
REVIEW

Multiple crosstalks between mRNA biogenesis and SUMO

Jérôme O. Rouvière & Marie-Claude Geoffroy &

Benoit Palancade

Received: 20 December 2012 /Revised: 10 March 2013 /Accepted: 13 March 2013 /Published online: 14 April 2013
# Springer-Verlag Berlin Heidelberg 2013

Abstract mRNA metabolism involves the orchestration of
multiple nuclear events, including transcription, processing
(e.g., capping, splicing, polyadenylation), and quality control.
This leads to the accurate formation of messenger
ribonucleoparticles (mRNPs) that are finally exported to the
cytoplasm for translation. The production of defined sets of
mRNAs in given environmental or physiological situations
relies on multiple regulatory mechanisms that target the
mRNA biogenesis machineries. Among other regulations,
post-translational modification by the small ubiquitin-like
modifier SUMO, whose prominence in several cellular pro-
cesses has been largely demonstrated, also plays a key role in
mRNA biogenesis. Analysis of the multiple available SUMO
proteomes and functional validations of an increasing number
of sumoylated targets have revealed the key contribution of
SUMO-dependent regulation in nuclear mRNA metabolism.
While sumoylation of transcriptional activators and repressors
is so far best documented, SUMO contribution to other stages
of mRNA biogenesis is also emerging. Modification of
mRNA metabolism factors by SUMO determine their subnu-
clear targeting and biological activity, notably by regulating
their molecular interactions with nucleic acids or protein part-
ners. In particular, sumoylation of DNA-bound transcriptional
regulators interfere with their association to target sequences
or chromatin modifiers. In addition, the recent identification of
enzymes of the SUMO pathway within specialized mRNA
biogenesis machineries may provide a further level of regula-
tion to their specificity. These multiple crosstalks between

mRNA metabolism and SUMO appear therefore as important
players in cellular regulatory networks.
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Abbreviations
hnRNP Heterogenous nuclear ribonucleoprotein
mRNA Messenger RNA
mRNP Messenger ribonucleoparticle
NPC Nuclear pore complex
RNAP II RNA polymerase II
SIM SUMO-interacting motif
STUbL SUMO-targeted ubiquitin ligase
SUMO Small ubiquitin-like modifier

Introduction

mRNA biogenesis is a regulated process that allows the tight
adaptation of protein synthesis and cellular metabolism to envi-
ronmental and physiological changes. Accurate and efficient
formation of export-competent messenger ribonucleoparticles
(mRNPs) involves the coordination of several distinct biochem-
ical events in the nucleus (Fig. 1, reviewed in Luna et al. 2008).
DNA-bound transcriptional activators, together with co-
activators, direct the formation of RNA polymerase II (RNAP
II) pre-initiation complexes on gene promoters. Pre-mRNAs
synthesized by RNAP II subsequently interact with several
RNA-binding complexes in a dynamic manner: mRNA process-
ing machineries catalyze 5′ capping, intron splicing, and 3′ end
processing (e.g., cleavage/polyadenylation), while other mRNA-
associated proteins serve as adaptors for the mRNA export
machinery. These multiple events are associated with quality
control mechanisms ensuring that only mature, exportable
mRNPs are ultimately brought to nuclear pore complexes
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(NPCs) for translocation (reviewed in Oeffinger and Zenklusen
2012). The different steps of mRNA biogenesis are tightly
coupled, for instance through the carboxy-terminal domain of
the RNAP II largest subunit that allows the co-transcriptional
recruitment of the mRNA processing machinery. In addition,
mRNA biogenesis, from transcription to export, is regulated
through post-translational modifications (reviewed in Tutucci
and Stutz 2011 ; Babour et al. 2012), including methylation,
phosphorylation, ubiquitinylation but also sumoylation bywhich
SUMO is covalently conjugated to target proteins.

SUMO (small ubiquitin-like modifier), a member of the
ubiquitin-like post-translational modifiers, is well conserved
among eukaryotes (reviewed in Geiss-Friedlander and
Melchior 2007 ; Wilkinson and Henley 2010). Invertebrate
and fungi only express one isoform of SUMO, called Smt3
in budding yeast, whereas multiple conjugatable paralogues
of SUMO are found in plants and vertebrates (Table 1).

More precisely, the three mammalian isoforms of SUMO differ
in sequence as SUMO-1 shares 48% identity with SUMO-2 and
-3 that are 97% identical and are thus most frequently referred to
as SUMO-2/3. Like ubiquitin, SUMO is conjugated to its targets
by an isopeptide bond between its C-terminal glycine and the ε-
NH2 group of a lysine residue in the target protein. SUMO
modification most frequently targets the consensus modification
siteΨ-K-X-D/E of a protein, whereΨ is a hydrophobic residue.
Sumoylation requires an enzymatic cascade involving an E1
SUMO-activating enzyme, an E2 SUMO-conjugating enzyme,
and in most cases, an E3 SUMO ligase (Fig. 2 and Table 1). In
addition, SUMO-specific proteases are also required to process
SUMO precursors and to deconjugate SUMO from the sub-
strates (Fig. 2 and Table 1; reviewed in Hickey et al. 2012).
SUMO modification can occur either at a single or at multiple
lysine residues in the target protein, leading to mono- or
multisumoylation, respectively. In addition, SUMO can also be

Fig. 1 The mRNA biogenesis
pathway. The different processes
contributing to nuclear mRNA
biogenesis are represented:
transcriptional activation/
repression, mRNA synthesis, 5′
capping, splicing, 3′ processing,
mRNP assembly, and mRNA
export. Enzymes of the SUMO
pathway in association with
specific machineries are indicated
(1, in mammalian cells; 2, in
yeast). RNAP II, RNA polymerase
II; NPC, nuclear pore complex

Table 1 List of SUMO pathway components in budding yeast, mammals, and plants

Budding yeast Mammals Plantsa

SUMO isoforms Smt3 SUMO-1–SUMO-2–SUMO-3b SUM1–SUM2–SUM3–SUM4–
SUM5–SUM6–SUM7–SUM8

E1 Aos1/Uba2c SAE1/SAE2c SAE1a-b/SAE2c

E2 Ubc9 Ubc9 (UBE2I) SCE1

E3 Siz1–Siz2 (Nfi1)–
Mms21–Zip3 (Cst9)

PIAS1–PIASxα–PIASxβ–PIASy–PIAS3–
HDAC4–MMS21–PC2–RanBP2–Topors–
TRAF7–Krox20d–SRSF1 (SF2/ASF)d

SIZ1–MMS21 (HPY2)

SUMO proteasese Ulp1–Ulp2–Wss1f SENP1–SENP2–SENP3–SENP5–SENP6–
SENP7–DESI1–DESI2–USPL1

Ulp1a (ELS1)–Ulp1b–Ulp1c
(OTS2)–Ulp1d (OTS1)–
ESD4–Ulp2a–Ulp2b

STUBls Slx5 (Hex3)/Slx8c RNF4 ?

Alternative names are in brackets
a The names of the proteins of the SUMO pathway in plants are from Arabidopsis thaliana (Miura and Hasegawa 2010)
b A SUMO-4 paralog has been identified but lacks a proper conjugatable C terminus and may not be conjugated to targets
c The subunits of the dimeric enzymes (Aos1/Uba2, SAE1/SAE2 and Slx5/Slx8) are separated by a slash
d See text for details
e The contribution of distinct SUMO proteases to processing, deconjugation, and chain editing has been previously reviewed (Palancade and Doye
2008 ; Hickey et al. 2012)
fWss1 has SUMO editing activity but can also cleave ubiquitin from the end of a poly-SUMO chain (Mullen et al. 2010)
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conjugated to an internal lysine residue within another
SUMO polypeptide, leading to the formation of poly-
SUMO chains, usually in response to cellular stress
(Fig. 2). Most frequently, SUMO addition regulates intra-
or inter-molecular interactions, by altering either the confor-
mation of the targeted protein or the recruitment of its
partners (reviewed in Gareau and Lima 2010). In several
cases, these effects can be mediated by non-covalent interac-
tion of SUMO with proteins harboring SUMO-interaction
motifs (SIMs). These SUMO–SIM interactions have impor-
tant consequences on protein dynamics, ranging from struc-
tural rearrangements, as reported for thymine DNA
glycosylase, to multiprotein complex assembly as described
for nuclear PML bodies (reviewed in Geiss-Friedlander and
Melchior 2007). Finally, sumoylation can also interfere with
protein stability by triggering ubiquitinylation of poly-SUMO-
modified proteins through the recruitment of SUMO-targeted
ubiquitin ligases (STUbL). This novel class of enzymes ex-
hibit a RING domain involved in ubiquinitylation and several
repetitive SIMs which bind poly-SUMO chains (reviewed in
Geoffroy and Hay 2009).

The importance of sumoylation in protein biological func-
tion was further highlighted by reports showing that inactiva-
tion of SUMO in Saccharomyces cerevisiae or of the unique
E2 SUMO-conjugating enzyme Ubc9 in mice is lethal
(Johnson et al. 1997 ; Nacerddine et al. 2005). Consistently,
multiple studies have shown that sumoylation regulates a wide
range of cellular functions including intracellular transport,
maintenance of genome integrity, formation of nuclear
subdomains (reviewed in Geiss-Friedlander and Melchior
2007), but also some aspects of rRNA or snoRNAmetabolism
(Panse et al. 2006 ; Westman et al. 2010 ; Finkbeiner et al.
2011). Here, we will review the implication of sumoylated
factors at each stage of nuclear mRNA biogenesis, from
transcription to export of mature mRNPs. We will then high-
light the multiple facets of the SUMO-dependent regulation of
mRNA biogenesis, notably the molecular impacts of
sumoylation on the biological activity of proteins. Finally,
we will discuss some recent data suggesting that beyond being
regulated by sumoylation, mRNP metabolism machineries
may provide spatial regulations by recruiting specific
sumoylating or desumoylating enzymes.

SUMO targets all stages of mRNA biogenesis

Multiple factors of the mRNA metabolism machinery are
sumoylated

The role of SUMO at distinct steps of mRNA metabolism is
first supported by the identification of several sumoylated
targets in proteomic analyses. Indeed, multiple factors in-
volved in transcription or mRNA-related processes were
shown to be modified by SUMO in yeast (Zhou et al.
2004; Wohlschlegel et al. 2004; Panse et al. 2004;
Hannich et al. 2005; Denison et al. 2005; Wykoff and
O'Shea 2005), mammalian cells (Li et al. 2004; Zhao et al.
2004; Vertegaal et al. 2004; Gocke et al. 2005; Rosas-
Acosta et al. 2005; Vertegaal et al. 2006; Ganesan et al.
2007; Schimmel et al. 2008; Golebiowski et al. 2009;
Tatham et al. 2011), and plants (Budhiraja et al. 2009;
Elrouby and Coupland 2010; Miller et al. 2010). A signif-
icant overrepresentation of factors involved in mRNA me-
tabolism was notably observed among proteins modified by
SUMO-2/3 (Blomster et al. 2009 ; Golebiowski et al. 2009;
Bruderer et al. 2011). In addition, the specific targets iden-
tified for the E3 SUMO-ligase TOPORS or for the STUbL
RNF4 encompass an important number of transcriptional
regulators and proteins involved in mRNA processing
(Pungaliya et al. 2007 ; Bruderer et al. 2011). Functional
analysis of a subset of these sumoylated proteins, in partic-
ular transcriptional regulators, has confirmed the key func-
tion of SUMO-dependent regulations in mRNA biogenesis
processes, as described below.

Fig. 2 The SUMO pathway. SUMO is translated as an immature pre-
cursor with a short C-terminal extension (in red) that must be cleaved by
specific SUMO proteases to reveal the C-terminal GG motif (step 1). An
enzymatic cascade allows the conjugation of the mature SUMO to a
single lysine residue in the target protein (monosumoylation, step 2).
Multiple SUMO additions can further occur on distinct lysine residues
in the same target protein (multisumoylation, not depicted). SUMO-2/3 in
mammals or Smt3 in S. cerevisiae can also be conjugated to one or several
internal lysine residues within SUMO itself leading to the formation of
SUMO chains (polysumoylation, step 3). All these processes are highly
regulated by SUMO proteases that either deconjugate SUMO from the
substrate (step 4) and/or depolymerize SUMO chains (step 5), according
to their specificity for the SUMO isoforms. In most cases, sumoylation
triggers changes in the intermolecular interactions involving the SUMO
target (step 6). SUMO addition can prevent the recognition by specific
partners (in pink), or allow the recruitment of SUMO or poly-SUMO
binding factors (in blue). Among poly-SUMO binding proteins, STUbLs
allow the transfer of ubiquitin entities on SUMO chains or on the
substrate that in turn is targeted for proteasomal degradation
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Different effects of SUMO on mRNA transcription

Among the different stages of mRNA biogenesis, transcrip-
tion activation is the process whose regulation by sumoylation
is best documented. Several studies in mammalian cells have
notably reported that sumoylation of a wide range of tran-
scription factors, including p300, Elk1, Sp3, or c-Jun, either
counteracts transcriptional activation or mediates transcrip-
tional repression (Table 2, reviewed in Seeler and Dejean
2003 ; Girdwood et al. 2004 ; Gill 2005 ; Garcia-Dominguez
and Reyes 2009). Interestingly, sumoylation often occurs
within previously characterized repression domains, provid-
ing further mechanistic insights into their repression mecha-
nism (Girdwood et al. 2004). For instance, the transcriptional
activity of p300, a co-activator for several DNA-binding
transcription factors such as p53, NF-κB, or myoD, was
found to be inhibited by sumoylation within its cell cycle-
regulatory domain (Girdwood et al. 2003). When
sumoylated, this region, previously reported to be critical
for repression, allows the recruitment of the histone
deacetylase HDAC6 that in turn generates a transcription-
ally repressive chromatin environment (Girdwood et al.
2003). In agreement with a negative impact of sumoylation
in transcriptional activation, artificial tethering of SUMO
(Holmstrom et al. 2003) or of the SUMO-conjugating
enzyme Ubc9 (Shiio and Eisenman 2003) to the promoters
of reporter genes is sufficient to repress their transcription.

A repressive effect of SUMO on transcription is however
not systematic. An early demonstration of a role of SUMO in
mRNA biogenesis indeed came from studies revealing that
sumoylation of the transcription factor p53 stimulates its
ability to activate target genes (Rodriguez et al. 1999;
Gostissa et al. 1999), an effect that varies depending on the
promoter (Table 2). Since then, several studies have reported
that SUMO modification of transcription factors can be re-
quired for their transcriptional activity, or can counteract their
repressing properties (Table 2, reviewed in Lyst and
Stancheva 2007). Moreover, sumoylation can have both acti-
vating and repressing effects on the same target depending on
the conjugated SUMO isoform: sumoylation of the transcrip-
tional repressor MBD1 by SUMO-1 counteracts its repressing
activity whereas its sumoylation by SUMO-2/3 contributes to
repression (Uchimura et al. 2006; Lyst et al. 2006).

Interestingly, this dual function of SUMO in mediating
transcriptional activation or repression is conserved in
budding yeast. Inactivation of the E2 SUMO-conjugating
enzyme Ubc9 indeed results in increased transcription
from regulated promoters and delayed transcriptional
shut-off of the ARG1 repressible gene but also leads to a
reduction of RNAP II levels on constitutive genes
(Rosonina et al. 2010). Consistently, several transcription
factors have also been confirmed to be sumoylated in
yeast (Table 3).

Besides transcription initiation, SUMO probably also
controls later stages of transcription, as suggested by the
report of sumoylation of the largest subunit of RNAP II
upon impairment of transcription elongation (Chen et al.
2009). Further investigations will be required to address
the functional implication of this observation and the
relationships between sumoylation and other post-
translational modifications targeting RNAP II and the
transcription apparatus.

Other steps in mRNA metabolism are regulated by sumoylation

SUMO-mediated regulation is also well established for oth-
er steps of nuclear mRNA biogenesis, although much fewer
targets have so far been identified in these processes
(Tables 2 and 3). The importance of sumoylation has nota-
bly been established for the processing of the 3′ end of
mRNAs in mammalian cells. mRNA cleavage and
polyadenylation activities are both reduced in cell extracts
obtained either upon in vivo depletion of Ubc9, or following
in vitro treatment with the purified SUMO-protease SENP2
(Vethantham et al. 2007). This regulatory effect could be
mediated by CPSF73 and symplekin, two components of the
3′ processing complex that have been shown to be modified
by SUMO-2/3 and to interact with the SUMO protease
SENP2 (Vethantham et al. 2007). In addition, sumoylation
of the poly-A polymerase PAP by SUMO-2/3 regulates the
in vitro enzymatic activity, stability, and subcellular locali-
zation of the polymerase (Vethantham et al. 2008). This
impact of SUMO on 3′ processing may be conserved in
budding yeast as suggested by the identification of the E1
SUMO-activating enzyme Uba2 as a partner of poly-A-
polymerase Pap1 (del Olmo et al. 1997) and by the
sumoylation of several subunits of the cleavage–
polyadenylation factor uncovered by proteomic screens
(Wohlschlegel et al. 2004; Panse et al. 2004; Hannich et
al. 2005).

Several factors of the 5′ capping and splicing machineries
have also been identified in SUMO-proteomes. However,
the outcome of SUMO on their function awaits further
characterization (reviewed in Vethantham and Manley
2009). Likewise, proteins involved in mRNP assembly or
export, such as hnRNPs, were found to be sumoylated in
yeast or human cells (Tables 2 and 3, reviewed in
Vethantham and Manley 2009). However, the global impact
of SUMO on mRNA export appears to vary among species.
In plants, mRNA export out of the nucleus requires a proper
balance in SUMO homeostasis since mutants of the SUMO-
ligase SIZ1 or the SUMO-protease ESD4 exhibit nuclear
poly-A+mRNA retention (reviewed in Meier 2012). On the
contrary, in budding yeast, sumoylation does not appear to
be critical for mRNA export since ubc9 or ulp1 mutants
exhibit neither nuclear poly-A+mRNA retention nor major
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defects in the overall composition of their mRNPs (Bretes et
al., unpublished results; Panse et al. 2006). However, a few
proteins playing key functions in mRNP assembly and
export, notably the Yra1, Sub2, and Hpr1 subunits of the
TREX (Transcription and Export) complex are sumoylated
(Bretes et al., unpublished results; Wohlschlegel et al. 2004;
Hannich et al. 2005). In addition, the growth defects of a
yra1 mutant are suppressed upon ULP1 overexpression
(Kashyap et al. 2005). Although not affecting bulk mRNA

export in yeast, sumoylation could either control TREX-
dependent export of a limited subset of mRNAs or regulate
other reported functions of the TREX complex in mRNA
elongation and genetic stability (Luna et al. 2008).

Besides constituents of the TREX complex, a few
multifunctional proteins contributing to different stages of
mRNA biogenesis have also been shown to be sumoylated
(highlighted in bold in Table 2). This is the case of the
transcriptional regulators SAFB (Garee et al. 2011) and

Table 2 Mammalian sumoylated proteins involved in mRNA biogenesis

Transcriptional activation / repression FLI1 (1),(2)
Van den Akker 2005

AhR (1)
Xing 2012 FOG1 (1)

Snow 2010

AhRR (1)
Oshima 2009 FOXC1 (2)

Danciu 2012

AIB1 (1)
Wu 2006 FOXC2 (2)

Danciu 2012

AP-2γ (1)
Eloranta 2002 FOXL2 (1) b

Marongiu 2010; Georges 2011

APA1 (1)
Benanti 2002 FXR Vavassori 2009

AR (1),(2)
Rytinki 2012 GATA1 (1)

Collavin 2004 ; Lee 2009

ARNT/HIF1 β (1)
Tojo 2002; Oshima 2009 GATA2 (1),(2)

Chun 2003

ATF1 (1)
Iwasaki 2007 GATA4 (1)

Wang 2004

ATF3 (2)
Wang 2012 GCM1 (1)

Chou 2007

ATF7 (1)
Hamard 2007 GLI1 (1)

Cox 2010

Bach2 (1)
Tashiro 2004 GLI2 (1)

Cox 2010 ; Han 2012

BASP1 (2)
Green 2009 GLI3 (1)

Cox 2010

Bcl11b/Ctip2 (1),(2)
Zhang 2012 GR (1),(2)

Tian 2002; Le Drean 2002; Davies 
2008

BEND3 (1),(2)
Sathyan 2011 GRIP1 (1)

Kotaja 2002

BKLF (1)
Perdomo 2005 GSC (1),(2)

Izzi 2008

Blimp-1 (1)
Shimshon 2011; Ying 2012 HDAC1 (1)

David 2002

BMAL-1 (1),(2)
Cardone 2005; Lee 2008 HDAC4 (1)

Kirsh 2002

BRCA1 (1)
Park 2008 HDGF (1)

Thakar 2008

Bright/ARID3A/DRIL1 (1)
Prieur 2009 HIC1 (1)

Stankovic-Valentin 2007

Brightlike/ARID3 (1)
Tidwell 2011 HIF1 α (1)

Tojo 2002

c-Fos (1),(2)
Bossis 2005 HIPK2 (1)

Gresko 2005

c-Jun (1),(2)
Muller 2000 HIPK3 (1)

Gresko 2005

c-Maf (1)
Leavenworth 2009; Lin 2010 Histone H4 (1),(2)

Shiio 2003

c-Myb (1)
Bies 2002 HNF4 α (1),(2)

Zhou 2012

C/EBPα (1),(2)
Kim 2002; Sato 2006 hnRNP K (1),(2)

Pelisch 2012; Lee 2012

C/EBPβ (1),(2)
Kim 2002;Eaton 2003; Wang 2008 HSF1 (1)

Hietakangas 2003

C/EBPδ/NF-IL6β (1)
Kim 2002 ; Wang 2006

(2)
Brunet-Simioni 2009

C/EBPε (1)
Kim 2002 HSF2 (1)

Hietakangas 2006

CBP (1)
Kuo 2005 HSF4b (1)

Hietakangas 2006

CoCoA (1) a Yang 2008 IKAROS (1)
Gomez-del Arco 2005

CoREST (1)
Muraoka 2008 ING2 (1)

Ythier 2010

CRTR-1 (1)
To 2010 IRF1 (1)

Kim 2008

CtBP1 (1)
Lin 2003 IRF2 (1)

Han 2008

CTCF (1),(2)
MacPherson 2009 IRF3 (1),(2)

Kubota 2008

Daxx (1)
Muromoto 2006 IRF7 (1),(2)

Kubota 2008

DDX21/RHII/Gu (2)
Blomster 2009 IRF8 (2)

Chang 2012

DEC1 (1),(2)
Hong 2011 JunB (1),(2)

Garaude 2008

DJ1 (1)
Fan 2008 KLF4 (1)

Du  2010

DLX3 (1)
Duverger 2011 KLF5 (1)

Oishi 2008; Du 2008

Dnmt3a (1)
Ling 2004 KLF8 (1),(2)

Wei 2006

Dnmt3b (1)
Kang 2001 Kyo T2 (1)

Wang 2007

DREAM (1)
Palczewska 2011 LEDGF/p75/p52 (1),(2)

Bueno 2010

Duplin (1)
Yamashina 2006 Lef1 (2)

Sachdev 2001

E12 (1)
Torikoshi 2012 Lipin 1 α (1),(2)

Liu 2009

E2F1 (1)
Yang 2011 Lipin 1 β (1),(2)

Liu 2009

E2F6 (1)
Yang 2011 LRH1 (1)

Venteclef 2010

EBP1/p42 (1)
Oh 2010 LXR α (2)

Lee 2009

EGR1 (1)
Yu 2009 LXR β (1),(2)

Ghisletti, 2007; Lee 2009

Elk1 (1)
Yang 2004 ; Salinas 2004

Elk3 (1)
Wasylyk 2005

Elk4 (1)
Kaikkonen 2010 SUMO isoform Molecular effect of SUMO

ERK5 (2)
Woo 2008 (1) : SUMO-1

ERRα (2)
Tremblay 2008 (2) : SUMO-2/3 change in interactions with proteins

ERRγ (2)
Tremblay 2008 change in interactions with nucleic acids

ETS1 (1)
Macauley 2006 ; Nishida 2006 Biological effect change in subcellular localization

ETV1/ER81 (1)
Bojovic 2008 of SUMO change in enzymatic activity

ETV4/E1AF/PEA3 (1),(2)
Nishida 2007 ; Bojovic 2008; Guo 2011 negative change in ubiquitinylation and/or stability

ETV5/ERM (1)
Degerny 2005 positive other consequences

ETV6/Tel (1),(2)
Chakrabarti 2000; Wood 2003; 
Roukens 2008

FLASH (1)
Alm-Kristiansen 2009
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Table 2 (continued)

Maf A (1),(2) Shao 2009 SATB2 (1),(2) Dogreva 2003

Maf B (1) Tillmanns 2007 SF-1 (1),(2) Komatsu 2004; Chen 2004

Maf G (2)
Motohashi 2006 Sip1 (1)

Long 2005

MAML1 (1) Lindberg 2010 SIZN1 (1) Cho 2009

MBD1 (1) Lyst 2006 Smad4 (1) c Lin 2003; Lee 2003; Chang 2005

(2)
Uchimura 2006 SnoN (1)

Hsu 2006

MEF/Elf4 (1),(2)
Suico 2006 Sox10 (1)

Taylor 2005; Lee 2012

MEF2A (1) Shalizi 2006 Sox2 (1) Tsuruzoe 2006

MEF2C (2)
Grégoire 2005 Sox3 (1),(2)

Savare 2005

MEF2D (2)
Grégoire 2005 Sox6 (1),(2)

Fernandez-Lloris 2006

MEL1S (1) Nishikata 2011 Sox8 (1) Lee 2012

MITF (1)
Miller 2005 Sox9 (1)

Taylor 2005; Lee 2012

MKL1 (1)
Nakagawa 2005 Sp1 (1)

Spengler 2006

MR (1)
Tallec 2003 Sp3 (1),(2)

Sapetsching 2002; Ross 2002

Msx1 (1) Gupta 2006 SRC-1 (1) Chauchereau 2003; Abdel-Hafiz 2009

MTA1 (2)
Cong 2011 SREBPs (1)

Hirano 2003

MTF-1 (1)
Liu 2011 SRF (1)

Matsuzaki 2003

MZF1 (1) Noll 2008 STAT 1 (1),(2) Rogers 2003; Ungureanu 2003

N-CoR (1)
Tiefenbach 2006 Stra 13 (1)

Wang 2012

Nab (1)
Garcia-Gutierrez 2011 SUPT7L/STAF65γ (1)

Gocke 2005

NF-E2/p45 (1)
Shyu 2005 SUZ12 (1)

Riising 2008

NF- B/RelA (2) Liu 2012 TBL1 (1) Choi 2011

NF- B2/p100 (1)
Vatsyayan 2008 TBLR1 (1)

Choi 2011

NFAT1 (1)
Terui 2004 TBX22 (1)

Andreou 2007

NFATc1/C (1) Nayak 2009 TCF4 (1) Yamamoto 2003

Nkx2-5 (1)
Wang 2008 TFE3 (1)

Miller 2005

NRL (1)
Roger 2010 TFEB (1)

Miller 2005

Oct-4 (1) Wei 2007 TFII-I (1) Zhao 2004 ; Gocke 2005

OZF/ZNF146 (1) Antoine 2005 TIF1α (1) Seeler 2001

p300 (1)
Girdwood 2003 TIF1β/KAP1/TRIM28 (1),(2)

Mascle 2007 ; Lee 2007

p53 (1),(2) c
Rodriguez 1999; Gostissa 1999;
Schmidt 2002; Wu  2009; Stindt 2011

TR2 (1)
Park 2007

p63α (1)
Huang 2004; Ghioni 2005 TRPS1 Kaiser 2007

p66α (1) Gong 2006 Uhrf1 (2) Gocke 2005

p66β (1)
Gong 2006 WT1 (1)

Smolen 2004

p68/DDX5 (1),(2) c Jacobs 2007; Mooney 2010 XBP1 (1),(2)
Chen 2010

p72/DDX17 (1),(2) Mooney 2010 YY1 (1),(2) Deng 2007

p73 (1) Minty 2000 ZBP-89/ZFP148 (1),(2) Chupreta 2007

PARP1 (1),(2) c Messner 2009; Martin 2009 ZBTB1 (2)
Matic 2010

Pax6 (1)
Yan 2010 ZFP282 (1)

Yu 2012

Pax8 (1) de Cristofaro 2009 ZNF131 (1) Oh 2012

PLAG1 (1)
Van Dyck 2004; Zheng 2005 ZNF198 (1)

Kunapuli 2006

PLAGL2 (1)
Zheng 2005 ZNF24 (1)

Gocke 2005

PLZF (1) Kang 2008 ZNF451 (1) Karvonen 2008

Pokemon1/ZBTB7 (1)
Roh 2007 ZNF76 (1)

Zheng 2004

Pontin (1)
Kim 2007 ZXDC (1),(2)

Jambunathan 2007

PPAR α (1),(2)
Leuenberger 2009 mRNA synthesis (initiation, elongation)

PPAR 1/2 (1) Ohshima 2004; Pascual 2005 TAF5 (TFIID) (1) Boyer-Guittaut 2005

PPARGC1α/PGC-1 (1)
Rytinki 2009 TAF12 (TFIID) (1)

Boyer-Guittaut 2005

PR-Set7/Set 8 (1)
Spektor 2011 TCERG1 (1),(2)

Sanchez-Alvarez 2010

PROX1 (1) Shan 2008; Pan 2009 Splicing
PR (1)

Abdel-Hafiz 2002 SART1 (2)
Vertegaal 2004

PSF (1)
Zhong 2008 S164/RBM25 (1)

Gocke 2005

RBP1 (1),(2)
Binda 2006 3’ processing

RIP140/NRIP1 (1),(2) Rytink 2008 Symplekin (1),(2) Gocke 2005 ; Vethantham 2007

Ror α (1),(2)
Hwang 2009 CPSF73 (2)

Vethantham 2007

RXR (1)
Burrage 2008 PAP (2) d

Vethantham 2008

RXR α (1) Choi 2006 mRNP assembly / export
SAFB1 (1),(2)

Garee 2011 hnRNP C1 (1)
Vassileva 2004

Sall 1 (1)
Netzer 2002 hnRNP M (1),(2)

Vassileva 2004 ; Vertegaal 2004

Sall 4 B (1),(2) c Yang 2012 hnRNP A1 (1) Li 2004 

Sam68 (1),(2) Babic 2006; Pelich 2010 hnRNP F (1) Li 2004 

SAP130 (1)
Gocke 2005 Other

SATB1 (1),(2)
Tan 2008 ADAR (1)

Desterro 2005

The names of the proteins involved inmRNAbiogenesis and confirmed to be sumoylated inmammalian cells are displayed. Proteins are ranked depending
on the stage of nuclear mRNAmetabolism to which they contribute. Proteins reported to be involved at distinct steps of mRNA biogenesis appear in bold

The SUMO isoform demonstrated to modify each target protein is indicated : (1), SUMO-1; (2), SUMO-2/3. The final outcome of sumoylation on
the biological activity of the protein is illustrated by green or red filled circles, indicating respectively a positive or a negative effect of SUMO on
mRNA synthesis/processing. When available, molecular consequences of sumoylation on the protein are indicated: change in interactions with
proteins (yellow square) or nucleic acids (DNA or RNA, purple square); change in subcellular localization (blue square); change in enzymatic
activity (black square); change in ubiquitinylation and/or stability (orange square), or other consequences (gray square)

References appear as First Author, Year of publication and are not further listed in the References section due to space limitation
a Opposite effects of sumoylation were reported for the different activation domains of the protein
b Sumoylation enhances both activating and repressing properties of the protein
c Opposite effects of sumoylation were reported on distinct target genes of the protein
d Effect of sumoylation on the activity of the protein was analyzed in vitro only
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hnRNP-K (Lee et al. 2012; Pelisch et al. 2012) in mammals,
for which functions in transcription and splicing have been
reported. SUMO was demonstrated to regulate their tran-
scriptional activity (Garee et al. 2011; Lee et al. 2012;
Pelisch et al. 2012); it will now be interesting to examine
the effect of sumoylation on their splicing function and its
potential impact on the coupling between different aspects
of mRNA biogenesis.

Molecular impact of sumoylation on mRNA biogenesis
factors

The consequences of sumoylation on mRNA biogenesis are
frequently inferred from in vivo and in vitro analysis of the
biological activity of non-sumoylatable or constitutively
sumoylated versions of target proteins. These studies have
illustrated the various mechanistic impacts of sumoylation
on the function of these targets (Fig. 3).

Sumoylation and nucleic acid binding

At virtually every stage, mRNA metabolism requires
nucleic acid–protein interactions: transcription factors selec-
tively recognize target DNA sequences, while processing
and export factors associate with mRNAs. Several reports
have indicated that sumoylation can interfere with the
nucleic acid-binding properties of proteins (Fig. 3a, b). For
instance, sumoylation of the mammalian transcription acti-
vator Hsf2 prevents its interaction with the heat-shock re-
sponsive element in the promoter of its target genes,
presumably due to steric interference (Tateishi et al. 2009;
Anckar et al. 2006). Sumoylation of RNA-binding proteins
such as mammalian hnRNP C or hnRNP M also decreases
their affinity for ssDNA in vitro, suggesting that it could
regulate their association with mRNAs in vivo (Vassileva
and Matunis 2004). This functional impact of sumoylation
is intuitively expected since the lysine residues targeted by
SUMO can be part of basic DNA- or RNA-recognition
domains. However, in some cases, sumoylation can favor
protein–DNA interaction, as established for the transcrip-
tional activator Oct-4 (Wei et al. 2007). In this case, DNA-
binding could be facilitated by SUMO presumably through
a conformational change in the target protein.

Sumoylation and protein–protein interactions

During mRNA biogenesis, numerous macromolecular com-
plexes are assembled in a stepwise fashion to allow mRNA
synthesis and processing. In this respect, the well-documented
impact of sumoylation on protein–protein interactions (Geiss-
Friedlander and Melchior 2007) is expected to impinge on the
activity of protein complexes involved in mRNAmetabolism.
Sumoylation can indeed disrupt protein–protein interactions
critical for mRNA synthesis (Fig. 3c, d). For instance, SUMO-
1 modification of the DNA-bound transcriptional repressor
MBD1 prevents the interaction of the repressor with the
histone methyltransferase SETDB1 without altering its inter-
action with DNA, leading to derepressed transcription of its
target gene p53BP2 (Lyst et al. 2006).

However, addition of the SUMO moiety on target pro-
teins can create in many cases new interaction surfaces that
favor the non-covalent recruitment of specific SIM-containing

Table 3 Yeast sumoylated proteins involved in mRNA biogenesis

Transcriptional activation / repression
Abf1 Hannich 2005

Gcn4 Rosonina 2012

Gcn5 Sterner 2006

H2A Nathan D 2006

H2B Nathan D 2006

H4 Nathan D 2006

Isw1 Hannich 2005

Mot1 Wang 2009

Nut1 Wykoff 2005

Pdr1 Panse 2004

Pob3 Wohlschlegel 2004

Reb1 Denison 2005

Rsc2 Wohlschlegel 2004; Denison 
2005

Rsc58 Wohlschlegel 2004; Wykoff 
2005

Rsc8 Panse 2004 ; Wykoff 2005

Spt7 Denison 2005

Ssn6 Panse 2004

Stb3 Hannich 2005

Ste12 Wang 2006

Swc1 Wohlschlegel 2004

Tec1 Wang 2009

Tup1 Panse 2004 ; Denison 2005 ; 
Wykoff 2005

Vps72 Wohlschlegel 2004

mRNA synthesis (initiation / elongation)
Rpb1 (RNAP II) Chen 2009

Rpb4 (RNAP II) Wohlschlegel 2004

Taf8 (TFIID) Wykoff 2005

Tfa2 (TFIIE) Hannich 2005

Splicing
Prp45 Wohlschlegel 2004

3' processing
Ysh1 Wykoff 2005

mRNP assembly/export
Hpr1 a

The names of the proteins involved in mRNA biogenesis and confirmed to
be sumoylated in S. cerevisiae are displayed. Proteins are ranked depending
on the stage of nuclear mRNA metabolism to which they contribute

A red filled circle indicates a negative outcome of sumoylation on the
biological activity of the protein. To date, positive effects of SUMO on
the activity of proteins involved in mRNA metabolism have not been
reported in yeast

Change in ubiquitinylation and/or stability of the target protein upon
sumoylation is indicated by an orange square. Other effects have not
been reported

References appear as First Author, Year of publication and are not
further listed in the References section due to space limitation
a Bretes et al., unpublished results
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protein partners (Fig. 3b). As described for several transcrip-
tion regulators, sumoylation enhances binding to histone
deacetylases or co-repressor complexes that possess SIM do-
mains (reviewed in Garcia-Dominguez and Reyes 2009). This
function of SUMO in the regulation of protein–protein in-
teractions required for mRNP metabolism may even be more
widespread, as suggested by the recent in silico identification
of SIMs in multiple cellular proteins, including putative RNA
processing factors (Sun and Hunter 2012). Interestingly,
sumoylation has been shown to target SART1, a factor re-
quired for tethering the U4-5-6 snRNP to the spliceosome
(Vertegaal et al. 2006; Schimmel et al. 2010). Whether
SART1 sumoylation controls spliceosome assembly in a
SIM-dependent manner will require further investigations, in
particular through the systematic search of SIMs within these
protein complexes.

Sumoylation and subcellular localization

SUMO-mediated changes in protein–protein interactions can
also affect their subcellular localization, for example by inter-
fering with recognition by a transport receptor or retention in
defined subnuclear domains. Sumoylation has indeed been
shown to control the subcellular partitioning of a subset of
factors contributing to mRNA biogenesis (Table 2), such as
the poly-A-polymerase PAP (Vethantham et al. 2008) or the
transcriptional repressor Daxx (Muromoto et al. 2006). PAP
sumoylation is required for its nuclear targeting (Vethantham
et al. 2008) while Daxx sumoylation favors its recruitment to
PML nuclear bodies, possibly enhancing its transcriptional
repressive activity (Muromoto et al. 2006). These nuclear
subdomains may similarly modulate the activity of several
other transcription factors (Bernardi and Pandolfi 2007).

Sumoylation and enzymatic activity

In some cases, sumoylation could also induce a conformation-
al change in the target protein impacting on its enzymatic
activity. This has been proposed to account for the SUMO-
dependent inhibition of the activity of PAP (Vethantham et al.
2008) and of the RNA-editing enzyme ADAR-1 (Desterro et
al. 2005). In the latter case, the SUMO-1 acceptor site was
mapped in the dimerization domain of ADAR-1, leading to
the hypothesis that sumoylation could impair dimer formation
that regulates its enzymatic activity (Desterro et al. 2005).

Interplay between sumoylation and other post-translational
modifications

Sumoylation was first described to compete with alternative
post-translational modifications targeting lysine residues such
as ubiquitinylation and acetylation (reviewed in Gareau and
Lima 2010). For instance, acetylation of the p300 transcrip-
tional co-activator at SUMO acceptor sites prevents SUMO-
dependent repression (Bouras et al. 2005).

In addition, recent studies have revealed a new role for
SUMO-dependent ubiquitinylation in the regulation of tran-
scription factors. STUbLs were shown to control the
ubiquitin-mediated proteolysis of a few proteins involved in
mRNA metabolism such as the TBP (TATA-binding protein)
regulator Mot1 in budding yeast (Wang and Prelich 2009).
Consistently, proteomic analysis of sumoylated proteins accu-
mulating upon proteasome inhibition in mammalian cells has
revealed enrichment in mRNA metabolism-related factors
(Tatham et al. 2011). Surprisingly, STUbLs could also target
specific substrates for proteasomal degradation independent of
their sumoylation, as demonstrated for the transcription factor
MATα2 in budding yeast (Xie et al. 2010). However, protein
degradation does not represent the only mechanism by which
STUbLs affect mRNA biogenesis. Indeed, studies in flies have

Fig. 3 Multiple effects of sumoylation on intermolecular protein in-
teractions in mRNA biogenesis. The scheme depicts changes in
intermolecular interactions occurring in proteins associated (either
directly or indirectly) with DNA but the same principles could apply
for RNA-associated proteins. Nucleic acid recognition domains appear
in red. a, b Modulation of direct protein-nucleic acid association.
Sumoylation can either inhibit (a) or enhance (b) direct DNA recog-
nition by the sumoylated target, as described for Hsf2 and Oct-4,
respectively (Anckar et al. 2006; Wei et al. 2007). c, d Modulation of
protein–protein interactions. Sumoylation can disrupt protein–protein
interactions without changing their association with nucleic acids (c),
as reported for MBD1 (Lyst et al. 2006). Alternatively, sumoylation
can favor the recruitment of SIM domain-harboring partners (d), as
described for multiple transcriptional repressors (Garcia-Dominguez
and Reyes 2009)
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shown that STUbLs can regulate protein–protein interactions
without targeting their substrate for degradation (Abed et al.
2011). Ubiquitinylation of the transcription repressor Hairy by
the STUbL Dgrn does not impact on the stability of Hairy, but
rather reduces its affinity for its co-repressor Groucho, thus
regulating co-repressor choice and gene-expression selectivity
during development (Abed et al. 2011).

Notably, SUMO–SIM interactions can also be regulated
by post-translational modifications targeting either SUMO
itself or the SIM domain. On one hand, acetylation of
SUMO prevents its binding to specific SIM domains and
attenuates SUMO-dependent transcriptional repression
(Ullmann et al. 2012). On the other hand, CK2-mediated
phosphorylation of serine residues adjacent to the SIM
domains in PIAS E3 SUMO ligases is required for SUMO
recognition and contributes to PIAS transcriptional regula-
tory activity (Stehmeier and Muller 2009). These examples
further illustrate how additional post-translational modifica-
tions cooperate with sumoylation to modulate protein–pro-
tein interactions and ensure a fine tuning of mRNA
transcription.

Sumoylating and desumoylating enzymes in the mRNP
metabolism machinery

While an ever-growing number of proteins involved in
mRNA biogenesis appear to be regulated by SUMO, a
series of recent findings suggests that, conversely, localiza-
tion and activity of enzymes of the SUMO pathway are
controlled by multiprotein complexes involved in mRNA
metabolism (Fig. 1).

Transcription regulatory complexes contain SUMO-modifying
enzymes

The first example of such an association was provided by
PC2, a vertebrate-specific E3 SUMO ligase associated with
polycomb repressive complexes (PRC1/2). PRC1/2 are
chromatin-bound multiprotein assemblies involved in the
repression of a large cohort of developmental genes and
clustered into subnuclear structures termed PcG bodies
(reviewed in Wotton and Merrill 2007). PC2 can modify a
subset of transcriptional corepressors such as CtBP and
SIP1, most likely within PcG bodies, and modulate their
repressing activity on specific target genes (Lin et al. 2003;
Long et al. 2005).

More recently, two reports identified enzymes of the
sumoylation pathway as part of transcription regulatory
complexes. Garcia-Gutierrez et al. (2011) demonstrated that
Krox-20, a key transcription regulator of brain development,
exhibits E3 SUMO ligase activity both in vitro and in vivo.
Krox-20 functions as an E3 for sumoylation of its

coregulator Nab2, which in turn mediates repression of
Krox-20-responsive genes (Garcia-Gutierrez et al. 2011).
In another report, the chromatin-bound transcription regula-
tor Chtop was shown to associate with 5FMC (5 Friends of
Methylated Chtop), a recently characterized nuclear
multiprotein complex encompassing the SUMO-protease
SENP3 in mammalian cells (Fanis et al. 2012). In the
context of this complex, SENP3 desumoylates Zbp89, a
Chtop-associated transcription factor, and contributes to
the regulation of its target genes (Fanis et al. 2012). In these
distinct cases, the association of the SUMO ligase or of the
SUMO protease with defined partners, loci, or subnuclear
domains probably favors their activity towards defined
substrates.

A spliceosome component regulates sumoylating activities

A potential connection between splicing and the sumoylation
machinery was initially suggested by the identification of the
E3 SUMO ligase PIAS1 in a proteomic analysis of the
spliceosome (Rappsilber et al. 2002). Moreover, nuclear bod-
ies enriched in splicing factors were found to contain compo-
nents of the SUMO pathway: Ubc9 is present in nuclear
SC35-positive speckles in mouse ovocytes (Ihara et al.
2008) while the SUMO protease USPL1 is found in Cajal
bodies (Schulz et al. 2012), a localization also shared by
SUMO-1 in neurons (Navascues et al. 2008). More recently,
the serine-/arginine-rich (SR) protein SRSF1 (SF2/ASF), a
splicing factor with various functions in mRNA metabolism,
was shown to regulate sumoylation in mammalian cells
(Pelisch et al. 2010). SRSF1 directly interacts with Ubc9
and stimulates the transfer of SUMO-1 or SUMO-2/3 to
specific substrates such as topoisomerase-1 or p53 in both in
vitro and in vivo assays. In this respect, SRSF1 could be
defined as a new type of E3 SUMO ligase. Interestingly,
SRSF1 also interacts with PIAS1 regulating its E3 activity,
leading to a synergistic effect on overall protein sumoylation
(Pelisch et al. 2010). These data strongly suggest that SRSF1
could act as a coregulator of the SUMO pathway to modulate
the specificity and efficiency of sumoylation of some
splicesome components. Consistently, overexpression of
SRSF1 in living cells stimulates sumoylation of the RNA-
binding protein Sam68 that belongs to the hnRNP K family
(Babic et al. 2006; Pelisch et al. 2010). Whether some of the
splicing factors so far identified in SUMO-proteomes are
similarly regulated by SRSF1 remains to be investigated.

Nuclear pore complexes encompass several enzymes
of the SUMO pathway

The last step of the nuclear life of mRNAs is their export
through NPCs that includes mRNP docking at the nuclear face
of NPCs, translocation through the NPC channel, and
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remodeling on the cytosolic side (Oeffinger and Zenklusen
2012). Interestingly, several enzymes of the SUMO pathway
have been shown to associate with NPCs. The E2 SUMO-
conjugating enzyme Ubc9 and the E3 SUMO ligase
RanBP2/Nup358 are associated with the cytosolic filaments
of NPCs in vertebrates, while the SUMO protease
Ulp1/SENP2 is found at NPCs in all eukaryotes (reviewed
in Palancade and Doye 2008). More recently, the STUbL
Slx5/8 was reported to associate with NPCs in budding yeast
(Nagai et al. 2008).

In mammals, RanBP2 acts as a SUMO E3 ligase for
hnRNP C and M (Vassileva and Matunis 2004). Since
SUMO modification hinders the association of these two
mRNA-binding proteins with nucleic acids, it is tempting to
speculate that sumoylation at the cytoplasmic face of NPCs
could contribute to the mRNP remodeling process
(Vassileva and Matunis 2004). The SUMO protease
Ulp1/SENP2 is anchored to NPCs through a network of
proteins including components of the inner nuclear basket
such as Mlp1 and Mlp2 in yeast (reviewed in Palancade and
Doye 2008; Goeres et al. 2011). Of note, Mlp1 and Mlp2 are
also involved in the docking of mRNPs to the nuclear side
of NPCs prior to export (Green et al. 2003 ; Vinciguerra et
al. 2005). In addition, Mlp1 was demonstrated to play a role
in the transient association of activated genes to the nuclear
pores (Dieppois et al. 2006; Tan-Wong et al. 2009). Nuclear
pore complexes could therefore bring potential chromatin
and/or mRNP-associated sumoylated proteins at the vicinity
of the SUMO protease, thus contributing to its specificity.
Systematic identification of such targets will be required to
unravel the role of these NPC-associated enzymes of the
SUMO pathway in mRNP metabolism.

Concluding remarks and future perspectives

Sumoylation has been demonstrated to regulate the different
stages of mRNA biogenesis in yeast, mammalian cells, and
plants. While a prominent role of SUMO was first reported
in the control of transcription activation, all the other steps
of nuclear mRNA metabolism were recently shown to be
regulated by the sumoylation machinery. Spatio-temporal
regulation and specificity may be provided during the
course of mRNA biogenesis by the association of enzymes
of the SUMO pathway with transcription, splicing, or nu-
clear pore complexes. To which extent such mechanisms
can apply to other protein complexes involved in mRNA
metabolism (Fig. 1) remains an open and exciting question.

A tight control of mRNA metabolism is crucial to allow
the cell to respond to environmental, physiological, or
developmental cues. Proteomic studies have revealed that
heat-shock or oxidative stress remodels the cellular SUMO-
proteome in mammalian and plant cells, with extensive

SUMO conjugation or deconjugation events targeting
mRNA biogenesis factors (Manza et al. 2004; Blomster et
al. 2009; Golebiowski et al. 2009; Bruderer et al. 2011; Miller
et al. 2012). Chemically induced DNA damage has been
shown to trigger phosphorylation of the SUMO E3 ligase
PC2, hence stimulating the sumoylation of hnRNP K and its
role in the p53-dependent transcriptional response (Pelisch et
al. 2012). Several signaling pathways have also been shown
to modulate mRNA metabolism through SUMO-dependent
processes: for example, type I-interferon induces sumoylation
of Daxx, impacting on the expression of its target genes
(Muromoto et al. 2006) and ligand binding to LXRs or
PPARγ nuclear receptors triggers their sumoylation, poten-
tiating their transrepression activities (Liu and Shuai 2009).
Developmentally regulated sumoylation of a great number
of transcription factors has also been demonstrated to play
a role in defining cell- or organ-specific gene-expression
programs (Lomeli and Vazquez 2011). Further studies will
be required to understand how such stress or signaling
events are transduced to the mRNA biogenesis machinery
through SUMO-dependent regulations.

Despite our expanding knowledge of the crosstalks be-
tween SUMO and mRNA biogenesis, an ever-increasing
number of sumoylated factors remain to be functionally
validated. The presence of SUMO targets and enzymes of
the SUMO pathway in the mRNA metabolism machineries
is reminiscent of the case of DNA repair, for which regula-
tion by SUMO has been extensively studied. Importantly,
the effect of SUMO on the final accuracy of the repair
process has been recently shown to rely on the simultaneous
sumoylation of several proteins that belong to the same
pathway (Psakhye and Jentsch 2012). Whether this novel
concept will also apply to mRNA biogenesis regulations
will require exhaustive functional analysis of both
sumoylated and SIM-containing proteins in this process.
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