins

As described above, origins are licensed during G1 and acti-
vated in the S phase. This temporal regulation avoids origin
relicensing that could lead to rereplication events (reviewed
by Arias and Walter 2007). However, in the event that two
converging forks collapse, no new origins could be assembled
in the unreplicated area. This limitation is overcome by the
licensing of a Bsurplus^ of origins in G1 (Fig. 4a). Most of
these origins remain in a dormant state and provide a backup
mechanism as they can be activated to replicate DNA between
two collapsed forks (Fig. 4b). When the concentration of
MCM complexes is reduced to limit the licensing of dormant
origins, cells still replicate DNA in normal growth conditions
but accumulate DNA damage in the presence of drugs that
challenge fork progression (Ge et al. 2007; Ibarra et al.
2008). The contribution of dormant origins to the maintenance
of genomic integrity has been validated in vivo even in an
unperturbed S phase. Mouse models with hypomorphic ex-
pression of MCM are cancer-prone and their cells display
genomic instability (Pruitt et al. 2007; Shima et al. 2007;
Kawabata et al. 2011; Bagley et al. 2012; Alvarez et al. 2015).

Themechanisms that regulate dormant origins are still under
investigation. A model developed from biochemical work in
Xenopus egg extracts invokes the action of Polo kinase 1
(PLK1) at stalled forks after MCM2 phosphorylation by
ataxia-telangiectasia mutated and RAD3-related kinase
(ATR). PLK1 could facilitate the loading of CDC45, a cofactor
of MCM helicase, to proximal dormant origins to promote their
activation (Trenz et al. 2008). Alternatively, PLK1 could restrict
CHK1 activity (responsible for origin inhibition) by modulat-
ing Claspin levels (Mailand et al. 2006; Peschiaroli et al. 2006).
FANCI protein, a member of the FA repair pathway, has also
been linked to the regulation of dormant origins, although the
precise mechanism remains unclear (Chen et al. 2015).
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Fig. 4 Dormant origins as a
safeguard of genomic integrity. a
Schematic showing a region of
DNA in which six potential
origins have been licensed
although only two of them
(marked with green arrows) will
be activated under normal growth
conditions. The rest (red arrows)
remain dormant during S phase. b
BEmergency situation^ in which
two converging forks collapse
after facing one of the challenges
described in Fig. 2. In this setting,
a dormant origin situated between
the forks gets activated to rescue
replication of this chromosome
region

Fig. 3 Cellular mechanisms to
counteract RS. Schematics
summarize the different ways to
restart DNA synthesis after an
ongoing fork has stalled and/or
collapsed. a Repriming ahead of a
lesion. b Fork regression and
eventual restart. c Translesion
synthesis (TLS). d Template
switch (TS). e Break-induced
replication (BIR). The main pro-
teins involved in each process are
indicated in red. See text for
details
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Checkpoint activation: cell cycle arrest and inhibition
of late origins

The central regulator of the response to RS is ATR, a member
of the phosphoinositide 3-kinase (PI3K) family of kinases. The
canonical activation pathway starts with the recruitment of ATR
and its interacting partner ATRIP to stretches of ssDNA cov-
ered by RPA. Once activated, ATR phosphorylates multiple
proteins including the effector Chk1 kinase that blocks entry
into mitosis and inhibits late origin firing. Mitotic entry is
inhibited through phosphorylation of Cdc25 phosphatases,
which prevents subsequent activation of mitotic CDKs. This
mechanism is well studied and it is shared with other check-
point pathways (reviewed by Cimprich and Cortez 2008).

Inhibition of origin activity by ATR-CHK1 activity (Maya-
Mendoza et al. 2007; Syljuasen et al. 2005) could be mediated
by the inhibition of Sld3/Treslin/Ticcr and/or the Dbf4 subunit
of the DDK kinase (Costanzo et al. 2003; Lopez-Mosqueda et
al. 2010; Zegerman and Diffley 2010; Guo et al. 2015).
Checkpoint-mediated inhibition of late origins poses a paradox,
as dormant origins need to be activated to rescue stalled forks
(Fig. 4). The solution to this conflict resides in the capacity of
Chk1 to inhibit origins Bglobally^while allowing the activation
of those dormant origins in the proximity of stalled forks (Ge
and Blow 2010). In this regard, the organization of clusters of
adjacent origins in discrete BDNA replication factories^
(Jackson and Pombo 1998; Guillou et al. 2010; Aparicio et al.
2012) contributes to separate local and global effects.

Stabilization of stalled forks

When forks stall upon stress, it is important to preserve the
integrity of the replisome in order to facilitate fork restart. In
yeast, checkpoint kinases Mec1/ATR and Rad53/CHK1 are
needed to maintain fork integrity (Lopes et al. 2001; Tercero
and Diffley 2001). Early studies suggested that Mec1 and
Rad53 stabilized the replisome at stalled forks (Cobb et al.
2003, 2005; Katou et al. 2003; Lucca et al. 2004), but a later
study showed replisome stability to be independent of the
checkpoint kinases (De Piccoli et al. 2012). The role of check-
point kinases may instead be directed toward controlling DNA
processing at stalled forks by nucleases such as EXO1 (El-
Shemerly et al. 2008; Morin et al. 2008). Loss of EXO1 pre-
vents fork breakdown in Rad53 mutants treated with MMS or
UV (Segurado and Diffley 2008). HR factor Rad51 also pro-
tects stalled forks from excessiveMre11 resection (Hashimoto
et al. 2010). FA proteins participate in this protective response
by cooperating with BRCA1/2 to stabilize RAD51 at stalled
forks (Schlacher et al. 2011, 2012).

The detailed mechanisms underlying mammalian fork sta-
bilization are complex and only partially understood, but the
emerging view is that they involve DNA helicases,
translocases, and FA proteins such as BLM,WRN, ZRANB3,

SMARCAL1, and FANCM (Bansbach et al. 2009; Ciccia et
al. 2012; Davies et al. 2007; Kim et al. 2008; Sidorova et al.
2008; Yuan et al. 2009). Some of these factors seem to regu-
late fork reversal, an intriguing remodeling mechanism that is
discussed next.

Fork reversal: friend or foe?

Stalled forks can be reversed to form four-way Bchicken foot^
structures that resemble Holliday junctions (Fig. 3b). These
structures were first identified in yeast checkpoint-deficient
strains (Lopes et al. 2001; Sogo et al. 2002) and their biolog-
ical significance has been debated (reviewed by Neelsen and
Lopes 2015). Initially, they were considered aberrant
recombinogenic structures that must be processed by exonu-
cleases to maintain genome integrity (Cotta-Ramusino et al.
2005; Hu et al. 2012). However, recent studies in human cells
suggest that reversal is a physiological way to protect fork
integrity (Zellweger et al. 2015) and induce the checkpoint
response (Fugger et al. 2015). Several factors that mediate
fork reversal and/or stabilization of reversed intermediates
have been identified in recent years, including PARP1,
RAD51, SMARCAL, and FBH1 (Berti et al. 2013; Couch et
al. 2013; Fugger et al. 2015; Zellweger et al. 2015). To resume
DNA synthesis, reversed forks need to be remodeled again
into forks that move in the forward direction. This remodeling
may be mediated by RECQ1 DNA helicase (Berti et al. 2013)
or by WRN helicase and DNA2 nuclease, which catalyze the
nucleolytic degradation of reversed DNA arms (Thangavel et
al. 2015). It is possible that other helicases as BLM and
ZRANB3, which possess fork remodeling activities, also me-
diated fork reversal and/or fork restart (reviewed by
Petermann and Helleday 2010).

Next, we present other mechanisms that allow the con-
tinuation of DNA synthesis upon fork stalling: TLS and
template switch (TS)-based pathways. The choice be-
tween them is dictated by posttranslational modifications
in PCNA (Hoege et al. 2002).

Translesion synthesis

TLS, favored by PCNA monoubiquitylation at Lys164 by
RAD6 and RAD18 ubiquitin ligase (Kannouche et al. 2004;
Stelter and Ulrich 2003), is carried out by specialized DNA
polymerases whose flexible active sites allow the insertion of
nucleotides opposite damaged templates at the expense of
fidelity (Fig. 3c). Each one of the TLS polymerases identified
to date (Rev1, Polη, Polι, Polκ, Polζ, and PrimPol) has
evolved to bypass specific lesions, including thymidine ad-
ducts, 8-oxoguanine, (6,4)pp, CPD, or apurinic sites
(reviewed by Sale et al. 2012). The proposed mechanism for
TLS implicates two steps. First, the replicative polymerase is
replaced by a TLS polymerase that incorporates a nucleotide
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opposite the damaged template. Then, the same or a different
polymerase, usually Polζ, elongates the TLS product until the
replicative polymerase can be engaged again (Shachar et al.
2009). It is worth noting that Polη catalyzes error-free synthe-
sis opposite CPD lesions (Masutani et al. 1999; Johnson et al.
2000), so it is conceivable that each TLS polymerase has the
capacity to deal with a specific lesion in an essentially error-
free manner but introduces errors when replicating different
lesions or an intact template.

A particularity of Rev1 is its capacity to bind to PCNA
and Polη, Polι, Polκ, and Polζ (Guo et al. 2003, 2006).
Hence, Rev1 could provide an Bexchange platform^ for
TLS polymerases at stalled forks. This mechanism is par-
tially independent of PCNA ubiquitylation and suggests
an interesting model for the regulation of TLS polymer-
ases: their recruitment to stalled forks during S phase
could be mediated by Rev1, while PCNA ubiquitylation
would be a signal to recruit them during postreplicative
gap filling (Edmunds et al. 2008; reviewed by Sale 2012).

Within TLS enzymes, PrimPol is unusual in the sense that
it belongs to the family of archeal eukaryotic primases (AEP)
and contains both primase and TLS polymerase activities.
Besides its function in repriming DNA synthesis ahead of a
lesion (described above), as a TLS polymerase, it has the
potential to replicate through oxidative lesions (8-oxo-G)
and UV-induced CPD and 6,4pp (Bianchi et al. 2013;
García-Gómez et al. 2013; Mourón et al. 2013).

Template switch

PCNA polyubiquitylation by Rad18, Rad5, and Ubc13-Mms2
and PCNA sumoylation by Ubc9 and Siz1 tip the balance to-
ward TSmechanisms (Hoege et al. 2002; Branzei et al. 2008). In
TS, a stalled nascent DNA strand invades the sister chromatid
and is used as a primer to continue replication using the newly
synthesized undamaged strand as template (Fig. 3d). TS inter-
mediates have been recently characterized by a combination of
two-dimensional gel electrophoresis and electron microscopy
techniques (Giannattasio et al. 2014). TS is considered an
error-free mechanism because the emerging X-shaped structures
can be processed by BLM-TOPIIIa-RMI2 (Sgs1/Top3/Rmi1 in
yeast) without generating crossovers (Liberi et al. 2005;
Mankouri and Hickson 2006; Raynard et al. 2006).

The current view is that HR and TS factors are coordinated
to promote fork restart. For instance, Rad51 mediates strand
invasion in TS (Vanoli et al. 2010; Petermann et al. 2010) but
its recombinogenic activity must be controlled. In cells exposed
to a short HU treatment, TS is favored over HR (Petermann et
al. 2010). In this case, Fbh1 helicase displaces Rad51 filaments
from ssDNA (Simandlova et al. 2013; Chu et al. 2015), while
its ubiquitin ligase activity monoubiquitylates Rad51 to export
it from the nucleus (Chu et al. 2015). Other antirecombinogenic
factors include BLM, RECQ1, RECQ5, FANCJ, and FANCM

(Bugreev et al. 2007, 2008; Hu et al. 2007; Rosado et al. 2009;
Sommers et al. 2009; Wu et al. 2001).

TLS and TS mediate fork restart during S phase but they
can also operate postreplicatively. In yeast, both TLS and TS-
based pathways can be restricted to G2 without compromising
viability (Daigaku et al. 2010; Karras and Jentsch 2010). In
these situations, after the bulk of DNA synthesis is completed,
any remaining gaps are filled by TLS and/or TS, while lesions
in the template strand are eliminated by NER or base excision
repair (BER) mechanisms. The molecular details of these re-
pair pathways can be found in recent reviews (Marteijn et al.
2014; Parsons and Dianov 2013).

HR and break-induced replication

HR plays a fundamental role in DSB repair. An HR variant
called break-induced replication (BIR) may reinitiate DNA syn-
thesis when collapsed forks are processed by structure-specific
endonucleases such as Mus81-Eme1 to generate one-ended
DSBs (Hanada et al. 2007). BIR was initially described in bac-
teria and bacteriophage T4 and has been largely studied in yeast
(reviewed by Anand et al. 2013). A recent report suggests that it
is also conserved in mammalian cells (Costantino et al. 2014).

BIR starts like the classical HR pathway (Fig. 3e). The
Mre11-Rad50-Nbs1 (MRN) complex is recruited to breaks,
where Mre11 nuclease resects one of the DNA ends while
Nbs1 activates ATM. Subsequently, Brca2 targets Rad51 to
ssDNA and the Rad51-ssDNA filament invades the sister
chromatid. BIR-mediated DNA synthesis then proceeds in a
migrating bubble that requires a full replisome but not origin
licensing factors (Lydeard et al. 2010). Of note, BIR results in
a conservative inheritance of DNA (Donnianni and
Symington 2013; Saini et al. 2013; Wilson et al. 2013). Syn-
thesis of the leading and lagging strands are uncoupled and
ssDNA accumulates behind the migrating bubble (Fig. 3e)
making BIR a highly mutagenic process (Deem et al. 2011;
Sakofsky et al. 2014). In fact, a variation called
microhomology-mediated BIR may be responsible for com-
plex genomic rearrangements similar to those described in
chromothripsis (Liu et al. 2011). In addition, BIR may lead
to telomere lengthening by telomerase-independent recombi-
nation (Lydeard et al. 2007) but also by promoting telomerase
activity in yeast (Vasianovich et al. 2014).

RS and human disease

The importance of the cellular responses to RS for human
health is highlighted by the array of genetic diseases, as well
as increased cancer predisposition, associated with alterations
in the genes that participate in these responses.
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Rare genetic diseases associated with RS

Mutations in components of the checkpoint response such as
the ATM, ATR, and the MRN complex cause severe diseases
such as ataxia-telangiectasia, Seckel syndrome, ataxia-
telangiectasia-like disease (A-TLD), Nijmegen breakage syn-
drome (NBS), and Nijmegen breakage syndrome-like disease
(NBSLD). A-TLD is linked tomutations inMre11 that disrupt
ATM activation, and consequently, it is very similar to ataxia-
telangiectasia caused by ATM mutations (reviewed by Biton
et al. 2008). Loss of function of ATR or ATRIP causes Seckel
syndrome, characterized by mental retardation, growth de-
fects, and abnormal craniofacial features (reviewed by
O’Driscoll and Jeggo 2008). NBS and NBSLD are the conse-
quence of mutations in Nbs1 and Rad50 genes, respectively,
which compromise their roles in ATR activation or HR. Pa-
tients display microcephaly, mental retardation, growth de-
fects and, in the case of NBS, cancer susceptibility (Demuth
and Digweed 2007; Waltes et al. 2009). Mutations in genes
responsible for origin licensing (Orc1, Orc4, Orc6, Cdc6, and
Cdt1) are linked to a related genetic condition called Meier-
Gorlin syndrome, whose patients display growth impairment,
microcephaly, and lack of patellae in many cases (Guernsey et
al. 2011; Bicknell et al. 2011a, b).

Mutations in the helicases that mediate fork remodeling and
restart, BLM, WRN, and RecQ4L, cause Bloom (BS), Werner
(WS), and Rothmund-Thomson (RTS) syndromes, respective-
ly. These diseases are not only caused by RS but also by the
participation of these proteins in classical DNA repair path-
ways, e.g., BLM is required for the dissolution of double
Holliday junctions (reviewed by Bizard and Hickson 2014).
BS patients show cancer predisposition, microcephaly, mental
retardation, infertility, growth defects, and premature aging.
WS patients suffer from age-related symptoms including ath-
erosclerosis, cataracts, osteoporosis, and diabetes. Its morbidity
is frequently caused by cancer or vascular disease. RTS also
causes aging phenotypes, growth defects, and skin and skeletal
abnormalities. Mutations in RecQ4L cause two additional in-
dependent diseases, RAPADILINO syndrome and Baller-
Gelrold syndrome (reviewed by Chu and Hickson 2009;
Croteau et al. 2014). Loss of SMARCAL1 function is respon-
sible of Schimke immuno-oseo dysplasia (SIOD), whose pa-
tients suffer from immunodeficiency, renal defects, skeletal ab-
normalities, and dwarfism (Boerkoel et al. 2002).

Fanconi anemia, a disease that can be autosomal recessive
or X-linked, is characterized by skeletal defects,
hypopigmentation, progressive bone marrow failure, and can-
cer predisposition (Fanconi 1967). It is caused by mutations in
any of the 18 identified genes of the FA pathway (Rickman et
al. 2015; reviewed by Wang and Smogorzewska 2015). FA
cells fail to repair ICLs, which elevates their genome instability.

Finally, mutations in TLS polymerase Polη are linked
to Xeroderma pigmentosum (XP), which increases

photosensitivity and skin cancer predisposition (Masutani et
al. 1999). Whether the loss of other TLS polymerases results
in related diseases remains to be elucidated.

The phenotypes of most of these genetic diseases have a
common theme, i.e., incomplete development that can be
linked to deficiency in stem cell abundance and/or functionality.
In this regard, a mouse model hypomorphic for Mcm2 shows
deficiency in several stem cell niches (Pruitt et al. 2007), and
mouse models defective in DDR components display depletion
of hematopoietic stem cells (HSCs; reviewed by Rossi et al.
2008). RS associated to low MCM expression also underlies
the progressive loss of HSC regenerative capacity with age
(Flach et al. 2014) and impairs fetal erythropoiesis (Alvarez et
al. 2015). Of note, FA patients also display a defect in hemato-
poietic stem and progenitors cells due to an exacerbated re-
sponse to unrepaired DNA damage (Ceccaldi et al. 2012).

Cancer predisposition

Besides the genetic conditions described in the previous sec-
tion, RS contributes to cell transformation and cancer predis-
position. Recent work has unveiled a positive correlation be-
tween cancer risk and the number of stem cell divisions in
different tissues, due to stochastic problems that arise during
DNA replication (Tomasetti and Vogelstein 2015). In addi-
tion, fragile sites have been associated to tumor development
(Pelliccia et al. 2010; Blumrich et al. 2011; Barlow et al.
2013). Loss or hypomorphic mutation of genes involved in
origin licensing, fork stability and restart, TLS, and DNA
repair are related to cancer predisposition in patients and/or
animal models. These include components of the MCM
helicase, four of the five RecQ helicases (BLM, WNR,
RECQ4L, and RECQ5L), Polη and Polζ, BRCA1 and
BRCA2, endonucleases Mus81 and Slx4, and FA members
(reviewed by Gaillard et al. 2015).

Upon oncogene expression, the DDR is activated in pre-
cancerous lesions, inducing senescence or apoptosis programs
in damaged cells. Some cells may override this barrier and
facilitate cancer development (Halazonetis et al. 2008). Inter-
estingly, extensive sequencing of cancer genomes has re-
vealed a low incidence of mutations, and the absence of dele-
tions, in ATR or Chk1. On the contrary, the expression of these
genes is frequently upregulated in cancer cells, probably be-
cause they need to deal with high levels of RS to survive
(reviewed by Lecona and Fernández-Capetillo 2014). Chk1
overexpression increases the transformation capacity of Ras-
E1A and c-fos oncogenes (Lopez-Contreras et al. 2012;
Schulze et al. 2014) by shielding transformed cells from ex-
cessive RS. Mutations arising in cancer development could
enhance RS (reviewed by Hills and Diffley 2014), making
tumor cells hypersensitive to the inhibition of RS signaling.
For instance, ATR inhibition in cancer cells driven by c-myc,
which display high levels or RS, results in cell death and
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tumor regression (Murga et al. 2011). Several inhibitors of
ATR, CHK1, or CDC7 are under clinical trials (for a recent
review, see Dobbelstein and Sorensen 2015).

Because cancer mutations can inactivate specific DNA re-
pair pathways, other therapeutic strategies exploit synthetic
lethality effects caused by the loss of two modes of DNA
repair, e.g., the use of PARP inhibitors in breast cancer cells
with mutations in BRCA1 and BRCA2 (Farmer et al. 2005;
Bryant et al. 2005), which targets the BER pathway in cells
already deficient in HR.

Concluding remarks

DNA replication is a central process for tissue homeostasis and
genetic inheritance. As described in this review, faulty replica-
tion, particularly when it occurs in stem cells during embryonic
development, can lead to multiple diseases with severe pheno-
types and increase the probability of developing cancer. Multi-
ple mechanisms have evolved to counteract RS, and in the
future, it will be very interesting to ascertain the relative contri-
bution of each one of them in different cell types and growth
conditions. In any case, as shown in this review, none of them
seems to provide a bulletproof defense and many of them carry
a significant risk of mutation or chromosomal instability.

Therapies directed to modulate RS have shown promising
results in mouse models and need to be further developed to
offer therapeutic alternatives for cancer patients. In addition,
they could serve to counteract aging, which is possibly influ-
enced by the levels of DNA damage suffered by fetal tissues
during embryonic development (Fernandez-Capetillo 2010).
Improving the resistance to RS extends the lifespan of mice
suffering from premature aging (Lopez-Contreras et al. 2015)
and alleviates the embryonic lethality associated to MCM
hypomorphic expression (Alvarez et al. 2015). Transgenic mice
with enhanced CDC6 expression in keratinocytes displayed
more licensed origins and reached old age with remarkable
preservation of hair density and color (Búa et al. 2015). There-
fore, future anti-RS therapies may counterbalance the function-
al decline of tissues that today seems inevitable as we age.
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