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Abstract Nuclear intermediate filament networks formed
by A- and B-type lamins are major components of the
nucleoskeleton that are required for nuclear structure and
function, with many links to human physiology. Mutations
in lamins cause diverse human diseases (‘laminopathies’).
At least 54 partners interact with human A-type lamins
directly or indirectly. The less studied human lamins B1
and B2 have 23 and seven reported partners, respectively.
These interactions are likely to be regulated at least in part
by lamin post-translational modifications. This review sum-
marizes the binding partners and post-translational modifi-
cations of human lamins and discusses their known or
potential implications for lamin function.
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Introduction

Lamins are major components of the nucleoskeleton in
multicellular animals (metazoans), not found in plants or
fungi (Dittmer and Misteli 2011). Lamins tether chromatin,
bind signaling proteins and support epigenetic regulation,
mechanotransduction, development, transcription, replica-
tion and DNA damage repair (Dechat et al. 2008; Dittmer
and Misteli 2011; Simon and Wilson 2011). How lamins

contribute to such a remarkable range of activities is for the
most part unknown: a new saga in biology that begins with a
seemingly simple structural polymer. Lamins form highly
stable filament networks near the inner membrane of the
nuclear envelope and are also distributed throughout the
nucleoplasm except for the nucleolus (Gerace and Huber
2012; Dittmer and Misteli 2011; Simon and Wilson 2011).
Mammals express two types of lamins, the B-type (lamins
B1, B2 and B3) encoded by LMNB1 and LMNB2 (Dittmer
and Misteli 2011; Schumacher et al. 2006), and A-type
(lamins A, C, AΔ10, C2, and AΔ50, also known as
‘progerin’) generated by alternative splicing of LMNA
(Dittmer and Misteli 2011; Bokenkamp et al. 2011).

Mutations in lamins cause a variety of diseases, collec-
tively termed laminopathies (Worman 2012; Butin-Israeli et
al. 2012). So far nearly 400 different disease-causing muta-
tions in A-type lamins have been identified, underscoring
their significance to cell and tissue biology and human
physiology. Diseases are now also being mapped to B-type
lamins. Duplication of the LMNB1 gene can cause leukodys-
trophy (Padiath et al. 2006; Schuster et al. 2011; Brussino et
al. 2010; Molloy et al. 2012) or leukoencephalopathy
(Brussino et al. 2009), and certain mutations in LMNB2
correlate with increased susceptibility to acquired partial
lipodystrophy (Hegele et al. 2006).

Both A- and B-type lamins are synthesized as precursors
that are post-translationally processed prior to filament as-
sembly. All lamins except lamin C are first farnesylated at
the cysteine of the C-terminal CaaX motif (Beck et al. 1990;
Farnsworth et al. 1989), then proteolytically cleaved by
either Rce1 or Zmpste24, and finally carboxymethylated
by Icmt1 (Nigg et al. 1992; Young et al. 2005; Maske et
al. 2003; Varela et al. 2005). The lamin A precursor (pre-
lamin A) is further processed by Zmpste24-dependent cleav-
age after Tyr-646 to generate mature lamin A (Pendas et al.
2002; Bergo et al. 2002; Barrowman et al. 2012).
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Lamin proteins have a small N-terminal ‘head’ domain, a
long coiled-coil ‘rod’ domain and a large C-terminal ‘tail’
that includes a globular Ig-fold domain (Dechat et al. 2008;
Dittmer and Misteli 2011). Lamin assembly was successfully
reconstituted in vitro only recently (Ben-Harush et al. 2009).
Studies of purified lamins show that they first dimerize via
their rod domain; dimers then associate head-to-tail to form
linear polymers, which in turn associate laterally in groups of
three or four in a staggered anti-parallel manner to form
~10-nm-diameter filaments (Ben-Harush et al. 2009;
Herrmann et al. 2004; Gerace and Huber 2012). The actual
organization of lamina networks in somatic cells is unknown.

A- and B-type lamins can interact directly in vitro (Ye
and Worman 1995; Schirmer and Gerace 2004), but in living
cells appear to preferentially form independent filament
networks. High-resolution microscopy of endogenous
lamins A/C and B1 (Shimi et al. 2008) as well as FRET
analysis of exogenous lamins A and B1 (Delbarre et al.
2006) support the existence of separate lamin A/C or B1
homopolymers in close contact with each other. The spatial
separation of lamin A and B1 homopolymers was lost in
cells that also expressed lamin A bearing the Hutchinson–
Gilford progeria syndrome (HGPS)-causing Δ50 deletion
(‘progerin’) (Delbarre et al. 2006). Remarkably, biochemical
analysis suggests lamins A and C (the first 566 residues of
which are identical) also form homodimers and homopoly-
mers preferentially in vivo, via unknown mechanisms (Kolb
et al. 2011).

In the nucleus lamins reportedly bind partners (Wilson
and Foisner 2010; Zastrow et al. 2004). Lamin A is the
most extensively studied with at least 29 reported direct
binding partners (Fig. 1, Table 1), and at least 24 pro-
teins identified by co-immunoprecipitation from cells or
other indirect methods (Table 2). Many new potential
partners are being uncovered (Roux et al. 2012;
Kubben et al. 2010). The B-type lamins are less studied,
with 23 reported direct or indirect partners for lamin B1
(Table 3) and only seven for lamin B2 (Table 4). Lamin
partners in other animals, including Drosophila JIL-1
kinase (Bao et al. 2005) and Xenopus α-importin
(Adam et al. 2008), are conserved in humans and may
therefore also associate with human lamins.

The functional association of many certain partners in-
cluding LEM-domain proteins, BAF, Rb and LINC complex
components has been confirmed genetically or in cells as
discussed in recent reviews (Wilson and Foisner 2010;
Simon and Wilson 2011; Dechat et al. 2010; Dittmer and
Misteli 2011). Biochemical and biological validation will be
crucial to move this field forward, since many partners iden-
tified in vitro lack proven biological relevance, and ‘associat-
ed’ proteins (e.g., those identified by co-immunoprecipitation
from cells in Table 2) lack evidence that binding is direct.
Nuclear lamina networks are largely insoluble under typical

co-immunoprecipitation conditions, and some methods (e.g.,
sonication) can create small ‘chunks’ of lamina that appear
soluble (e.g., not pelleted by 12,000 × g centrifugation) but
might contain dozens or hundreds of different proteins that co-
immunoprecipitate together. Another confounding issue is
that lamins can bind DNA (Stierle et al. 2003). Hence one
must rule out the possibility that ‘direct’ binding of certain
partners to lamins is actually mediated by DNA in the reac-
tion. For example, this artifact caused two proteins (Cone-rod
homeobox [Crx]; HIV-1 matrix [MA]) and one polypeptide
(C-terminal domain of MAN1) to be misidentified as direct
partners for the dsDNA-binding protein BAF, and was
corrected by NMR analysis of protein-protein binding and by
re-testing under DNA-free conditions (Huang et al. 2011). A
related artifact can be solved by using the DNA intercalator,
ethidium bromide, to ‘bump off’ proteins (e.g., PARP1;
Ku70/80) that bind DNA ends nonspecifically (Lai and Herr
1992).

A major unanswered question is how lamin associations
with specific partners are regulated. To facilitate further
studies, this review focuses on post-translational modifica-
tions of human lamins, including the few cases where the
functional consequences of specific modifications are
known.

Phosphorylation

Following the discovery that lamins are reversibly
disassembled during mitosis (Gerace and Blobel 1980),
early studies focused on lamin phosphorylation during mi-
tosis. The head domain of all lamins includes an evolution-
arily conserved site phosphorylated by the mitotic cyclin-
dependent kinase CDK1 (Peter and Stick 2012). Peptide
sequencing identified this site as Ser-22 in human lamins
A/C, Ser-23 in lamin B1 and Ser-37 in lamin B2 (Fig. 2a).
The first mammalian lamin B2 cDNA to be studied, thought
to be the physiological form, was actually missing 20 N-
terminal residues and hence dominantly disrupted nuclear
lamina organization in transfected cells (Schumacher et al.
2006); please note that these 20 ‘new’ residues are included
when numbering lamin B2 residues in this review. Lamin
phosphorylation by CDK1 impedes assembly of head-to-tail
polymers but does not disrupt lamin dimer formation
(Heitlinger et al. 1991; Peter et al. 1991). CDK1 targets
two regions important for head-to-tail association of lamin
A dimers (Strelkov et al. 2004); phosphorylation at Ser-22,
and at Ser-392, Ser-404 and Ser-406 at the opposite end of
the coiled-coil domain, are required to depolymerize lamin
filaments during mitosis (Heald and McKeon 1990; Peter et
al. 1990; Ward and Kirschner 1990; Eggert et al. 1991;
Enoch et al. 1991; Thompson and Fields 1996; Schneider
et al. 1999; Fig. 2b). Phosphorylation of the A-type lamin in
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Drosophila, named lamin C, at Ser-37 (homologous to
human lamins A/C Ser-22) increases the solubility of the
lamin protein and eliminates its ability to interact with
chromatin in vitro (Zaremba-Czogalla et al. 2012).

The protein kinase C (PKC) family also regulates lamins
during mitosis (Peter et al. 1990; Hocevar et al. 1993). In
zebrafish, lamins are phosphorylated by PKC first (Collas
1999), suggesting PKC phosphorylation might ‘unmask’ sites
for CDK1 phosphorylation (Buendia et al. 2001). Supporting
this idea, mitotic PKC- and CDK1-mediated disassembly of
lamin B1 is triggered by diacylglycerol (DAG) generated by
either lipin in HeLa cells (Mall et al. 2012) or by PLCβ1 in
mouse erythroleukemia cells (Fiume et al. 2009). Conversely,
lamin filament assembly in HeLa cells during early G1 re-
quires dephosphorylation of B-type lamins by AKAP149-PP1
(Steen et al. 2003). However, mitosis also involves dephos-
phorylation: in Xenopus oocytes, unidentified PKA site(s)
must be dephosphorylated for lamin filaments to disassemble
(Molloy and Little 1992).

Recent high-throughput proteomic studies revealed fur-
ther, extensive human lamin phosphorylation during mitosis
(Olsen et al. 2010; Daub et al. 2008; Malik et al. 2009;
Wang et al. 2008, 2010; Fig. 2, Table 5). Many mitotic

phosphorylation sites are clustered in the head domain and
near the Nuclear Localization Signal (NLS) (Fig. 3).
However, it is important to note that some mitotic sites are
also targeted during interphase (Table 5) as discussed below.
With 61 known phosphorylation sites (Fig. 3, Table 5)
lamins A/C have more than twice as many known sites as
lamin B1 (32 sites; Fig. 3, Table 6) or lamin B2 (28 sites;
Fig. 3, Table 7). Two sites are unique to the lamin C isoform
(Table 5). In general, the head and tail domains account for
most phosphorylation sites, with the highest density be-
tween the rod domain and NLS (Fig. 3).

PKC family members also regulate non-mitotic functions
of lamins. PKC phosphorylation of B-type lamins in sea
urchin sperm triggers lamina disassembly prior to fertiliza-
tion (Collas et al. 1997). Lamin A/C Ser-525, in the Ig-fold
domain, is reportedly phosphorylated only during interphase
(Table 5; Eggert et al. 1993). In human dermal fibroblasts,
PKC specifically modifies at least one site in lamin B2
during S-phase (Kill and Hutchison 1995). In leukemia
cells, increased lamin B2 phosphorylation is proposed to
extend G1 phase (Meier et al. 1997). PKC phosphorylation
of chicken lamin B2 inhibits lamin B2 import into the
nucleus during interphase (Hennekes et al. 1993). Finally,

Fig. 1 Lamin A molecule and
direct binding partners.
Diagram of major domains of
human lamin A and mapped
regions involved in binding
to specific partners. The rod
domain is subdivided into four
coiled-coil regions (1A, 1B, 2A,
2B), which are separated by
linker regions L1, L12 and L2.
NLS, nuclear localization
signal. Question marks indicate
partners whose binding region
on lamin A is unmapped
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both PKCα (Shimizu et al. 1998) and PKCδ (Cross et al.
2000) phosphorylate B-type lamins at unknown sites during
apoptosis.

Other kinases that target lamins include PKA, S6-kinase
II and Akt (Tables 5 and 6). Ser-50 phosphorylation of the
B-type lamin in Drosophila, named lamin Dm0, by PKA
inhibits head-to-tail dimerization (Stuurman 1997); interest-
ingly, among human lamins this modification appears to be
detectably conserved only in lamin B1, on Ser-28 (Table 6;
Olsen et al. 2010; Rigbolt et al. 2011). Human lamins A/C
are phosphorylated by S6-kinase II at Ser-404; the function-
al significance of this modification is unknown (Ward and
Kirschner 1990), but it has since been detected under a
variety of cellular conditions (Table 5). For example, fol-
lowing insulin treatment, the Akt kinase phosphorylates
lamins A/C at Ser-404 in HEK 293 T cells (Cenni et al.
2008). Cells that express lamin A bearing either the S404A

mutation or a nearby R401C Emery–Dreifuss muscular
dystrophy (EDMD)-causing mutation have disorganized
lamina networks and nuclear blebbing (Cenni et al. 2008).

Phosphorylation of lamins A/C is generally reduced in
myoblasts from EDMD and limb girdle muscular dystrophy
(LGMD) patients (Cenni et al. 2005). The N terminus of
lamins A/C is phosphorylated in cycling C2C12 myoblasts,
and insulin treatment specifically increases phosphorylation
of lamin A, but not lamin C (Cenni et al. 2005). Insulin
stimulation also increases phosphorylation of lamins A/C in
quiescent baby hamster kidney fibroblasts (Friedman and
Ken 1988). Neither the kinase(s) responsible for phosphor-
ylating lamins A/C in response to insulin signaling in myo-
blasts or kidney fibroblasts, nor their target sites, have been
identified.

A study of lamin B2 in DLD-1 colorectal cancer cell lines
using phospho-site specific antibodies revealed differential

Table 1 Reported direct binding
partners of lamin A

ND not determined

Protein Lamin A residues Method Reference

Lamin B1 ND Recombinant Affi-bead pulldown Schirmer and Gerace 2004

Lamin B2 ND Recombinant Affi-bead pulldown Schirmer and Gerace 2004

F-actin 461–536 and 564–608 Recombinant high-speed pelleting Simon et al. 2010

Titin 461–536 Recombinant pulldown Zastrow et al. 2006

Nesprin1α ND Blot overlay Mislow et al. 2002

Nesprin2 243–387 and 384–566 Recombinant pulldown Libotte et al. 2005

LCO1 394–572 TnT pulldown Vlcek et al. 2004

SUN1 389-664 TnT pulldown Haque et al. 2006

SUN2 389–646 TnT pulldown Crisp et al. 2006

Nup153 436–544 TnT pulldown Al-Haboubi et al. 2011

Nup88 243–664 Recombinant pulldown Lussi et al. 2011

LAP2α 319–566 Blot overlay Dechat et al. 2000

MAN1 394–664 Blot overlay/Microtiter assay Mansharamani and
Wilson 2005

LEM2 319–566 Blot overlay Brachner et al. 2005

Emerin 384–566 Yeast-2-Hybrid/Blot overlay Sakaki et al. 2001
Lee et al. 2001

PCNA 436–544 Recombinant pulldown Shumaker et al. 2008

DNA 411–553 Blot overlay/cosedimentation Stierle et al. 2003

Histones 396–430 Microtiter assay Taniura et al. 1995

BAF ND Microtiter assay Holaska et al. 2003

Rb 247–355 TnT pulldown Ozaki et al. 1994
Mancini et al. 1994

SREBP1 389–664 Recombinant pulldown Lloyd et al. 2002

RBBP4 562–646 Recombinant pulldown Pegoraro et al. 2009

RBBP7 ND TnT pulldown Pegoraro et al. 2009

c-FOS 81–219, 243–388
and 453–571

Recombinant pulldown Ivorra et al. 2006

hnRNP E1 ND TnT gel shift Zhong et al. 2005

E1B 19 K 252–390 TnT pulldown Rao et al. 1997

Cyclin D3 383–474 Recombinant pulldown Mariappan et al. 2007

PKCα 500–664 Blot overlay Martelli et al. 2002

NARF 389–664 TnT pulldown Barton and Worman 1999

16 Chromosoma (2013) 122:13–31



phosphorylation of five sites during the cell cycle (Kuga et
al. 2010). Thr-34 and Ser-37 are phosphorylated during
prophase until late anaphase. Ser-405 phosphorylation
levels increase during prophase and are maintained until late
G1, whereas Ser-407 is phosphorylated only during G1 and
prophase, and Ser-421 is phosphorylated during the S-to-G2
transition (Kuga et al. 2010). Of these five lamin B2 phos-
phorylation sites, four are conserved in both lamins A/C and
B1 (corresponding to lamin B2 residues Thr-34, Ser-37, Ser-
405, and Ser407), and the fifth site (lamin B2 Ser-421) is
conserved in lamins A/C (Fig. 2). High-throughput pro-
teomic studies showed lamins are also phosphorylated
in cells treated with EGF (Olsen et al. 2006) or MAPK
inhibitors (Pan et al. 2009), and in human colon adeno-
carcinoma cells (Kim et al. 2005), human epithelial
cancer cells (Moritz et al. 2010), and differentiating
human embryonic stem cells (ESCs) (Rigbolt et al.
2011; Van Hoof et al. 2009) (Fig. 2, Tables 5–7). The
criterion for including modifications in this review was
access to supporting (published) evidence. Updated in-
formation about modifications and sites, both published
and unpublished, can be found online (e.g., Phosphosite
database at www.phosphosite.org).

Twelve phosphorylation sites are conserved in all three
human lamins (Fig. 2); all but one are located in head or tail
regions important for mitotic lamin depolymerization
(lamins A/C residues Thr-19, Ser-22, Thr-24, Ser-390, Ser-
392, Thr-394, Ser-395, Ser-398, Ser-403, Ser-404, Ser-407;
Fig. 2). The other conserved phosphorylation site is lamin
A/C residue Ser-303 in the coil 2B region (Fig. 2). Four
additional phospho-sites are conserved between lamins A/C
and B1 (lamin A residues Thr-3, Ser-18, Ser-277, Ser-652);
lamins A/C and B2 share six additional sites (lamin A
residues Thr-64, Ser-71, Ser-301, Ser-406, Thr-409, Ser-
458), and lamins B1 and B2 share four (lamin B1 residues
Ser-232, Tyr-359, Ser-401, Ser-406) (Fig. 2), potentially
reflecting phospho-dependent regulation of other conserved
functions. By contrast, unique phosphorylation sites are
likely to reflect the differential regulation of lamins in di-
verse tissues (Vergnes et al. 2004; Coffinier et al. 2010;
Takamori et al. 2007; Coffinier et al. 2011; Kim et al. 2011b).

Several other differences in the patterns of phosphoryla-
tion of human lamins stand out. Lamins A/C have many
phosphorylation sites in coils 1A and 1B, the L1 linker in the
rod domain, and the Ig-fold, whereas homologous regions in
lamins B1 and B2 have few or no known sites (Fig. 3). On the

Table 2 Examples of proteins
that associate with lamin A
(direct binding untested)

CO-IP co-immunoprecipitation,
ND not determined

Protein Lamin A residues Method Reference

LAP1 ND Cosedimentation
from membrane fraction

Foisner and Gerace 1993

UBC9 ND In vitro SUMOylation,
Yeast-2-Hybrid and CO-IP

Zhang and Sarge 2008
Zhong et al. 2005

MRPS26 ND Yeast-2-Hybrid Zhong et al. 2005

Filamin A ND Yeast-2-Hybrid Zhong et al. 2005

Unc13D ND Yeast-2-Hybrid Zhong et al. 2005

EGF1 ND Yeast-2-Hybrid and CO-IP Zhong et al. 2005

Mel18 ND Yeast-2-Hybrid and CO-IP Zhong et al. 2005

SREBP2 379-664 Yeast-2-Hybrid Lloyd et al. 2002

12-(R)Lipoxygenase 463–664 Yeast-2-Hybrid Tang et al. 2000

Supervillin 221–448 Yeast-2-Hybrid Smith et al. 2010

MOK2 243–387 GST pulldown from cells Dreuillet et al. 2002

TonEBP ND CO-IP from cells Favale et al. 2007

PP2A ND CO-IP from cells Van Berlo et al. 2005

LUMA ND CO-IP from cells Bengtsson and Otto 2008

ERK1/2 247–355 CO-IP from cells Gonzalez et al. 2008

Pro-amphiregulin 247–355 CO-IP from cells Isokane et al. 2008

Ing1 ND CO-IP from cells Han et al. 2008

αII spectrin ND CO-IP from cells Sridharan et al. 2006

βIV spectrin ND CO-IP from cells Sridharan et al. 2006

Protein 4.1 ND CO-IP from cells Sridharan et al. 2006

nMyo1c ND CO-IP from cells Holaska and Wilson 2007

PP1 ND CO-IP from cells Steen and Collas 2001

AKAP149 ND CO-IP from cells Steen and Collas 2001

Smad3 ND CO-IP from cells Grimsby et al. 2004

Prx1 ND CO-IP from cells Kubben et al. 2010

Chromosoma (2013) 122:13–31 17

http://www.phosphosite.org/


other hand, lamin B1 has eight phosphorylation sites in coil
2B, whereas lamins A/C have only four and lamin B2 three
(Fig. 2). Only five phosphorylated Tyr residues have been
identified (lamin A Tyr-81, lamin B1 Tyr-359 and Tyr-377,
lamin B2 Tyr-374 and Tyr-515); we assume more sites exist,

since Tyr phosphorylation tends to be labile under the exper-
imental conditions used in many previous studies.

Lamin A residues 560–649, which have no counterpart in
B-type lamins, are extensively phosphorylated and all 11
known phospho-sites in this region are eliminated by the
HGPS-causing Δ50 deletion (loss of residues 608–658),
pointing to lamin A misregulation as another likely conse-
quence of this ‘accelerated aging’ mutation (Fig. 2). Among
the nearly 400 disease-causing mutations in lamin A
(Dittmer and Misteli 2011), remarkably only four disrupt
known phosphorylation sites (Thr-10, Ser-303, Ser-395,
Thr-505). However, many known phosphorylation sites are
located near disease-causing mutations and might be affect-
ed indirectly. For example, lamin A Ser-458 is phosphory-
lated only in muscle cells from EDMD and LGMD patients
who have mutations specifically in the Ig-fold domain,
which can be up to seventy residues away from Ser-458
(Mitsuhashi et al. 2010).

The CDK1 phosphorylation sites on lamins are exploited
by both herpes simplex virus and Epstein–Barr virus to disas-
semble lamins and thereby enable nascent virus particles to
bud through the nuclear envelope (Lee and Chen 2010). The
Epstein–Barr virus encodes its own kinase, BGLF4, which
targets CDK1 sites on lamins A/C. The nuclear exit of
Epstein–Barr virus is inhibited in cells that overexpress lamin

Table 3 Examples of proteins
that interact directly or indirectly
with lamin B1

CO-IP co-immunoprecipitation

Protein Lamin B1 residues Method Reference

Lamin A ND Recombinant Affi-bead pulldown Schirmer and Gerace 2004

Lamin C ND Recombinant Affi-bead pulldown Schirmer and Gerace 2004

F-actin 463–537 Recombinant high-speed pelleting Simon et al. 2010

CDK1 ND In vivo kinase Goss et al. 1994

PKC 1–588 Recombinant pulldown Tabellini et al. 2002

LAP2 78–258 Yeast-2-Hybrid Furukawa and Kondo 1998

LBR ND Pulldown of native Ye and Worman 1994

Plectin ND Blot overlay Foisner et al. 1991

LAP1β ND CO-IP from cells Maison et al. 1997

LCO1 395–586 TnT pulldown Vlcek et al. 2004

MELK ND In vivo kinase Beullens et al. 2005

Emerin 1–188 TnT pulldown Vaughan et al. 2001

Nudel ND CO-IP from cells Ma et al. 2009

DNA 412–554 Blot overlay/cosedimentation Stierle et al. 2003

Histones 397–432 Microtiter assay Taniura et al. 1995

Nup153 244–586 TnT pulldown Al-Haboubi et al. 2011

Titin 463–538 Recombinant pulldown Zastrow et al. 2006

PCNA 244–586 Recombinant pulldown Shumaker et al. 2008

MAN1 394–586 Blot overlay/Microtiter assay Mansharamani and Wilson 2005

PP1 ND CO-IP from cells Steen and Collas 2001

AKAP149 ND CO-IP from cells Steen and Collas 2001

PLCβ1 ND CO-IP from cells Fiume et al. 2009

Oct-1 ND CO-IP from cells and FRET Malhas et al. 2009

Table 4 Examples of proteins that interact directly or indirectly with
lamin B2

Protein Lamin B2
residues

Method Reference

Lamin A ND Recombinant Affi-
bead pulldown

Schirmer and
Gerace 2004

Lamin C ND Recombinant Affi-
bead pulldown

Schirmer and
Gerace 2004

PKC ND In vivo kinase Kasahara
et al. 1991

Supervillin 161–342 Yeast-2-Hybrid Smith
et al. 2010

PP1 ND CO-IP from cells Steen and
Collas 2001

AKAP149 ND CO-IP from cells Steen and
Collas 2001

Nup153 258–620 TnT pulldown Al-Haboubi
et al. 2011

CO-IP co-immunoprecipitation
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Fig. 2 Conservation of known phosphorylation sites in human lamins.
Sequence alignment of the rod and head domains (a) or tail domains
(b) of human lamins A (including precursor-specific C-terminal resi-
dues), B1 and B2 based on accession numbers NP_733821.1,
NP_005564 and NP_116126, respectively. The locations of all known

phosphorylation sites are indicated above; squares, circles and trian-
gles indicate residues phosphorylated in lamins A, B1 and B2, respec-
tively. Arrow indicates the Zmpste24 cleavage site in pre-lamin A
(plamA cleavage). Underlined residues in b comprise the lamin Ig-fold
domain (Dhe-Paganon et al. 2002; Krimm et al. 2002; Ruan et al. 2012)
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A bearing five Ser-to-Ala substitutions at Ser-22, Ser-390,
Ser-392, Ser-652, and Ser-657 (Lee et al. 2008). Four of these
sites (all but Ser-657) can also be phosphorylated in
uninfected cells (Table 5). Intriguingly, the nuclear export of
large ribonucleoprotein complexes in response to Wnt signal-
ing in Drosophila muscle cells also involves direct ‘budding’
through the nuclear envelope (Speese et al. 2012).

O-GlcNAcylation

O-GlcNAc (β-O-linked N-acetylglucosamine) is a revers-
ible single sugar modification of Ser or Thr residues that can
compete or cooperate with phosphorylation to regulate

signaling, transcription and mitosis (Hart and Copeland
2010). This modification is found on both nuclear and
cytoplasmic proteins (Hart and Copeland 2010). In mitotic
spindles isolated from HeLa cells, lamin A was O-
GlcNAcylated at Ser-612 and Thr-643 (Wang et al. 2010).
Both residues are located in the unique C-terminal region of
lamin A (Fig. 3). In mouse brain tissue, lamin A is O-
GlcNAcylated at Ser-611 and Ser-613 (Alfaro et al. 2012);
mouse Ser-613 is homologous to human lamin Ser-612. The
functional consequences of lamin A O-GlcNAcylation are
unknown. Lamins were first reported to be glycosylated
over 20 years ago (Ferraro et al. 1989), but whether this
represents O-GlcNAcylation or a different modification(s) is
unknown.

Fig. 3 Post-translational modifications of human lamins. Lamin sche-
matics indicating specific residues that are post-translationally modified by
phosphorylation, acetylation, O-GlcNAcylation, SUMOylation,

ubiquitylation, or oxidation. Arrows indicate sites cleaved by the pre-lamin
A processing protease Zmpste24, or apoptotic proteases Caspase 1 (Csp1),
Caspase 6 (Csp6), Granzyme A (GzmA), Granzyme B (GzmB), or CRNSP
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Oxidation

Reactive oxygen species (ROS) are produced during oxygen
metabolism and can regulate many pathways including cell
senescence (Bartz and Piantadosi 2010). In primary human
dermal fibroblasts, lamin A tail domain residues Cys-522,
Cys-588 and Cys-591 can be oxidized, yielding both intra-
and inter-molecular disulfide bridges (Pekovic et al. 2011). In
cells that overexpress lamin A bearing the triple
C522A/C588A/C591A mutation, nuclei are misshapen and
cells enter senescence prematurely in response to oxidative
stress (Pekovic et al. 2011; Sieprath et al. 2012). Premature
senescence was also reported in lamin A null fibroblasts

(Pekovic et al. 2011), suggesting A-type lamins are an impor-
tant ‘sink’ for ROS that helps protect cells.

SUMOylation

SUMO (small ubiquitin-like modifier) proteins are covalent-
ly and reversibly attached to Lys residues on target proteins
(Gareau and Lima 2010). SUMO modifications can regulate
the localization, function and interactions of target pro-
teins, and influence many pathways including nuclear
import/export, transcription, apoptosis, cell cycle regulation,
and protein stability (Geiss-Friedlander and Melchior 2007).

Table 7 Phosphorylation sites in human lamin B2

Cells HeLa K562 hESCs Epithelial
cancer

Mitosis S & M Spindle EGF MAPK inhibit MAPK inhibit Differentiation WCL

P-aa Olsen
2010

Daub
2008

Malik
2009

Olsen
2006

Pan
2009

Pan
2009

Rigbolt
2011

Van
Hoof 2009

Moritz
2010

T34 × × × × × × × ×

S37 × × × × × ×

T39 × × ×

T79 ×

T86 ×

S134 ×

S168 ×

S246 ×

S316 ×

S318 ×

Y374 ×

S405 × × × × × × ×

S407 × × × × × ×

S409 × × ×

S410 × × ×

T413 ×

T415 ×

T418 ×

S419 × × ×

S420 × × ×

S421 × ×

S422 × × ×

S424 × × × ×

S426 × × ×

T428 ×

S492 ×

Y515 ×

S544 ×

S & M S- and M-phase arrested cells

24 Chromosoma (2013) 122:13–31



The enzymes that add or remove SUMO localize mostly at the
nuclear envelope or in the nucleus (Wilkinson and Henley
2010; Zhang et al. 2002; Mingot et al. 2001). However, at
least one, the SUMO-specific isopeptidase SENP2, associates
dynamically with nuclear pore complexes (Goeres et al. 2011)
and is regulated by shuttling between the nucleus and cyto-
plasm (Itahana et al. 2006). Many cytosolic proteins are
controlled by SUMOylation including mitochondrial proteins,
plasma membrane proteins and (in yeast) septins, all of which
are unlikely to shuttle into the nucleus.

Human lamins A/C are modified by SUMO2 at Lys-201,
both in vitro and in vivo. This modification is important for
lamin A localization and filament assembly; both activities are
disrupted by K201R or by nearby cardiomyopathy-causing
E203G or E203Kmutations, which also decrease cell viability
(Zhang and Sarge 2008). A-type lamins can also be modified
by a different SUMO, SUMO1 at two positions, Lys-420 (in
the NLS) and Lys-486 (in the Ig-fold) both in vitro and in vivo
(Simon et al. 2013). SUMOylation of the Ig-fold residue Lys-
486 is disrupted by the familial partial lipodystrophy-causing
G465D and K486N mutations (Simon et al. 2013). Lys-420 is
alternatively modified by SUMO3 in HEK293 cells (Galisson
et al. 2011).

In contrast to lamin A/C residues Lys-201 and Lys-420,
which are located at canonical SUMOylation consensus
sites, Lys-486 is not. Instead, Lys-486 represents a proposed
‘conformational’ consensus SUMOylation site, recognition
of which is proposed to require Gly-465 and negatively
charged residues Glu-460 and Asp-461, located directly
beneath Lys-486 in the Ig-fold domain structure (Krimm et
al. 2002; Simon et al. 2013). Lamins A/C and lamin B1
were also identified as potential targets of SUMO4 in
serum-starved HEK293 cells (Guo et al. 2005).

At any given time only a few percent, at most, of lamins are
SUMOylated (Zhang and Sarge 2008; Simon et al. 2013),
similar to other characterized SUMO substrates (Johnson
2004; Hay 2005). This scarcity suggests the enzymes that
add and remove SUMO either have limited access to lamin
A, or are tightly controlled by other regulators in the nuclei of
specific cell types. The timing and extent to which lamin A is
SUMOylated in human tissues affected by FPLD disease
(Simon et al. 2013) or cardiomyopathy (Zhang and Sarge
2008), and the downstream consequences of modification by
SUMO1, SUMO2 or SUMO3 are open questions.

Acetylation

First discovered as a modification of histones, many other
proteins are now known to be acetylated, including some
(e.g., tubulin) that reside in the cytoplasm (Glozak et al.
2005). Both A- and B-type lamins were reportedly acetylat-
ed in high-throughput studies of HeLa cells (Kim et al.

2006) and a human acute myeloid leukemia cell line
(MV4-11 cells; Choudhary et al. 2009). Eight acetylation
sites were identified in A-type lamins: six in the rod domain
(Lys-97, Lys-108, Lys-114, Lys-270, Lys-311, Lys-378),
one in the NLS (Lys-417) and one in the Ig-fold (Lys-450)
(Fig. 3). Lamin B1 has six acetylation sites (Lys-33, Lys-
123, Lys-157, Lys-181, Lys-271, Lys-483) and lamin B2 has
four (Lys-47, Lys-81, Lys-393, Lys-520) (Fig. 3). All three
human lamins have one known acetylation site in the Ig-fold
domain. Both B-type lamins have a known acetylation site
at the border between the head domain and coiled-coil rod
(Fig. 3; Choudhary et al. 2009). Nothing is known about the
timing or functional consequences of lamin acetylation.
However, since lamins associate with LEM-domain pro-
teins (emerin and LAP2β) and HDAC3 to tether silent
chromatin (Somech et al. 2005; Guelen et al. 2008;
Zullo et al. 2012; Reddy et al. 2008; Demmerle et al.
2012), we speculate lamin acetylation might influence
chromatin tethering.

Ubiquitylation

Ubiquitin was the first discovered small protein modifica-
tion of other proteins. Like SUMO, it is covalently attached
to Lys residues on target proteins; two enzymes (E1, E2)
first prepare ubiquitin for transfer, with target specificity
dictated by a variety of ubiquitin ligase (E3) enzymes
(Neutzner and Neutzner 2012). Ubiquitin can be attached
to another ubiquitin, creating a ‘chain’ that marks the target
for proteolytic degradation. By contrast, attachment of a
single ubiquitin is known to influence target proteins in
diverse ways and regulates many specific cellular pathways
and nuclear functions (Strieter and Korasick 2012). The
impact of poly- and mono-ubiquitinylation, which can have
major roles in the regulation of protein function and the
spatial and temporal coordination of pathways, on the func-
tions of lamins A/C, B1 and B2 are essentially unknown.

High-throughput mass spectrometry analysis of
ubiquitylated proteins in HEK293T cells (Wagner et al.
2011) and HCT-116 cells, a colon adenocarcinoma cell line
(Kim et al. 2011a), revealed widespread ubiquitylation of
human lamins A/C, B1 and B2. Most ubiquitylation sites are
located in the rod domain (Fig. 3) and might therefore influ-
ence lamin dimerization or filament assembly. Whereas poly-
ubiquitylation is assumed to influence lamin turnover, the
functional consequences of lamin mono-ubiquitylation are
unknown.

Several residues can be either ubiquitylated or acetylated
as reported for seven lamin A residues (Lys-97, Lys-108,
Lys-270, Lys-311, Lys-378, Lys-417, Lys-450), four lamin
B1 residues (Lys-123, Lys-157, Lys-271, Lys-483), and two
lamin B2 residues (Lys-81, Lys-520). Lamin A/C Lys-201
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can be either ubiquitylated or SUMO2-modified and Lys-
486 can be either ubiquitylated or SUMO1-modified (Simon
et al. 2013). Lamin A/C Lys-420, located in the NLS, can be
either ubiquitylated, SUMO1-modified or SUMO3-
modified. These competing modifications may differen-
tially regulate lamin interactions and functions in specific
tissues.

Lamins, as major structural proteins of the cell, are
targeted for destruction early in apoptosis. They are directly
cleaved by caspases 1 and 6 (Takahashi et al. 1996),
granzymes A and B (Zhang et al. 2001), and CRNSP
(Ca+2-regulated nuclear scaffold protease; Clawson et al.
1992) at sites located near many ubiquitylation sites
(Fig. 3).

Conclusion and perspectives

In humans, 92 residues in lamins A/C, 52 in lamin B1, and
51 in lamin B2 are reportedly post-translationally modified,
yet the only well-defined functional consequence (mitotic
disassembly) was discovered more than 20 years ago.
Lamins are probably also regulated by other modifications
not discussed here, including ADP ribosylation (Adolph
1987). Furthermore, lamin modifications in other organisms
might differ from those in human lamins both in detail (e.g.,
due to amino acid sequence differences; e.g., mouse lamin
A/C phosphosites Ser-5, Thr-199, Thr-480, Ser-572; Eggert
et al. 1993) and in substance, as diverging metazoan line-
ages evolved. Indeed, species-specific posttranslational
modifications might explain why some lamin A mutations
that cause a specific human disease, yield a different phe-
notype in mice (Stewart et al. 2007).

Modifications have the potential to regulate all aspects of
lamin function, from filament assembly to the nuanced
binding of tissue-specific partners. However, one must keep
these modifications in perspective— even rare modification
sites can be detected by modern mass spectrometry, giving
the erroneous impression that lamins are always modified.
Lamin modifications in living cells are likely to be relatively
rare and transient due to the constant interplay between
different modifying and de-modifying enzymes, with one
known exception: mitosis, when many specific residues are
phosphorylated at >80 % stoichiometry (Olsen et al. 2010;
Ward and Kirschner 1990; Peter et al. 1990; Kill and
Hutchison 1995). Huge gaps in knowledge about the nature,
regulation and consequences of these modifications must be
filled to understand how lamins function, and how specific
mutations lead to disease.
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