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KNL1: bringing order to the kinetochore
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Abstract KNL1 is an evolutionarily conserved kinetochore-
associated protein essential for accurate chromosome segre-
gation in eukaryotic cells. This large scaffold protein, predict-
ed to be almost entirely unstructured, is involved in diverse
mitotic processes including kinetochore assembly, chromo-
some congression, and mitotic checkpoint signaling. How this
kinetochore “hub” coordinates protein–protein interactions
spatially and temporally during mitosis to orchestrate these
processes is an area of active investigation. Here we summa-
rize the current understanding of KNL1 and discuss possible
mechanisms by which this protein actively contributes to
multiple aspects of mitotic progression.
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Introduction

During mitosis, replicated chromosomes attach to spindle
microtubules (MTs) in order to congress to the spindle equator
and correctly segregate to opposite spindle poles during ana-
phase. Attachment between replicated chromosomes andMTs
is mediated by the kinetochore, a complex network of proteins
assembled on centromeric DNA of each mitotic sister chro-
matid. The kinetochore also orchestrates a sophisticated sig-
naling network called the spindle assembly checkpoint (SAC),
a fail-safe mechanism that prevents mitotic exit until all chro-
mosomes are attached to spindle MTs. Kinetochores are com-
prised of over 100 proteins, many of which are evolutionarily
conserved and exhibit high interdependency and functionally

diverse roles (Hori and Fukagawa 2012; Przewloka and
Glover 2009; Santaguida and Musacchio 2009). Despite this
complexity, we are beginning to understand the molecular
basis for kinetochore assembly (Hori and Fukagawa 2012;
Santaguida and Musacchio 2009), chromosome congression
(Kops et al. 2010; McIntosh et al. 2012; Walczak and Heald
2008), and SAC signaling (Jia et al. 2013; Lara-Gonzalez et al.
2012; Musacchio 2012). The scaffold protein KNL1, a rela-
tively recently described kinetochore protein, plays an impor-
tant role in these three critical mitotic processes; however, its
specific contributions to each are just beginning to be appre-
ciated. Here we provide an overview of the current state of
understanding of KNL1, a protein that is emerging as a key
integrator of multiple kinetochore activities.

KNL1 history

The gene encoding the human protein KNL1 (also known as
D40, AF15q14, CASC5 for Cancer Susceptibility Candidate
5, and Blinkin for Bub1 linking kinetochore protein) was
originally identified as an interacting partner for the transcrip-
tion factor GCF (GC factor) in a yeast two-hybrid assay (Wei
et al. 1999). Later, a small fragment of the KNL1 gene was
described as a fusion with the oncogene MLL (mixed lineage
leukemia) in acute leukemia (Hayette et al. 2000). Early stud-
ies showed that human KNL1 mRNA is expressed in thymus,
testis, and bone marrow in adult tissues, in a variety of human
cancer cell lines and in primary tumors, and ubiquitously
expressed in fetal tissues (Hayette et al. 2000; Takimoto
et al. 2002). An RNAi-based functional genomic screen in
Caenorhabditis elegans identified C02F5.1 (later named
KNL1) as a gene encoding a previously undescribed protein
required for the fidelity of mitotic cell division (Gönczy et al.
2000). Soon after, a detailed functional study in C. elegans
demonstrated that RNAi-mediated depletion of C02F5.1
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resulted in failure of kinetochores to recruit multiple proteins,
premature spindle pole separation, and chromosome segrega-
tion failure (Desai et al. 2003). Based on this phenotype, which
was previously observed upon depletion of the inner kineto-
chore proteins CENP-C and CENP-A (Oegema et al. 2001),
C02F5.1 was categorized as “k inetochore null” and renamed
KNL-1 (Desai et al. 2003). In parallel to its discovery as a
kinetochore protein in C. elegans , KNL1/Spc105 was also
characterized as a kinetochore component in budding yeast
(Nekrasov et al. 2003).

In human cells, KNL1 was first recognized as a kineto-
chore protein in 2004, and its conserved role in kinetochore
assembly was later demonstrated (Cheeseman et al. 2004,
2008; Kiyomitsu et al. 2007, 2011). Since its discovery,
KNL1 has been recognized as a critical platform for kineto-
chore protein recruitment and as a linker between centromeric
DNA and the plus ends of spindle MTs not only in human
cells but also in yeast, worms, chicken, and flies (Cheeseman
et al. 2008; Kerres et al. 2004; Nekrasov et al. 2003;
Przewloka et al. 2007; Schittenhelm et al. 2009).

KNL1: the unknown structure

Despite being evolutionarily conserved, KNL1 displays low
overall sequence similarity between species, and according to
folding prediction algorithms, it is mostly intrinsically disor-
dered (FoldIndex, Phyre). Human KNL1 for example, with
over 2,300 amino acids, has only a single region predicted to
fold into an ordered structure. This region, which resides at the
far C-terminus of the protein, is composed of a globular
domain containing tandem RWD motifs (A. Musacchio, per-
sonal communication) and a coiled coil domain (Petrovic et al.
2010). The RWD motifs mediate direct interaction with the
Mis12 complex, while the coiled coil domain mediates inter-
action with Zwint-1. Both theMis12 complex and Zwint-1 are
important for proper kinetochore assembly (Fig. 1).Within the
remaining “unstructured” region of the protein, several motifs
have been identified. The RVSF (RVXF) and SILK
([SG]ILK) motifs, both of which reside at the far N-
terminus of KNL1, mediate binding of the phosphatase
PP1 (Liu et al. 2010). Two KI motifs, KI1 and KI2
(KI[DN]XXXF[LI]XXLK), also localized in the N-terminus
of KNL1, interact with the essential SAC proteins Bub1 and
BubR1, respectively (Bolanos-Garcia et al. 2011; Kiyomitsu
et al. 2011; Krenn et al. 2012). More recently, MELT motifs
(M[ED][ILVM][ST]) in the N-terminal and central regions of
KNL1 have been identified and demonstrated as mediators for
recruitment of Bub1 and Bub3, another essential SAC com-
ponent (London et al. 2012; Primorac et al. 2013; Shepperd
et al. 2012; Yamagishi et al. 2012) (Fig. 1). A search for KNL1
orthologs across eukaryotes recently identified KNL1 in three
out of the six eukaryotic supergroups (Vleugel et al. 2012).

Although KNL1 primary sequence similarity across species is
poor and the predicted protein size is quite variable, the C-
terminal region, SILK, RVSF, and MELT motifs are well
conserved. The number of MELT motifs across species, how-
ever, is widely variable (Vleugel et al. 2012) (Fig. 2).

Full-length C. elegans KNL1 and fragments of yeast and
human KNL1 have been successfully reconstituted in vitro
(Bolanos-Garcia et al. 2011; Cheeseman et al. 2006; Espeut
et al. 2012; Krenn et al. 2012; Shepperd et al. 2012; Yamagishi
et al. 2012). However, there is a dearth of structural informa-
tion for KNL1 as only small fragments of the human N-
terminal region containing the KI motifs (Bolanos-Garcia
et al. 2011; Krenn et al. 2012) and small fragments of yeast
KNL1 (Spc105) containing MELT motifs have been crystal-
lized (Primorac et al. 2013). In these atomic structures, only a
handful of residues (~15) showed significant electron density,
presumably due to the disordered nature of KNL1. The resi-
dues identified with confidence in the structures of both KNL1
KI motifs fold into short alpha-helices when bound to Bub1 or
BubR1 (Bolanos-Garcia et al. 2011; Krenn et al. 2012).
Circular dichroism experiments indicate that these regions of
KNL1 by themselves lack secondary structure (Bolanos-
Garcia et al. 2011); thus, it appears that KNL1 transitions
from a disordered configuration to an ordered one upon bind-
ing to other proteins.

The importance of intrinsically disordered proteins in a
diverse number of cellular processes is only beginning to be
recognized (Dyson and Wright 2005; Tompa 2012).
Hypotheses regarding the molecular and evolutionary advan-
tage of this class of proteins have emerged over the last
decade. For instance, it is proposed that largely disordered
regions provide greater surface area for interaction with mul-
tiple binding partners and more local conformational flexibil-
ity, allowing fine control of their binding affinity (Dyson and
Wright 2005). Intrinsic lack of structure has also been impli-
cated in force sensing and stretching during mechano-
transduction (Pan et al. 2012). Furthermore, disordered pro-
teins may be less sensitive to environmental perturbations,
allowing them to provide stability to complex regulatory
networks (Gunasekaran et al. 2003; Huang and Liu 2010).
How KNL1 folds and binds to its kinetochore partners in the
cell, how it stabilizes multiple kinetochore protein networks,
and what signaling events result from these interactions are
compelling questions that remain to be addressed.

KNL1 and the KMN network

KNL1 is a component of the “KMN network,” a complex of
proteins that makes up the primaryMT binding interface at the
kinetochore. The KMN network is comprised of the KNL1
protein, the Mis12 complex (Mis12, Dsn1, Nsl1, and Nnf1),
and the Ndc80 complex (Hec1, Nuf2, Spc24, and Spc25)
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(DeLuca and Musacchio 2012; Tooley and Stukenberg 2011;
Varma and Salmon 2012). Zwint1, a protein involved in
checkpoint signaling, is sometimes considered a member of
the KMN network since it binds directly to KNL1 and co-
purifies with the rest of the KMN network (Lin et al. 2006;
Pagliuca et al. 2009; Wang et al. 2004). The high binding
affinity measured in vitro between several KMN components
(Kd~nM range) (Petrovic et al. 2010), their apparent cooper-
ative binding to MTs (Cheeseman et al. 2006), and their
substantial co-dependency for kinetochore recruitment
in vivo (Varma and Salmon 2012) (Fig. 3) suggest that these
proteins function together during mitosis. The most

recognized function of the KMN network at kinetochores is
linkage of the inner kinetochore (chromatin proximal region)
to plus ends of spindle MTs. Association with the inner
kinetochore region requires binding between the Mis12 com-
plex and the constitutive centromere associated network
(CCAN), a large group of centromere-associated proteins
responsible for establishing and maintaining centromere in-
tegrity (McAinsh and Meraldi 2011). (The CCAN is com-
posed of 16 proteins: CENP-B, C, -H, -I, -K, -L, -M, -N, -O,
-P, -R, -S, -T, -U, -W, and -X.) The KMN–MT interaction, on
the other hand, is primarily mediated by Hec1, a component of
the Ndc80 complex (Alushin et al. 2010; Cheeseman et al.
2006; Ciferri et al. 2008; DeLuca et al. 2006; Powers et al.
2009). KNL1 also directly binds MTs in vitro; however, a
significant role for thisMT binding activity in the formation of
end-on, force-generating kinetochore–MT attachments has
not been demonstrated (discussed in the following section).
Although the KMN network is considered a functional unit
(Cheeseman et al. 2006), it is important to note that depletion
of individual KMN components results in different pheno-
types. For instance, Mis12 and KNL1 depletion from human
cells leads to a partial chromosome alignment phenotype
(Kline et al. 2006; Cheeseman et al. 2008; Pagliuca et al.
2009), while depletion of any of the Ndc80 complex subunits
leads to severe kinetochore–MT attachment defects and
completely unaligned chromosomes (Tooley and Stukenberg

Fig. 1 Domain architecture of human KNL1. Key regions involved in
KNL1 function are indicated schematically (top), and the corresponding
amino acid sequences for each region in human KNL1 are listed (bot-
tom). Aurora B kinase phosphorylates the N-terminus of KNL1 to inhibit
association with PP1 (Liu et al. 2010). Mps1 phosphorylates the KNL1
MELT repeats to promote association with Bub1 and Bub3 (London et al.

2012; Primorac et al. 2013; Shepperd et al. 2012; Yamagishi et al. 2012).
Amino acid residues 1–68 indicate the MT binding domain (Welburn
et al. 2010), and underlined is a basic patch of residues (RRRH), whose
analogous residues in C. elegans have been implicated in direct MT
interaction (Espeut et al. 2012)

Fig. 2 Evolutionary conservation of KNL1 domain architecture. Key
KNL1 functional regions are shown for several organisms. The respective
number of amino acids in KNL1 for the various organisms is shown
(right). Two values in this column indicate multiple isoforms (H. sapi-
ens). The green region in D. melanogaster indicates the presence of
repetitive motifs that differ from the MELT consensus motif observed in
other organisms (Schittenhelm et al. 2009)
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2011). To what extent the components of the KMN network
rely on each other to carry out their functions, independent of
their role in network connectivity, is an interesting question
for further study.

Requirements for KNL1 kinetochore localization

KNL1 localizes to kinetochores from prophase to early telo-
phase in human cells and has also been weakly observed near
centromere regions in interphase nuclei (Cheeseman et al.
2008; Kiyomitsu et al. 2007). The KNL1 kinetochore locali-
zation domain resides in its C-terminus, the region that medi-
ates direct binding to Zwint-1 and the Mis12 complex
(Kiyomitsu et al. 2007, 2011; Petrovic et al. 2010) (Fig. 1).
Specifically, amino acids 2106–2316 of humanKNL1 directly
bind to Nsl1 (a component of the four-protein Mis12 com-
plex) (Petrovic et al. 2010). Although this region of KNL1
(2106–2316) does not directly interact with Zwint-1, a longer
KNL1 fragment containing C-terminal amino acids 1904–
2316 mediates Zwint-1 binding in vitro (Petrovic et al.
2010). A GFP-tagged KNL1 fragment of amino acids 1833–
2316 localizes to kinetochores in human cells (Kiyomitsu
et al. 2007, 2011) as does a KNL1 fragment containing the
minimal Mis12 binding region (2106–2316) (Caldas et al.
2013), indicating that KNL1 localizes to kinetochores via
binding the Mis12 complex. In support of this, depletion of
the Mis12 complex component Dsn1 leads to a significant
reduction in KNL1 kinetochore localization in human cells,
chicken cells, and C. elegans (Cheeseman et al. 2004, 2008).
It was recently shown that Zwint-1 depletion also results in a

considerable reduction of kinetochore-localized KNL1
(~60% reduction) (Varma et al. 2013). Therefore, it is possible
that both Zwint-1 and the Mis12 complex contribute to kinet-
ochore recruitment of KNL1 through direct binding with the
KNL1 C-terminal region. It remains to be tested, however, if
Mis12 localization requires Zwint-1, which would alternative-
ly explain the dependency of KNL1 kinetochore recruitment
on Zwint-1. Importantly, KNL1 depletion results in significant
kinetochore delocalization of Zwint-1 and Mis12 complex
components (Cheeseman et al. 2008; Varma et al. 2013),
demonstrating a high level of co-dependency between these
proteins.

Despite the close association between KMN network com-
ponents and KNL1's dependency on the Mis12 complex for
kinetochore localization, depletion of Ndc80 complex com-
ponents in human cells does not prevent KNL1 kinetochore
association (Cheeseman et al. 2008; Miller et al. 2008;
Pagliuca et al. 2009). Additionally, a high level of co-
dependency between the Mis12 complex and KNL1 kineto-
chore localization seems to be conserved through evolution, but
co-dependency between the Ndc80 complex and KNL1 does
not follow the same pattern. Consistent with this, biochemical
analysis revealed that while the Ndc80 complex and KNL1
both directly interact with the Mis12 complex, KNL1 and the
Ndc80 complex do not bind to each other (Cheeseman et al.
2006; Petrovic et al. 2010). It is important to note, however, that
the Ndc80 subunit Hec1 is required for the recruitment of
Zwint-1 to kinetochores (Lin et al. 2006), suggesting that the
Ndc80 complexmay indirectly contribute toKNL1 kinetochore
association. Thus, while the Mis12 complex is an absolute
requirement for KNL1 kinetochore localization, the contribu-
tion of the Ndc80 complex is likely less significant.

Role of KNL1 in kinetochore assembly

In C. elegans , depletion of KNL1 by RNAi results in loss of
kinetochore-localized Hec1 (CeNdc80), Nuf2 (HIM10),
Spc25 (KBP3), Bub1, CENP-F (HCP-1), and CLASP2 and
reduced kinetochore localization of Dsn1 (KNL3) and Mis12
(Desai et al. 2003; Cheeseman et al. 2004) (Fig. 3). Of those
tested, total protein levels were maintained in KNL1-depleted
embryos, indicating that KNL1 is required for their recruit-
ment and/or maintenance at kinetochores but not for their
stability (Desai et al. 2003; Cheeseman et al. 2004). In addi-
tion, Zwilch (ZWL-1, a component of the RZZ complex
which additionally contains ZW10 and Rod), Spindly
(SPDL-1), and PP1 kinetochore localization is also dependent
on KNL1 in C. elegans (Espeut et al. 2012; Gassmann et al.
2010).

Depletion of KNL1 from human cells results in a similar
loss of kinetochore proteins as observed in C. elegans , with
some variations (Fig. 3). Bub1, Zwint-1, and RZZ

Fig. 3 KNL1 dependency of kinetochore protein localization. Solid
arrows indicate a high level of dependence for localization and dashed
arrows indicate a partial dependence. Arrows do not indicate direct
interaction
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components are lost from kinetochores in KNL1-depleted
cells (Cheeseman et al. 2008; Kiyomitsu et al. 2007; Varma
et al. 2013). BubR1, Cenp-E, Cenp-F, Mad1, and Mad2
kinetochore localization relies on Bub1 (Johnson et al.
2004). Therefore, logic dictates that depletion of KNL1 cor-
respondingly results in kinetochore delocalization of Bub1
downstream targets. Not surprisingly, BubR1, Cenp-F, and
Mad2 kinetochore localization is decreased in KNL1-
depleted cells (Cheeseman et al. 2008; Kiyomitsu et al.
2007; Pagliuca et al. 2009), and we observe a reduction of
kinetochore-associated Cenp-E upon KNL1 depletion from
human cells (G.C. and J.D., unpublished data). Presumably,
although untested, kinetochore recruitment of the dynein–
dynactin complex, which depends on the RZZ complex, is
also perturbed after KNL1 depletion.

Kinetochore levels of the Mis12 complex component Dsn1
are reduced after KNL1 depletion from human cells
(Cheeseman et al. 2008). The same study reported that deple-
tion of KNL1 from DT40 chicken cells resulted in a 45 %
reduction of Hec1 at kinetochores, but in human cells Hec1
localization was not affected (Cheeseman et al. 2008). In
contrast, a recent study found that Hec1 levels decreased by
~40 % after KNL1 depletion from HeLa cells (Caldas et al.
2013). Despite the disparity, it is evident that the Ndc80
complex retains some ability to localize to kinetochores in
KNL1-depleted human cells. This is not surprising as it has
been demonstrated that the CCAN component CENP-T also
contributes to kinetochore recruitment of the Ndc80 complex
in human cells (Gascoigne et al. 2011). Such KNL1-
independent Ndc80 complex kinetochore localization does
not follow a pattern through evolution since, as in C. elegans ,
Hec1 relies on KNL1 for localization in Drosophila (Desai
et al. 2003; Schittenhelm et al. 2009), but this dependency is
not observed in fission yeast (Kerres et al. 2007).

Its predicted high level of structural disorder and its ability
to bind multiple proteins suggest that KNL1 is a kinetochore
“hub” or “scaffold” protein (Haynes et al. 2006). The func-
tionality of scaffold proteins with unrecognized catalytic ac-
tivity such as KNL1 is usually attributed to their most basic
role as structural organizers of components involved in spe-
cific signaling pathways. Co-localizing and concentrating
proteins to a defined region may enhance the specificity of a
signal, providing a significant level of regulation. Thus, it is
generally assumed that disturbance of such scaffolds results in
disruption of molecular processes in an indirect manner.
However, there is growing evidence that scaffold proteins
may play a more complex role in signal transduction (Pan
et al. 2012; Shaw and Filbert 2009). The characteristic flexi-
bility in domain architecture of scaffold proteins may not only
allow interaction with multiple proteins but may also directly
affect their activities. For example, it has been suggested that
binding to scaffold proteins could result in allosteric changes
in signaling proteins that either enhance or inhibit their

activity or, alternatively, could prevent the degradation of
active proteins (Ferreon et al. 2013; Laine et al. 2008).
Whether KNL1 acts as a catalytic scaffold to coordinate
multiple activities at the kinetochore and functions beyond a
platform for kinetochore assembly is an exciting possibility
that has not yet been investigated.

Role of KNL1 in chromosome congression

In all organisms studied to date, depletion of KNL1 results in
chromosome segregation defects. In C. elegans embryos,
KNL1 depletion precludes metaphase chromosome
congression and results in premature spindle pole separation,
ultimately leading to random distribution of chromosomes
into daughter cells (Cheeseman et al. 2004; Desai et al.
2003). In both budding and fission yeast, KNL1
temperature-sensitive mutant strains exhibit chromosome bi-
orientation defects and spindle abnormalities (Kerres et al.
2007; Pagliuca et al. 2009). Drosophila cells lacking KNL1
are able to form metaphase plates but exhibit lagging chromo-
somes during anaphase (Schittenhelm et al. 2009). Although
complete chromosome misalignment was observed in one
study using HeLa cells (Kiyomitsu et al. 2007), later stud-
ies reported a partial alignment phenotype after KNL1
depletion (Caldas et al. 2013; Cheeseman et al. 2008;
Pagliuca et al. 2009). Thus, with the exception of C.
elegans, the consensus phenotype resulting from KNL1
depletion is a partial alignment phenotype, in which a
population of chromosomes is able to congress to the
spindle equator but a significant number of uncongressed
chromosomes remain stranded near the spindle poles. The
molecular mechanisms that facilitate complete alignment
of chromosomes to the spindle equator are not well under-
stood (Kops et al. 2010; McIntosh et al. 2012), however,
perturbation of attachments between kinetochores and MTs
impairs directed chromosome movement and metaphase
plate formation (Santaguida and Musacchio 2009; Tooley
and Stukenberg 2011). We discuss three hypotheses to
explain how loss of KNL1 might perturb kinetochore-MT
attachments, resulting in congression defects.

1. Insubstantial kinetochore–MTattachments—Recent stud-
ies have shown that stable, end-on kinetochore–MT at-
tachments are not explicitly required to congress chromo-
somes to the spindle equator and that either transient end-
on attachments or lateral attachments can suffice (Cai
et al. 2009; Magidson et al. 2011). However, there may
be an additional requirement for increased kinetochore–
MT attachment strength to congress chromosomes posi-
tioned substantially far away from the spindle equator
upon nuclear envelope breakdown. As such, it is possible
that KNL1-depleted cells harbor weak kinetochore–MT
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attachments, sufficient to congress chromosomes located
between the two spindle poles, relatively near the spindle
equator, but insufficient to congress polar chromosomes,
resulting in a partial alignment phenotype. Kinetochores
with reduced MT binding ability in KNL1-depleted cells
could arise in multiple ways: First, KNL1 directly binds
MTs through its N-terminus (Cheeseman et al. 2006;
Espeut et al. 2012; Pagliuca et al. 2009; Welburn et al.
2010); therefore, loss of KNL1 MT binding activity after
KNL1 depletion could directly reduce KMN MT binding
affinity, preventing the formation of robust kinetochore–
MTconnections. Interestingly, in C. elegans , disruption of
the KNL1MT binding domain does not significantly affect
the formation of kinetochore–MT attachments, chromo-
some congression, or chromosome segregation but instead
impairs spindle checkpoint silencing (discussed in the fol-
lowing section) (Espeut et al. 2012). Based on this evi-
dence, it is unlikely that defective chromosome
congression observed in human cells results from lack of
KNL1MT binding activity, but this remains to be formally
tested. A second explanation for weakened kinetochore–
MT attachments is the reduction in Ndc80 complex pro-
teins at kinetochores after KNL1 depletion. This is not
likely the case since previous studies have demonstrated
that human cells with >30 % of wild-type Hec1 levels are
able to properly congress chromosomes to the spindle
equator (DeLuca et al. 2002) and Ndc80 components are
only moderately reduced after KNL1 depletion (Caldas
et al. 2013; Cheeseman et al. 2008). A third possibility is
that KNL1 depletion decreases the ability of the Ndc80
complex to generate load-bearing kinetochore–MT attach-
ments by impairing its activity or conformation. In support
of this, in vitro experiments have demonstrated that KNL1
works synergistically with the Mis12 and Ndc80 com-
plexes to bind MTs, presumably by enhancing the MT
binding affinity of the Ndc80 complex (Cheeseman et al.
2006).

2. Defects in MT motor-driven congression—Kinetochore
recruitment of the plus-end directed MT motor Cenp-E,
implicated in chromosome congression, depends on KNL1
(Fig. 3). Cenp-E promotes kinetochore-mediated capture
of MTs and drives congression of mono-oriented chro-
mosomes to the spindle equator, likely on MT “tracks”
present in nearby kinetochore fibers (Kapoor et al. 2006;
Kim et al. 2008). Reminiscent of KNL1 depletion, deple-
tion of Cenp-E results in a “cruciform” phenotype, in
which chromosome congression is largely achieved, with
a small population of chromosomes remaining clustered
near the spindle poles (McEwen et al. 2001; Schaar et al.
1997; Wood et al. 1997). Therefore, it is possible that in
KNL1 depleted cells, loss of kinetochore-localized MT
motor proteins such as Cenp-E contributes to inefficient
movement of distally positioned chromosomes.

3. Failure to correct erroneous kinetochore–MT attach-
ments—Increased MT turnover during early mitosis pre-
vents the premature stabilization of kinetochore–MTs
(Kabeche and Compton 2013). This activity depends on
Aurora B kinase, the enzymatic component of the chro-
mosomal passenger complex, which phosphorylates ki-
netochore substrates to increase kinetochore–MT turn-
over (Carmena et al. 2012). Defective Aurora B activity
results in the accumulation of erroneous kinetochore–MT
connections, including syntelic attachments, in which
both sister kinetochores remain bound to MTs emanating
from the same spindle pole (Cimini et al. 2006; Ditchfield
et al. 2003; Hauf et al. 2003). KNL1 is required for
kinetochore localization of proteins that both increase
(Bub1) and counteract (PP1, PP2A via BubR1) Aurora
B activity (Fig. 4). Therefore, depletion of KNL1 likely
affects Aurora B kinase-mediated kinetochore–MT at-
tachment regulation. In support of this, KNL1 is required
for Bub1-mediated histone H2A phosphorylation (Caldas
et al. 2013), which promotes centromere and kinetochore
recruitment of Aurora B (Caldas et al. 2013; Yamagishi
et al. 2010; Kawashima et al. 2010) and Aurora B activity.
Accordingly, KNL1 depletion results in decreased levels
of centromere and kinetochore-localized active Aurora B
and decreased phosphorylation of kinetochore substrates
required for kinetochore–MT regulation (Fig. 4) (Caldas
et al. 2013). Thus, chromosomemisalignment after KNL1
depletion may result, in part, from reduced Aurora B
kinase activity. However, the prevalence of erroneous
kinetochore–MT attachments in KNL1-depleted cells
has not been directly tested.

Proper congression of chromosomes to the spindle equator,
which is key for the accurate distribution of replicated chro-
mosomes, involves the coordination of multiple mechanisms
that are not completely understood. KNL1 may potentially be
involved in a number of these processes, including establish-
ment of end-on kinetochore–MT attachments, KMN-
independent chromosome movement, and regulation of kinet-
ochore–MT attachment strength. Counter-intuitively, deple-
tion of KNL1, a key component of the KMN network with
direct MT binding activity, does not completely prevent chro-
mosome alignment to the spindle equator. Determining the
mechanisms that remain intact in KNL1-depleted cells and
those that are disrupted will be important for the greater
understanding of the complex process of chromosome
congression.

Role of KNL1 in SAC activation

KNL1 serves as a binding platform, both directly and indi-
rectly, for proteins involved in the SAC, the safety mechanism
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that prevents mitotic exit until all kinetochores are correctly
attached to spindle MTs. The SAC delays anaphase by pro-
moting and sustaining inhibition of the anaphase promoting
complex/cyclosome (APC/C), an E3 ubiquitin ligase that,
upon activation by Cdc20, targets securin and cyclin B for
degradation, which ultimately drives mitotic exit (Jia et al.
2013; Lara-Gonzalez et al. 2012; Musacchio and Salmon
2007). The core components of the SAC are the evolutionarily
conserved proteins Bub1, BubR1/Mad3, Bub3, Mad1, Mad2,
and Mps1. All of these SAC components, except for Mps1,
have been shown to rely onKNL1 for kinetochore localization
(Fig. 4). Bub1, Bub3, and BubR1 directly interact with KNL1
(Bolanos-Garcia et al. 2011; Krenn et al. 2012; Primorac et al.
2013; Shepperd et al. 2012; Taylor et al. 1998; Yamagishi
et al. 2012). Mad1 and Mad2 kinetochore localization de-
pends on Bub1 (Klebig et al. 2009; Rischitor et al. 2007;
Sharp-Baker and Chen 2001) and the RZZ complex (Karess

2005); therefore, it is expected that KNL1 depletion compro-
mises Mad1 and Mad2 kinetochore localization (Pagliuca
et al. 2009).

KNL1 was first found to associate with Bub1 and BubR1
through yeast two-hybrid experiments (Kiyomitsu et al. 2007,
2011). Later experiments demonstrated that the two closely
related but distinct KI motifs in KNL1, KI1 and KI2, directly
bind the TPR (tetratricopeptide repeat) domains of Bub1 and
BubR1, respectively (Bolanos-Garcia et al. 2011; Kiyomitsu
et al. 2011; Krenn et al. 2012). Interestingly, the KI/TPR
interactions are dispensable for both Bub1 and BubR1 kinet-
ochore targeting in human cells (Krenn et al. 2012). However,
that is not the case in fission yeast, where a ΔTPR Bub1
mutant does not efficiently target to kinetochores
(Vanoosthuyse et al. 2004). It is possible that in human cells,
the KI/TPR interaction enhances, but is not essential for SAC
protein recruitment and/or function. Recent studies in yeast

Fig. 4 Proposed model for the function of KNL1 in kinetochore–MT
attachment regulation and the SAC. In early mitosis, KNL1 promotes the
kinetochore recruitment of SAC proteins Bub1, BubR1, Bub3, Mad1,
and Mad2, which leads to generation and amplification of the “wait
anaphase” signal that inhibits APC/CCdc20 activation. Association of
Bub1 with KNL1 promotes Bub1 activity, leading to centromere and
kinetochore Aurora B kinase recruitment and activation. Aurora B phos-
phorylates outer kinetochore substrates, which prevents premature kinet-
ochore–MT stabilization. In late mitosis, KNL1-mediated recruitment of
phosphatases antagonizing Aurora B promotes kinetochore–MT

attachment stability. PP1 dephosphorylates KNL1, resulting in Bub1
dissociation and subsequent loss of SAC proteins. PP1 binding to
KNL1 and KNL1 MT binding additionally promotes SAC silencing.
With attached kinetochores no longer amplifying the “wait anaphase”
signal, disassembled SAC inhibitory complexes lead to APC/CCdc20

activation, cyclin B and securin degradation, andmitotic exit. The cartoon
shows the Mis12 complex and CENP-T simultaneously binding to the
Ndc80 complex for simplicity. However, it has been demonstrated that
these two kinetochore components compete for binding to the Ndc80
complex (Bock et al. 2012; Nishino et al. 2013; Schleiffer et al. 2012)
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and human cells established that Mps1-mediated phosphory-
lation of the KNL1 MELT repeats is required for Bub1/Bub3
kinetochore targeting (London et al. 2012; Primorac et al.
2013; Shepperd et al. 2012; Yamagishi et al. 2012).
Although Bub1 and Bub3 require each other for KNL1-
mediated kinetochore localization, the inter-dependency of
BubR1 with Bub1 and/or Bub3 for kinetochore localization
and function remains unresolved. In addition, whether all
MELT repeats, specific repeats, or a threshold number of
repeats are critical for recruiting Bub1 and Bub3 and if
MELT phosphorylation also mediates direct BubR1 recruit-
ment are outstanding, unanswered questions.

Although we are closer to understanding how the check-
point proteins interact with KNL1, how these interactions
impact their function in SAC signaling is a fundamental issue
that remains to be addressed. Bub1 is required for kinetochore
localization of BubR1, Bub3, Mad1, and Mad2 (Lara-
Gonzalez et al. 2012), and accordingly, Bub1's role in SAC
signaling has been primarily attributed to its scaffolding func-
tion. Consistent with this, Bub1 localizes to kinetochores in
late prophase and exhibits a relatively low turnover rate at
kinetochores compared to other checkpoint proteins (Howell
et al. 2004; Shah et al. 2004). A logical assumption is that
Bub1 must itself localize to kinetochores to carry out its
scaffolding role. In support of this, in fission yeast, a ΔTPR
Bub1 mutant deficient in kinetochore localization and unable
to recruit Bub3 and BubR1 exhibited a defective SAC
(Vanoosthuyse et al. 2004). In human cells, however, a Bub1
mutant lacking the TPR domain was able to partially mediate
a SAC response (Klebig et al. 2009), presumably due to its
ability to interact with KNL1 in a MELT-mediated manner. It
will be important to determine if a KNL1 mutant completely
disrupted for MELT-mediated Bub1 kinetochore association
supports SAC signaling in human cells.

KNL1 also directly binds the pseudokinase BubR1
(Bolanos-Garcia et al. 2011; Krenn et al. 2012), whose func-
tion in the SAC has beenmore clearly defined (Jia et al. 2013).
BubR1 serves as a pseudosubstrate inhibitor of APC/CCdc20,
and it requires Bub3 for kinetochore association. In one study,
BubR1-depleted HeLa cells expressing a GLEBS-domain
BubR1 mutant (defective for Bub3 binding and kinetochore
localization) failed to mount a SAC response in the presence
of unattached kinetochores (Elowe et al. 2010). However,
subsequent studies in human cancer cell lines, primary human
cells, and mouse embryonic fibroblasts demonstrated that
BubR1 GLEBS domain mutants were able, in fact, to support
SAC activity (Malureanu et al. 2009; Ding et al. 2013). Based
on the latter evidence, we favor a model in which BubR1
kinetochore localization is not a requirement for SAC function.

KNL1 also plays a role in recruiting the essential SAC
proteins Mad1 and Mad2 to kinetochores, likely through
indirect pathways. Mad1, the kinetochore receptor for Mad2,
requires both Bub1 and the RZZ complex for kinetochore

localization (Kops and Shah 2012). Direct kinetochore-
binding receptors for Mad1, however, have not been identi-
fied. Unattached kinetochores accumulate complexes of
Mad1–Mad2 that catalyze the conversion of inactive, cyto-
plasmic Mad2 (“open” Mad2) to a form of Mad2 that binds
Cdc20 (“closed” Mad2) and inhibits APC/C activity
(Musacchio 2012) (Fig. 4). Cdc20-bound Mad2, at the kinet-
ochore or in the cytoplasm, also potentially mediates Mad2
catalytic conversion, resulting in further inhibition of APC/
CCdc20. Mad2-based amplification of the APC/CCdc20 inhibi-
tor is thought to be critical for delaying mitotic exit in the
presence of unattached kinetochores (Chen et al. 1996; De
Antoni et al. 2005; Kulukian et al. 2009; Luo et al. 2004; Nezi
et al. 2006). Although it is clear that Mad1 and Mad2 are
indispensable for SAC function, whether their kinetochore
localization is explicitly required is not yet resolved
(Musacchio and Salmon 2007; Przewloka and Glover 2009).
In a recent study, human cells expressing a version of Mad1
that exhibited constitutive kinetochore localization accumu-
lated in mitosis (approximately fivefold increase in mitotic
index). Introduction of mutations in Mad1 that abolished the
interaction between kinetochore-localized Mad1 and Mad2
led to accumulation of mitotic cells, albeit to a lesser extent
(~2.5-fold increase inmitotic index), suggesting that (Maldonado
and Kapoor 2011), suggesting that SAC activation is not
entirely dependent onMad1–Mad2 association at kinetochores.

Since it is not clear to what extent most SAC proteins
require kinetochore localization to function, it is not surprising
that the role of KNL1 in SAC activation is also not clear.
Kiyomitsu et al. (2007) demonstrated that depletion of KNL1
from HeLa cells resulted in a failure of cells to arrest after
incubation with microtubule poisons. Paradoxically, although
we observe a less robust SAC after KNL1 depletion from
human cells, we do not observe SAC abrogation despite a
penetrant RNAi-mediated depletion (GC and JD, unpublished
data). Examining the SAC response after KNL1 perturbation
in other organisms reveals mixed results. Drosophila cells
depleted of KNL1 exhibit a mitotic delay in response to
unaligned chromosomes and accumulate in mitosis upon ad-
dition of the MT poison colchicine (Schittenhelm et al. 2009).
Similarly, populations of chicken DT40 cells depleted of
KNL1 delay in mitosis in response to unaligned chromo-
somes, indicative of a functioning SAC (Cheeseman et al.
2008). However, in budding yeast, cells harboring a KNL1
temperature-sensitive mutant of Spc105 do not delay mitosis
in the presence of mono-oriented chromosomes and fail to
arrest upon incubation withMT poisons (Pagliuca et al. 2009).
Additionally, KNL1-depleted C. elegans embryos, which ex-
hibit complete chromosome congression failure, exit mitosis
with similar timing as control embryos, suggesting defective
SAC activity (Desai et al. 2003). These differences could be
explained by the extent of dependency of SAC proteins on
KNL1 for kinetochore localization in different organisms..
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An interesting question arising from these observations is
how, without a platform for stable kinetochore binding, might
SAC proteins sustain checkpoint activity in KNL1-depleted
cells? Based on the fact that APC/C inhibitory complexes are
found in the cytoplasm, even before mitosis (Sudakin et al.
2001), and that essential components of these complexes
including BubR1 appear to function in a manner that is
independent of kinetochore localization (Ding et al. 2013;
Malureanu et al. 2009), it is possible that a less potent SAC
is able to form in the cytoplasm of KNL1-depleted cells.
Additionally, increasing evidence points to a role for KNL1
in SAC silencing (discussed in the following section) (Espeut
et al. 2012; Meadows et al. 2011; Rosenberg et al. 2011).
Thus, a reasonable explanation for the mitotic delay observed
in KNL1-depleted cells and for the SAC-mediated arrest upon
treatment with MT drugs is that these cells are unable to
reliably silence a weakened SAC. Clearly, resolving the mech-
anism by which the SAC responds to unattached kinetochores
to inhibit mitotic exit requires an understanding of the inter-
actions between SAC proteins and the kinetochore platform.
Identifying kinetochore receptors for SAC proteins and the
specific domains that mediate kinetochore localization will
allow the design of experiments to test to what extent SAC
activation relies on kinetochores.

Role of KNL1 in SAC silencing

The RVSF and SILK motifs in the KNL1 N-terminus mediate
direct binding to PP1 (Fig. 1), a phosphatase that counteracts
Aurora B kinase activity (Lesage et al. 2011). Aurora B kinase
itself regulates the interaction between KNL1 and PP1 as
binding is disrupted by Aurora B-mediated phosphorylation
of the RVSF motif (Liu et al. 2010). In human cells, PP1
binding to KNL1, together with KNL1-BubR1-mediated
PP2A kinetochore recruitment, is proposed as a mechanism
by which outer kinetochore substrates are dephosphorylated
during late mitosis, allowing stabilization of kinetochore–MT
attachments (Foley et al. 2011; Liu et al. 2010; Suijkerbuijk
et al. 2012). Interestingly, in both budding and fission yeast
and inC. elegans , KNL1-mediated PP1 binding contributes to
checkpoint silencing (Espeut et al. 2012;Meadows et al. 2011;
Pinsky et al. 2009; Rosenberg et al. 2011; Vanoosthuyse and
Hardwick 2009). In budding yeast, it was recently demon-
strated that a KNL1 mutant unable to bind PP1 (RVSF→
RASA) was not viable (Rosenberg et al. 2011). This mutant
became viable upon Mad2 depletion, indicating that lethality
resulted from persistent SAC activation and suggesting that
the persistent SAC response was due to impaired PP1 binding
to KNL1 (Rosenberg et al. 2011). In the same study, a non-
phosphorylatable RVSF mutant (RVAF), which in principle
constitutively recruits PP1 to kinetochores, did not premature-
ly silence the SAC, suggesting that PP1 recruitment alone is

not sufficient for this process. In agreement with this, the MT
binding region of KNL1 is necessary for SAC silencing in C.
elegans (Fig. 1) (Espeut et al. 2012). Embryos containing
mutations in the MT binding domain of KNL1 that disrupted
MT interaction in vitro were able to congress chromosomes to
the metaphase plate without obvious kinetochore–MT attach-
ment defects but exhibited delayed anaphase onset (Espeut
et al. 2012). Furthermore, KNL1 MT binding mutants only
experienced an extended mitotic arrest when MTs were pres-
ent, further suggesting that KNL1 MT binding activity con-
tributes to SAC silencing (Espeut et al. 2012). It remains to be
tested if PP1 binding and/or MT binding activities are crucial
for SAC silencing in human cells. Specifically, it will be
informative to test if a KNL1 mutant unable to recruit SAC
proteins, but with intact MT- and PP1-binding activities, re-
verses the mitotic delay observed upon KNL1 depletion.
Experimental manipulation of KNL1, which acts as both a
platform for SAC-activating and SAC-silencing proteins, will
help elucidate how checkpoint activation and amplification
are coupled with checkpoint silencing and how MT attach-
ment modulates this complex kinetochore machinery.

Closing remarks and future directions

The success of mitosis relies on the (1) formation of kineto-
chore–MT attachments able to facilitate both correct
congression and segregation of all replicated chromosomes
and (2) production of a temporally controlled, SAC-generated
APC/CCdc20 inhibitor that prevents mitotic exit until all chro-
mosomes are properly attached to spindle MTs. Despite con-
siderable progress in the understanding of key proteins and
molecular mechanisms involved in these two processes, there
is no unified view of how they are linked. KNL1 is necessary
for the establishment of a reliable kinetochore–MT interface
that attaches dynamic spindle MT plus-ends to mitotic chro-
mosomes. KNL1 also ensures that SAC proteins required to
inhibit APC/CCdc20 accumulate at unattached kinetochores to
amplify the inhibitory signal and delay mitotic exit when
appropriate. Moreover, KNL1 is required to quench APC/
CCdc20 inhibition and silence the SAC to promote mitotic exit
when the cell is ready to divide. As a kinetochore hub, playing
a central role in the organization of kinetochore proteins and
their interactivity, it is not surprising that KNL1 localization to
kinetochores is critical for these processes. Regardless, the
possibility that this large and “unstructured” protein plays a
more direct role in coupling these fundamental mitotic pro-
cesses cannot be dismissed and demands further investigation.
A major challenge for the future is to determine how KNL1
influences the activities of individual signaling molecules and
how, when accumulated to the same kinetochore platform,
these molecules exert their functions.
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