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Abstract Species with holocentric chromosomes are often
characterized by a rapid karyotype evolution. In contrast to
species with monocentric chromosomes where acentric frag-
ments are lost during cell division, breakage of holocentric
chromosomes creates fragments with normal centromere ac-
tivity. To decipher the mechanism that allows holocentric spe-
cies an accelerated karyotype evolution via chromosome
breakage, we analyzed the chromosome complements of irra-
diated Luzula elegans plants. The resulting chromosomal
fragments and rearranged chromosomes revealed
holocentromere-typical CENH3 and histone H2AThr120ph
signals as well as the same mitotic mobility like unfragmented
chromosomes. Newly synthesized telomeres at break points
become detectable 3 weeks after irradiation. The presence of
active telomerase suggests a telomerase-based mechanism of
chromosome healing. A successful transmission of
holocentric chromosome fragments across different

generations was found for most offspring of irradiated plants.
Hence, a combination of holokinetic centromere activity and
the fast formation of new telomeres at break points enables
holocentric species a rapid karyotype evolution involving
chromosome fissions and rearrangements.

Keywords Chromosome fusion and fission . De novo
telomere synthesis . Holocentric chromosome . Holocentric
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Introduction

Fragmentation of monocentric chromosomes by ionizing irra-
diations (e.g., γ-, X-rays) and UV irradiation causes the for-
mation of centric and acentric fragments. Acentric fragments
due to the absence of kinetochores do not segregate and get
consequently lost during mitosis which might lead to lethal
mutations. In contrast, breakage of holocentric chromosomes
generates mainly fragments possessing an active centromere,
and thus, fragments can segregate normally in somatic cells
(Hughes‐Schrader and Ris 1941). Holocentric chromosomes
lack a primary constriction and form holokinetic centromeres
distributed along almost the entire length of the chromatids. In
addition, in holocentric species, irradiation-induced chromo-
some rearrangements such as reciprocal translocations do not
result in dicentric chromosomes, which often fail to segregate
properly if both centromeres are active (McClintock 1939).
Therefore, irradiation of holocentric species rarely results in
anaphase bridge andmicronuclei formation (Hughes‐Schrader
and Ris 1941; Nordenskiöld 1964; Pazy and Plitmann 1994).
Consequently, chromosome fragment behavior was analyzed
to demonstrate the presence of holokinetic centromeres in dif-
ferent species of green algae (Godward 1954), flowering
plants (Håkansson 1954), nematodes (Albertson and

Electronic supplementary material The online version of this article
(doi:10.1007/s00412-015-0524-y) contains supplementary material,
which is available to authorized users.

* Andreas Houben
houben@ipk-gatersleben.de

1 Leibniz Institute of Plant Genetics and Crop Plant Research (IPK),
OT Gatersleben, Correnstrasse 3, D-06466 Stadt Seeland, Germany

2 Julius Kühn-Institute, Institute for Breeding Research on
Horticultural Crops, Erwin-Baur-Straße 27,
D-06484 Quedlinburg, Germany

3 Mendel Centre for Plant Genomics and Proteomics, CEITEC,
Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic

4 Laboratory of Functional Genomics and Proteomics, NCBR, Faculty
of Science, Masaryk University, Kamenice 5, CZ-625
00 Brno, Czech Republic

Chromosoma (2015) 124:519–528
DOI 10.1007/s00412-015-0524-y

http://dx.doi.org/10.1007/s00412-015-0524-y
http://crossmark.crossref.org/dialog/?doi=10.1007/s00412-015-0524-y&domain=pdf


Thomson 1982), and arthropods (Tempelaar 1979). The spo-
radic and polyphyletic occurrence of holocentricity in the tree
of life suggests that holocentric centromere evolved from
monocentric chromosomes at least 13–times independently
in different clades (Melters et al. 2012).

Fragments of holocentric chromosomes are inherited stably
throughout many generations and can give rise to a stable
progeny (Nordenskiöld 1962, 1963, 1964; LaChance and
Degrugillier 1969). In the genus Luzula, the haploid chromo-
some number varies in a broad range, and species with 3, 6–
16, 18, 21, 23, 24, 26, 31, 33, 35, 36, and 42 chromosomes
were reported (Nordenskiöld 1951; Kuta et al. 2004; Záveská
Drábková 2013). A comparable situation was found for
Cyperus plant species or holocentric butterflies of
Nymphalidae with nearly continuous chromosome numbers
from 5 to 134 (reviewed in Bureš et al. 2013). Moreover,
within one holocentric species, the number of chromosomes
can vary between different individuals as shown for plant
species Carex blepharicarpa with 2n=26–32 and 41
(Hoshino and Okamura 1994), Luzula multiflora with 2n=
12, 18, 24, 28, 36, and 48 (Bolkhovskikh et al. 1969), or
Eleocharis kamtschatica with 2n=41–47 (Yano and Hoshino
2006). It has been speculated that stably inherited chromo-
some fragments and the lack of dicentric translocation prod-
ucts are the reasons that number and size of chromosomes
may vary considerably and may be tolerated in species with
holocentric chromosomes.

Obviously, due to the fragmentation of holocentric chro-
mosomes in different species of the genus Luzula, a negative
correlation between chromosome number and chromosome
size was found. When the chromosome number is doubled
from 12 to 24, the length of chromosomes is about halved
(Nordenskiöld 1951). Similarly, in Juncus biglumis,
two cytotypes with 2n=60 and 2n=120 chromosomes
were observed. Chromosomes of the 2n=60 cytotype
are about twice as big as the chromosomes of the
cytotype with 2n=120 while the relative DNA content
differs by only 6 % between them (Schönswetter et al.
2007). Interestingly, in Luzula hybrids derived from par-
ents possessing small and large chromosomes, meiotic
pairing occurs between one large and two half-sized chromo-
somes (Nordenskiöld 1961).

Malheiros-Garde and Garde (1950) and Nordenskiöld
(1951) postulated the occurrence of so-called chromosome
“fusion and fission” events during the evolution as an expla-
nation for differently sized chromosomes in holocentric spe-
cies. However, the term “chromosome fusion” should be used
with caution because fusions sensu stricto imply the combi-
nation of two chromosomes without any loss of chromatin,
which is usually prevented by telomeres (Schubert and Lysak
2011). Interstitial telomere repeats as indication of transloca-
tions with a break point inside with telomere repeat arrays
were found in the spike rush Eleocharis subarticulata (Da

Silva et al. 2005). In contrast, other holocentric species, e.g.,
aphids (Monti et al. 2011), the plants Luzula luzuloides (Fuchs
et al. 1995), and Rhynchospora tenuis (Vanzela et al. 2003),
the and cabbagemothsMamestra brassicae (Mandrioli 2002),
did not display interstitial telomeres. Likely, the so-called fu-
sion events are based on translocations and subsequent loss of
small translocation products including telomeres resulting in
terminally truncated “fused” chromosomes. In addition to
chromosome fragmentation and translocation, polyploidy
and proliferation/removal of high-copy sequences are mecha-
nisms involved in the genome evolution of holocentric species
(Kuta et al. 2004; Bačič et al. 2007; Bozek et al. 2012; Zedek
et al. 2010; Záveská Drábková 2013).

Beside the segregation failure due to centromere loss, bro-
ken ends of centric fragments of monocentric chromosomes
may be mis-repaired, yielding dicentric and ring chromo-
somes causing breakage–fusion-bridge (BFB) cycles (;
Muller 1938; McClintock 1941, 1942). Alternatively, chro-
mosome fragments can be healed by adding telomeric se-
quences to the broken chromosome ends (McClintock
1941; Day et al. 1993). Telomeres are synthesized by
a specialized reverse transcriptase, the telomerase, which
can replenish already existing telomeres or add new
telomeric sequences directly to non-telomeric DNA, for
example, at the break points of chromosome fragments
(reviewed in Melek and Shippen 1996). Telomeres are
added gradually, and the start of the process might re-
quire passing through a certain number of cell cycles and/or a
certain developmental stage (Tsujimoto 1993; Britt-Compton
et al. 2009).

Alternatively, broken chromosome ends can be healed by a
telomerase-independent mechanism termed telomere capture.
In this case, broken chromosomes are stabilized by a transfer
of telomeres from unbroken chromosomes to the broken ends
likely via a conversion-like recombination process (Meltzer
et al. 1993), which may also occur between broken and intact
homologues (Slijepcevic and Bryant 1998; Lundblad 2002).

Here, we investigated the consequences of fragmentation
of holokinetic chromosomes across three generations.
Furthermore, we address the question whether or not, and if
so, when telomere healing of chromosome fragments occurs.
For this purpose, we selected the wood rush Luzula elegans
Lowe (formerly L. purpurea Link), a plant species for which
fragmentation caused by X-irradiation has been reported pre-
viously (Nordenskiöld 1962, 1963, 1964).

L. elegans (Juncaceae) is a self-fertilizing holocentric spe-
cies with a diploid chromosome number of 2n=6 (3.81 Gbp/
1C) (Heckmann et al. 2013). The chromosomes of this species
are characterized by a longitudinal CENH3-positive groove-
like structure along each sister chromatid (throughout mitosis
and meiosis), flanked by Arabidopsis-type telomeres
(Heckmann et al. 2011, 2014; Wanner et al. 2015). As an
adaption to the holokinetic centromere organization,
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L. elegans performs an inverted sequence of meiotic sis-
ter chromatid segregation events (Nordenskiöld 1962;
Heckmann et al. 2014).

Materials and methods

Plant material and X-ray irradiation

Seeds of Luzula elegans Lowe (2n=6) (herbarium vouchers of
IPK Gatersleben: GAT 7852–7856) were germinated on wet
filter paper at 21 °C. Three leaf stage plantlets (28 days old)
were irradiated with various doses ranging from 10 to 30 Gy
with an X-ray apparatus (Yxlon, International Hamburg). The
dose rate amounted to 0.9 Gy/min. Subsequently, plantlets
were harvested in 7-day intervals and fixed for 45 min in
ice-cold 4 % (w/v) paraformaldehyde in 1× MTSB buffer
(50 mM PIPES, 5 mM MgSO4, and 5 mM EGTA, pH 7.2)
for immunolabeling or in ethanol–acetic acid (3:1, v/v) fixa-
tive for fluorescence in situ hybridization (FISH). To
induce flowering, the plants were transmitted to soil
and subjected to vernalization for a minimum of
3 months (10 h light/14 h dark, 4 °C). Afterwards, the
plants were grown under long-day conditions (13 h light/11 h
dark, 20 °C/16 °C). Flower buds were collected and fixed as
described above. The M1 offspring was a selfing product of
irradiated plants.

Fluorescence in situ hybridization

Mitotic chromosome spreads, derived from acetocarmine-
stained root and apical meristems, were prepared from
fixed plantlets by squashing (Houben et al. 1999).
Meiotic chromosomes were prepared from fixed flower
buds (Heckmann et al. 2014). PCR generated FISH probes for
the subtelomeric satellite repeat LeSAT7, and telomeres were
labeled with ChromaTide Texas Red-12-dUTP or Alexa Fluor
488-5-dUTP (http://www.invitrogen.com) by nick
translation. FISH was performed according to (Heckmann
et al. 2013).

Indirect immunolabeling

Fixed flower buds were used to prepare spreads by squashing.
Immunostaining was performed as described (Houben et al.
2007). The following dilutions of primary antibodies were
used: 1:100 of rabbit anti-LnCENH3 (Nagaki et al.
2005) and 1:200 of rabbit anti-H2AThr120phos
(Abcam, www.abcam.com). A FITC-conjugated anti-rab-
bit Alexa488 antibody (Molecular Probes, http://www.
invitrogen.com) at 1:400 dilution was used as secondary
antibody.

Microscopy

Fluorescence images were captured using an Olympus BX61
microscope equipped with an ORCA-ER CCD camera
(Hamamatsu). Deconvolution of image stacks of 10 slices
each and maximum intensity projections were done using
the program AnalySIS (Soft Imaging System). All images
were acquired in grey scale and afterwards pseudo-colored
and merged with Adobe Photoshop CS5 (Adobe). To achieve
an optical resolution of ∼120 nm (super-resolution), we ap-
plied structured illumination microscopy (SIM) using a C-
Apo 63×/1.2W Korr objective of an Elyra PS.1 microscope
system and the software ZEN (Carl Zeiss GmbH). A SIM
image stack was used to produce the 3D movie by the
Imaris 8.0 (Bitplane) software.

Flow cytometric genome size measurement

The Luzula DNA content was estimated using young, fresh
leaves according to (Fuchs et al. 2008) using Pisum sativum
‘Viktoria, Kifejtö Borsó’ (Genebank Gatersleben accession
number PIS 630; 2C=9.09 pg) (Doležel et al. 1998), as an
internal reference standard. Measurements were performed
either on a FACStarPLUS flow sorter (BD Biosciences)
equipped with an argon ion laser INNOVA 90C (Coherent)
adjusted to 514 nm or on a CyFlow space flow cytometer
(Partec) equipped with a 532 nm solid-state laser. Each mea-
surement was repeated at least two times on different days.

Analysis of telomerase activity according to the telomere
repeat amplification protocol

Three leaf stage plantlets and flower buds of L. elegans, and 7-
day seedlings of Arabidopsis thalianawere manually homog-
enized in extraction buffer (Fitzgerald et al. 1996; Sykorova
et al. 2003). Crude extracts obtained after centrifugation were
5× and 10× diluted for analysis of telomerase activity as de-
scribed (Fitzgerald et al. 1996; Fajkus et al. 1998). Briefly,
1 μl of 10 μM substrate primer TS21 (5′GACAATCCGT
CGAGCAGAGTT3′) was mixed with 1 μl of diluted crude
protein extract, and elongation of the primer by the telomerase
proceeded for 45 min at 26 °C in 25 μl reaction buffer
(Fitzgerald et al. 1996). Telomerase was heat inactivated
(5 min, 94 °C); 1 μl of 10 μM reverse primer TelPr (5′
CCGAATTCAACCCTAAACCCTAAACCCTAAACCC3′)
and 2U of DyNAzymeII DNA polymerase (Finnzymes) were
added, and extension products were amplified in PCR (35 cy-
cles of 95 °C/30 s, 65 °C/30 s, 72 °C/30 s; final extension
72 °C/5 min). Aliquot samples of telomere repeat amplifica-
tion protocol (TRAP) reactions were analyzed a on 12.5 %
polyacrylamide gel in 0.5×TBE buffer. Gels were stained by
GelStar nucleic acid gel stain (LONZA) and signals were vi-
sualized using the LAS-3000 system (FujiFilm).
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Results

X-ray radiation induces aberrations in holocentric
chromosomes in a dosage-dependent manner

Three leaf stage plantlets of L. elegans were X-ray irradiated
with 10, 20, 25, and 30 Gy to induce fragmentation of the
holocentric chromosomes. In agreement with previous find-
ings (Prakken 1959; Li et al. 2010), DNA double-strand
breaks occurred more frequently with increasing radiation
dosage. Both, the non-irradiated plant and the plant irradiated
with 10 Gy did not show any chromosome fragmentation and
possessed three equally sized chromosome pairs. FISH with
the Arabidopsis-type telomere (TTTAGGG)n repeat and the
satellite repeat LeSAT7, which clusters at the ends of all
L. elegans chromosomes (Fig. 1a) (Heckmann et al. 2011),
confirmed the absence of major structural changes in these
low- or non-radiated samples. In contrast, irradiation doses
of 20, 25, and 30 Gy induced numerous chromosome frag-
ments detectable in metaphase cells 1 day after irradiation.
Whereas 7 chromosomes/fragments was the most frequent
number in plants irradiated with 20 Gy (66 %, n=61) and
25 Gy (70 %, n=50), an increase to 9 was found in the plant
irradiated with 30 Gy (54%, n=67) (Fig. 1b). Irradiated plants
were cytogenetically heteromorphic exhibiting a variability in
the newly formed chromosome/fragment sizes between cells
and plants. In the plant irradiated with 25 Gy, we observed in
addition to small fragments also an abnormally large chromo-
some (Fig. 1c). The absence of interstitial telomeres or
LeSAT7 signals indicates that this chromosome might be the
result of a translocation event combining two or more
fragments.

Chromosome fragments containing a holokinetic
centromere are stabilized by de novo formed telomeres

In order to test whether the fragments and the rearranged
chromosomes possess normal centromere activity, the posi-
tion of kinetochores was evaluated by immunostaining with
CENH3- or histone H2AThr120ph-specific antibodies. Both
antibodies label only functionally active centromeres (Allshire
and Karpen 2008; Kawashima et al. 2010). Colocalization of
the centromeres and the Arabidopsis-type telomeres revealed
telomere signals at both ends of the longitudinal centromeres
(Fig. 2a, Supporting Information Movie S1). Hence, the cen-
tromere spans over the entire chromosome, from telomere to
telomere in non-irradiated plants. The CENH3-negative re-
gions appearing distal to the telomere signals likely represent
out-looped subtelomeric chromatin.

The chromosome fragments showed similar CENH3 and
H2AThr120ph signals as unfragmented chromosomes
(Fig. 2b, c). Extraordinary long chromosomes, presumably
products of translocation events, revealed centromere proteins
along the entire chromosome length (Fig. 2c). No interstitial
signal gap was found by the centromere labeling. These ob-
servations and the absence of micronuclei indicate that
fragmented and translocated chromosomes segregate normal-
ly in somatic cells due to the presence and activity of the
holokinetic centromeres.

To study whether the ends of broken chromosomes are
stabilized by de novo formed telomeres, in situ hybridization
with the Arabidopsis-type telomere probe was performed in
plants irradiated with 20 Gy 7, 14, and 21 days after irradia-
tion. To distinguish between pre-existing and newly formed
telomere sites, the subtelomere-specific probe LeSAT7 was

Fig. 1 X-ray irradiation induces chromosome fragmentation in
L. elegans. a Non-irradiated mitotic metaphase with three equally sized
chromosome pairs after FISH with the Arabidopsis-type telomere and the
terminal satellite repeat LeSAT7. bChromosome fragmentation rises with
increasing radiation dosage. The plant irradiated with 10 Gy did not show
any fragmentation and possessed six chromosomes. The most frequent
number of chromosomes/fragments in the plant irradiatedwith 20Gywas
7 (40 cells). In 11 cells 6 and in 10 cells 8 chromosomes could be counted.
The most frequent chromosome number in the plant irradiated with 25Gy
was 7 (35 cells), followed by 8 (10 cells) and 6 (5 cells). In the plant

irradiated with 30 Gy, cells with 9 (36 cells), 10 (15 cells), 8 (13 cells),
and 11 (3 cells) chromosomes/fragments were observed. c Mitotic
metaphase of a plant irradiated with 25 Gy possessing seven
chromosomes/fragments of different size after FISH with the
Arabidopsis-type telomere probe and the terminal satellite repeat
LeSAT7. Arrowheads indicate the chromosome fragments. The arrow
points to an abnormally large chromosome, presumably the product of
a translocation event. DNAwas counterstained with DAPI (blue). Bars=
10 μm
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used in addition. Telomeric regions carrying both LeSAT7 and
telomere repeats were assumed to be the pre-existing chromo-
some ends, while ends lacking LeSAT7 but exhibiting telo-
mere signals were considered as those with newly synthesized
telomeres (Fig. 2d). The first chromosome fragments
exhibiting a newly formed telomere were found 21 days after
irradiation. At this time point, newly formed telomeres were
detectable at 51 % of 37 analyzed fragments. The hybridiza-
tion signal intensity differed severely among the newly
formed telomeres (Fig. 2e). Around 3 months after radiation,
when the plants enter meiosis, the intensity of telomere signals
was compared between chromosome fragments carrying a
pre-existing and a newly formed telomere. In 70 % of 69
analyzed fragments, the hybridization intensity of newly
formed telomeres was weaker than that of the pre-existing
ones. In 17% of the fragments, no obvious difference between
“new” and “old” telomere sites was detectable, and 9 % of the
newly formed telomeres showed an evenmore intense hybrid-
ization signal than the “pre-existing” ones. Only 4 % of chro-
mosome fragments revealed no telomere signal at the newly
formed chromosome ends. In addition, small chromosome
fragments carrying telomeres and LeSAT7 repeats at both

ends could be observed (Fig. 2f), likely due to the fusion of
two subtelomeric regions.

To test whether the newly formed telomeres may be the
product of active telomerase, we used a PCR-based TRAP
assay which permits the detection of telomerase activity
in vitro. Semi-quantitative analysis of TRAP products showed
detectable levels of telomerase in extracts isolated from non-
irradiated L. elegans seedlings and flower buds. Regular lad-
ders of TRAP product showing the same periodicity as in the
A. thaliana sample which was used as a positive control were
reproducibly detected in both L. elegans tissues (Fig. 3). This
observation suggests that de novo synthesized telomeres ob-
served in somatic and generative cells are the likely result of
telomerase-mediated healing process.

Successful transmission of holocentric fragments
across several generations

L. elegans performs an inverted meiosis meaning that sister
chromatids separate from each other during anaphase I and
homologous non-sister chromatids separate during anaphase
II (Heckmann et al. 2014). For several Luzula species, the

Fig. 2 Chromosome fragments of L. elegans possess holokinetic
centromeres and de novo formed telomeres. a SIM of double labeled
non-irradiated mitotic metaphase chromosomes with anti-H2AThr120ph
immunostaining and FISH using the Arabidopsis-type telomere probe.
The centromeres span the entire chromosome length from telomere to
telomere (see also Supporting Information Movie S1). Immunolabeling
of irradiated cells with anti-CENH3 (b) and anti-H2AThr120ph (c).
Fragmented (arrowheads) and translocated (arrow) chromosomes
possess active holocentromeres. d FISH with the terminal satellite

LeSAT7 and telomere repeats (red) enable to distinguish between pre-
existing telomeres (carrying signals of both probes) and the newly
synthetized telomeres (carrying only telomere signals, arrow). e The
signal intensities of the newly synthesized telomeres differ between the
fragmented chromosome ends (see further enlarged telomere signals,
arrowed). f A chromosome fragment with pre-existing telomeres at both
termini (arrowhead). Chromatin was counterstained with DAPI (blue).
Bars=10 μm
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stable transmission of holocentric chromosome fragments was
described (Nordenskiöld 1962, 1963; Kusanagi 1973).
Irradiated plants exhibited a bouquet formation in zygotene,
like non-irradiated ones (Fig. 4a). However, at prometaphase
I, multivalent configurations interconnected by terminal satel-
lite repeats were detected, which have never been observed in
non-irradiated plants (Fig. 4b). Additionally, we found the
terminal satellite at an interstitial position as a product of a
translocation event (Fig. 4c).

To further investigate whether meiosis is disturbed by the
irradiation-induced aberrations, we determined the DNA con-
tent of the progeny of the plant irradiated with 20 Gy.
Nineteen out of 20 analyzed M1 plants revealed a genome
size comparable to non-irradiated plants (3.81 Gbp/1C±
1.5 %) indicating a balanced segregation of all chromosomes
including fragments. All chromosome fragments in the self-
progeny of the irradiated plant possess telomeric repeats at
their newly formed chromosome ends (Fig. 4d). In one plant,
a 7 % larger genome was detected (4.08 Gbp/1C). Analyses of
this plant in prometaphase I showed three chromosome

fragments of different size (Fig. 4e) in addition to three biva-
lents. The corresponding tetrads revealed unequal numbers of
telomere and LeSAT7 signals in daughter cells indicating a
random segregation of these chromosome fragments.
Furthermore, in 20 % of 100 examined tetrads of this M1
plant, micronuclei were observed (Fig. 4f) but not present in
the other M1 plants. The DNA content of the M2 progeny of
the M1 plant with 7 % bigger genome size ranged from
7.74 pg/2C (−0.76 %) to 8.87 pg/2C (+14 %) compared to
7.80 pg/2C of non-irradiated plants. In addition, the number
and size of chromosomes and fragments in the M2 plants
varied, but all chromosome and fragment ends contained telo-
mere repeats. Plants possessing 3.35, 6.46, and 11.03 % big-
ger genomes harbored chromosome complements with 2n=
6+2 small fragments, 2n=6+2 big+2 small fragments, and
2n=7+1 small fragment, respectively (Fig. 4g, h, i) indicating
a stable transmission of fragments independent of their size.
Despite this severe variation in DNA content and karyotype
constitution, no obvious phenotypic differences were
observed.

The balanced segregation of the chromosome fragments to
the progeny in 95 % of the cells indicates a correct process of
inverted meiosis independent of irradiation induced fragmen-
tations, translocations, and multivalent formation. The pres-
ence of telomere repeats at all broken ends in the progeny
implies a significant role of telomere de novo formation for
stable fragment transmission across generations.

Discussion

Species with holocentric chromosomes are characterized by a
rapid karyotype evolution (Bureš et al. 2013). In contrast to
organisms with monocentric chromosomes where acentric
fragments are mostly lost during cell division, the breakage
of holocentric chromosomes creates fragments with normal
centromere activity. Therefore, no lagging anaphase chromo-
somes and micronuclei occur, and chromosome breakage and
translocation events play an important role in the fast karyo-
type evolution of holocentric species (Heilborn 1924; Brown
et al. 2004; Kuta et al. 2004; Da Silva et al. 2008; Hipp et al.
2009).

Using centromere-specific markers, we demonstrate that
chromosome fragments independent of their size possess cen-
tromere activity along their sister chromatids. No abnormali-
ties were found during mitotic divisions, similar as in γ-
irradiated holocentric plant species Rhynchospora pubera
(Vanzela and Colaço 2002) and the holocentric nematode
Caenorhabditis elegans, where only very small fragments
were rarely lost (Albertson and Thomson 1982). However, a
holokinetic centromere is likely not sufficient to stabilize bro-
ken chromosomes as telomere-free chromosome ends are
prone to “fuse”, and thus, form ring chromosomes when

Fig. 3 Telomerase activity in seedlings and flower buds assayed by
TRAP. Seedlings and flower buds of L. elegans show telomerase
activity, as evidenced by the 7-bp incremental TRAP ladder. Total
protein extracts from seedlings and flower buds were analyzed in 5×
and 10× dilutions. An A. thaliana extract was used as a positive
control. − negative control (no extract in the reaction)
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fragments without terminal telomeric repeats are involved
(McClintock 1941, 1942). We did not observe ring chromo-
somes, probably due to rapid telomere healing. Ring chromo-
some formation was also not present in irradiated C. elegans
cell (Albertson and Thomson 1982). However, in the
holocentric common spikerush, Eleocharis palustris, ring chro-
mosomes were found after irradiation (Håkansson 1958).

In our study, cytologically detectable small telomere re-
peats at ∼50 % of broken termini appeared already 21 days
after irradiation. This indicates a telomerase-basedmechanism
of chromosome healing in Luzula, similar as described for
monocentric human (Chabchoub et al. 2007) and
Tetrahymena (Harrington and Harrington 1991; Yu and
Blackburn 1991) chromosomes. Stabilization of break points
by telomere de novo synthesis was also found in the

holocentric aphid Myzus persicae (Monti et al. 2011). In root
meristems of maize, 50 % of the chromosome fragments
caused by BFB cycles were stabilized after 3 weeks and up
to 93 % after 10 weeks (Zheng et al. 1999). Similarly, in
wheat, BFB cycles taking place after induced chromosome
breakage were inhibited via adding telomeric sequences by
telomerase to the break points (Tsujimoto 1993; Tsujimoto
et al. 1997).

The lack of detectable amounts of newly formed telomeres
and the differences in new telomeres signal intensities at some
break points of L. elegans chromosomes might indicate a
preferential binding of telomerase to specific repeats or other
sequences at the fragment termini. Indeed, in Saccharomyces
cerevisiae, the de novo telomere formation occurs preferen-
tially at TG-rich sequences (Putnam et al. 2004). Additionally,

Fig. 4 Holocentric fragments in mutants (M0–M2) are stably transmitted
to the next generation. a The formation of a bouquet-like configuration
during zygotene of M0 mutants is not impaired by irrradiation. b A
multivalent configuration (arrow) is present at prometaphase I of
irradiated M0 plants. c A translocation event caused by irradiation is
indicated by the interstitial localization of the terminal satellite LeSAT7
(arrow). d Somatic metaphase of a mutant offspring (M1) with stably
transmitted chromosome fragments (2n=7) and a similar genome size
as non-irradiated plants. All chromosome fragments possess telomeric
repeats at their newly formed chromosome ends (arrows). e
Prometaphase I of a mutant offspring with a 7 % larger genome

possessing three bivalents and three fragments of different sizes
(arrowheads). f Tetrads of the same mutant showing a micronucleus
(further enlarged and arrowed). g, h, i M2 individuals of the progeny of
the mutant with the 7 % larger genome revealed different combinations of
the fragments (arrowheads) occurring in the mother plant. Number and
size of fragments correlate with the estimated genome size: 2n=6+2
small fragments (3.4 % enlarged genome), 2n=6+2 big+2 small
fragments (6.5 % enlarged genome), and 2n=7+1 small fragment
(11.0 % enlarged genome). FISH with the terminal satellite LeSAT7
and the telomere repeat. Chromatin was counterstained with DAPI
(blue). Bars=10 μm
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the telomerase might preferentially extend shorter telomeres
than longer ones causing different telomere signal intensities.
The preferential elongation of shorter telomeres has been
demonstrated in yeast (Teixeira et al. 2004), mouse
(Hemann et al. 2001), and human (Britt-Compton et al.
2009). The occurrence of new telomeres displaying a similar
FISH signal intensity as the pre-existing ones, as well as the
presence of chromosomal fragments carrying telomere and
LeSAT7 repeats at both ends, a short time after radiation,
suggest the additional action of a telomerase-independent pro-
cess such as terminal translocation or recombination.
Simultaneous mechanisms of broken chromosome stabili-
zation, de novo telomere synthesis by telomerase and telo-
mere capture, were also reported in other species, e.g., human
(Chabchoub et al. 2007).

Irradiation-induced fragments, translocations, and multiva-
lent configurations do not impair the course of inverted mei-
osis in L. elegans. Similarly, no abnormalities in meiosis were
detected after chromosome fragmentation in the holocentric
Cuscuta babylonica and R. pubera species (Pazy and
Plitmann 1994; Vanzela and Colaço 2002). The occurrence
of multivalent configurations caused by irradiation was ob-
served also in the holocentric plant E. subarticulata probably

as the result of multiple translocations involving terminal het-
erochromatic region (Da Silva et al. 2005). The process of
chromosome healing occurs gradually in L. elegans, and the
cells have to pass several cell divisions to acquire a detectable
number of telomeric repeats. All chromosome fragments pres-
ent in the progeny of irradiated plants revealed telomeres at
break points indicating their importance for fragment
stabilization. In wheat, 2–4 weeks after chromosome
fragmentation, stabilizing telomere repeats were observed on-
ly occasionally in root tip meristems, but during meiosis, all
broken ends displayed cytologically detectable telomeres
(Friebe et al. 2001).

The occasional occurrence of micronuclei in post-meiotic
cells as well as the sporadic increase of the DNA amount in
progeny plants might suggest missegregation of some chro-
mosomal fragments during meiosis. Different factors may af-
fect meiotic stability of fragments, e.g., fragment size, the
presence of telomeres, and/or subtelomeric satellite repeats.
A significant role of telomere repeats in chromosome end
stabilization was demonstrated in the holocentric insect
Bombyx mori. Here, fragments with telomeres at both ends
were lost less often (25 %) during gametogenesis than frag-
ments with telomeres present only at one end (56 %)

Fig. 5 Model illustrating possible karyotype alterations after
fragmentation of holocentric chromosomes based on the interplay
between holocentricity and telomere healing according to the behavior
of L. elegans chromosomes. Irradiation of holocentric chromosomes
induces chromosomal fragments of different size. Centromere activity is
present along all chromosome fragments. Break points are indicated by
black dotted lines. a Broken ends are negative for the terminal satellite

probe and become gradually healed by de novo telomere syntheses,
detected by a telomere-specific probe. b Translocations between non-
homologous chromosomes form fragments of different size which are
stabilized by pre-existing telomeres and the holocentromeres. Note that
the distal location of LeSAT7 compared with the telomeres is likely
caused by a fold back of telomere repeats (Heckmann et al. 2014)
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(Fujiwara et al. 2000). The importance of the terminal satellite
repeats LeSAT7 and LeSAT11 during the inverted meiosis of
L. elegans was previously demonstrated in (Heckmann et al.
2014). Additionally, other mechanisms, such as inappropriate
attachment of spindle microtubules, kinetochore damage, and
defects in the cell cycle control system might contribute to
micronuclei formation (Luzhna et al. 2013).

In summary, we demonstrate that the combination of a
holokinetic chromosome structure and the rapid formation
of new telomeres at break points enable chromosome frag-
ments to be successfully transmitted through mitotic and mei-
otic cell divisions. Thus, holocentric species may undergo a
rapid karyotype evolution involving chromosome transloca-
tions and fissions (Fig. 5).
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