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Inactivation of Cdk1/Cyclin B in metaphase-arrested mouse
FT210 cells induces exit from mitosis without chromosome
segregation or cytokinesis and allows passage
through another cell cycle
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Abstract It is well known that inactivation of Cdk1/Cyclin
B is required for cells to exit mitosis. The work reported
here tests the hypothesis that Cdk1/Cyclin B inactivation is
not only necessary but also sufficient to induce mitotic exit
and reestablishment of the interphase state. This hypothesis
predicts that inactivation of Cdk1 in metaphase-arrested
cells will induce the M to G1-phase transition. It is shown
that when mouse FT210 cells (in which Cdk1 is temper-
ature-sensitive) are arrested in metaphase and then shifted
to their non-permissive temperature, they rapidly exit
mitosis as evidenced by reassembly of interphase nuclei,
decondensation of chromosomes, and dephosphorylation of
histones H1 and H3. The resulting interphase cells are
functionally normal as judged by their ability to progress
through another cell cycle. However, they have double the
normal number of chromosomes because they previously
bypassed anaphase, chromosome segregation, and cytoki-
nesis. These results, taken together with other observations
in the literature, strongly suggest that in mammalian cells,
inactivation of Cdk1/cyclin B is the trigger for mitotic exit
and reestablishment of the interphase state.

Introduction

M-phase Promoting Factor (MPF) is a complex of cyclin-
dependent kinase 1 (Cdk1; also known as Cdc2 kinase) and
cyclin B whose activation in late G2-phase of the cell cycle

triggers the onset of mitosis (Norbury and Nurse 1992). Cdk1/
cyclin B activation leads to the phosphorylation of many
proteins (e.g., Gurley et al. 1978; Stukenberg et al. 1997),
which in turn leads to the characteristic events of mitosis
such as reorganization of the cytoskeleton, nuclear envelope
breakdown, chromosome condensation, etc. Nuclear enve-
lope disassembly, for instance, is accompanied by phosphor-
ylation of nuclear lamins by Cdk1 (Ward and Kirschner
1990; Heald and McKeon 1990; Peter et al. 1990).

In this paper, “exit from mitosis” will refer to the actual
process of leaving mitosis and moving to G1-phase, not
necessarily accompanied by anaphase, chromosome segre-
gation, or cytokinesis. During mitotic exit, the events that
occurred during the onset of mitosis are reversed, presum-
ably as a result of dephosphorylation of the same proteins.
For example, reassembly of the nuclear envelope involves
dephosphorylation of the same lamin proteins that were
phosphorylated at the start of mitosis (Glass and Gerace
1990; Peter et al. 1991; Marshall and Wilson 1997).

Exit from mitosis requires inactivation of Cdk1/cyclin B
(Murray et al. 1989; Ghiara et al. 1991; Luca et al. 1991;
Gallant and Nigg 1992; Luo et al. 1994; Rimmington et al.
1994). In normal mitosis, this comes about when the
anaphase promoting complex (APC), a specific ubiquitin
ligase, marks cyclin B and other proteins for destruction by
the proteasome (King et al. 1995; Hixon and Gualberto
2000). Once cyclin B is destroyed, Cdk1 becomes inactive.

The purpose of this work was to test the hypothesis
(Paulson et al. 1996, 1997) that inactivation of Cdk1/cyclin
B is not only necessary but also sufficient to trigger exit
from mitosis. One could imagine that other mitotic events,
independent of Cdk1/cyclin B inactivation, might also be
required for a cell to return to interphase, but this
hypothesis states that exit from mitosis requires only the
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“upstream” events that lead to Cdk1/cyclin B inactivation
(such as APC activation and cyclin B degradation) and
“downstream” events that follow from Cdk1/cyclin B
inactivation (such as protein dephosphorylation).

The hypothesis predicts that inhibition or inactivation of
Cdk1/cyclin B in metaphase-arrested cells, by any available
means, should induce exit from mitosis. This prediction has
been tested and confirmed using temperature-sensitive
mutants in yeasts (Ghiara et al. 1991; He et al. 1997) and
in Drosophila (Sigrist et al. 1995; Onischenko et al. 2005),
but such specific tests have not been done with mammalian
cells. We previously tested the prediction by treating
metaphase-arrested HeLa cells with inhibitors of Cdk1,
and we observed rapid reassembly of interphase nuclei,
decondensation of chromosomes, and dephosphorylation of
histone H1 (Paulson et al. 1996). Similar effects of Cdk1
inhibitors on mammalian cells have been reported by
Nakamura and Antoku (1993), Th’ng et al. (1994), Hall et
al. (1996), and Potapova et al. (2006). However, these
protein kinase inhibitors are not completely specific for
Cdk1 (Gadbois et al. 1992; Vesely et al. 1994; Meijer 1996;
Kitagawa et al. 1993), so the results leave open the
possibility that inactivation of other protein kinases, such
as Cdk2, might also be required for mitotic exit. Further-
more, in none of these cases was it demonstrated that the
resulting interphase cells are normal in the sense of being
capable of continued progression through the cell cycle.
Noton and Diffley (2000) showed that inactivation of Cdk1
in metaphase-arrested Saccharomyces cerevisiae is suffi-
cient for origin resetting, re-replication of DNA, and
passage through another cell cycle. However, the situation
could be more complex in mammalian cells where re-
replication of DNA also requires (apparently independently
of Cdk1 inactivation) the APC- and proteasome-dependent
destruction of geminin (McGarry and Kirschner 1998).

In the work reported here, the above hypothesis was tested
using mouse FT210 cells (Mineo et al. 1986) in which Cdk1
is temperature-sensitive (Th’ng et al. 1990). The hypothesis
predicts that heat treatment of metaphase-arrested FT210
cells should lead to exit from mitosis, and this prediction is
confirmed. Moreover, the interphase cells produced in this
way are able to complete another cell cycle. These results
support the notion that Cdk1/cyclin B inactivation in
metaphase-arrested mammalian cells is by itself sufficient
to trigger reestablishment of the interphase state.

Materials and methods

Media and chemicals

Tissue culture media and components were obtained from
Gibco BRL (Rockville, MD) or Atlanta Biologicals

(Atlanta, GA). The caspase inhibitor zVAD-fmk (benzyl-
oxycarbonyl-Val-Ala-Asp-fluoromethylketone, or caspase
inhibitor 1) was obtained from Calbiochem, dissolved at
50 mM in dimethyl sulfoxide, and stored at −20°C. Other
reagents were obtained from Sigma (St. Louis, MO) unless
otherwise noted.

Cell culture and metaphase arrest

FT210 and FM3A cell lines (Mineo et al. 1986) were
kindly provided by Dr. P. M. Yau and Dr. E. M. Bradbury
of the University of California-Davis. Cells were grown in
suspension at 32°C in 75-cm2 polystyrene tissue culture
flasks in RPMI-1640 medium supplemented with penicillin,
streptomycin, 10% heat-inactivated newborn calf serum,
and 20 mM Na+-Hepes pH 7.4. Cultures were maintained at
between 15 and 60 ml per flask and were diluted daily to
2–3×105 cells/mL. For metaphase arrest, cultures were
treated with 0.25 μg/mL nocodazole (from a 5 mg/mL
stock solution in dimethyl sulfoxide) at 32°C for 24–26 h.
This method typically yields cultures with mitotic indices
of 70–90% for FT210 and 60–80% for FM3A, with little
or no loss of viability. HeLa cells were grown in suspension
at 37°C, synchronized by treatment with thymidine, and
arrested in metaphase with nocodazole as previously
described (Paulson 1982), except that the cultures were
shifted to 32°C at the time of addition of nocodazole.

Cell viability was determined using Trypan blue
(Patterson 1979). To determine mitotic index, a 200-μL
sample of cell culture was mixed with 200 μL of water
containing 20 μg/mL Hoechst 33342. After 5 min at room
temperature, 40 μL of freshly prepared fixative (three
volumes methanol, one volume acetic acid) was added. To
concentrate the sample, fixed cells were pelleted at 735×g for
2 min in an Eppendorf 5415 C microcentrifuge and gently
resuspended in a small portion (about 30 μL) of the
supernatant. Finally, the cells were viewed by epifluorescence
in a Nikon Labophot microscope. Cells containing individual
condensed chromosomes and no nuclear envelope were
scored as mitotic (cf. Fig. 1a); cells in which the chromatin
exhibited a smooth border indicative of a nuclear envelope
were scored as interphase (cf. Fig 1b). At least 200 cells
were counted for each mitotic index determination.

Heat treatments of metaphase-arrested cells

For experiments involving determination of mitotic indices
only, culture aliquots were treated in a circulating water
bath at the prescribed temperature (±0.2°C) in stoppered
tubes or small Erlenmeyer flasks. However, for experiments
involving histone extraction or determination of the
percentage of cells in S-phase, larger quantities of cells
were needed. In these cases, culture aliquots were incubated
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in 250- or 500-mL media bottles containing 11=2 or 2-in.
Teflon-coated magnetic stirring bars and stirred at
60–80 rpm. For the experiment shown in Fig. 6, cells were
heat-treated in 500-mL bottles, but were then placed in
75-cm2 flasks at 32°C for the remainder of the experiment.

Determination of S-phase cells

For the determination of the percentage of cells in S-phase
(Fig. 6), 5-bromo-2′-deoxyuridine (BrdU) was prepared as a
50-mM stock solution in water and stored in the dark at
2–4°C. Anti-BrdU-FLUOS (Boehringer-Mannheim), a
fluorescein-labeled antibody specific for BrdU-containing
DNA, was dissolved in water and diluted with incubation
buffer (Boehringer-Mannheim). Hanks balanced salt solu-
tion (HBSS) consisted of 8.0 g NaCl, 0.4 g KCl, 0.06 g
KH2PO4, and 0.0621 g Na2HPO4 per liter of water.
Microscope slides were cleaned with 70% ethanol, air

dried, coated by covering for 5 min with 50 μL/cm2 of
0.1 mg/mL poly-L-lysine (Sigma, P-7890) in water, washed
several times with water, and thoroughly air-dried.

To label S-phase cells, 25 mL culture aliquots were
incubated in the dark at 32°C with 10 μM BrdU in 75-cm2

flasks. After 30 min, the cells were pelleted by centrifuga-
tion for 5 min at 500×g in a bench top swinging bucket
centrifuge, washed twice with fresh culture medium, and
resuspended to approximately 5×107 cells/mL. Of this cell
suspension, 50 μL was smeared over a clean, poly-L-
lysine-coated slide using a second clean slide. The slide
was blotted at the edges and air-dried.

To visualize BrdU-labeled cells, slides were rehydrated in
HBSS for 15 s, placed in fixative (70% ethanol and 50 mM
glycine, pH 2) for 45 min, washed twice for 2 min in HBSS,
treated 10 min with 4 M HCl to denature DNA, incubated
5 min in each of four changes of HBSS, and incubated
10 min in incubation buffer (Boehringer-Mannheim). After
removal of incubation buffer, Anti-BrdU-FLUOS working
solution was added along with a coverslip, and the slides
were placed in a humidified incubator at 37°C for 45 min.
Finally, labeled cells in randomly selected fields were
counted by epifluorescence (515 nm long pass filter) in a
Nikon Labophot microscope. Total cells were counted in the
same fields under phase contrast.

Determining the number of metaphase chromosomes
per cell

Chromosome spreads from metaphase-arrested cultures
were prepared as described by Musio et al. (1997). Cells
were pelleted, incubated in 75 mM KCl for 20 min at 37°C,
fixed with a freshly prepared mixture of methanol and
acetic acid (3:1 by volume), splashed dropwise onto cold
wet slides from a height of about 20 cm, and finally air-
dried. Unstained chromosome spreads were photographed
under phase contrast using a 20× objective. Micrographs
were printed at a final magnification of about 1,000×, and
the chromosomes in each cell were counted on the prints.

To minimize errors due to clumped chromosomes, over-
lapping chromosome spreads from different cells, loss of
chromosomes due to cell breakage, or addition of stray
chromosomes from other broken cells, the chromosomes of a
given cell were only counted if the following criteria were
met: (1) The cell is not badly distorted but is basically round;
(2) The chromosomes are confined to the visible limits of the
cell; (3) The cell is well separated (at least two cell diameters)
from other nearby metaphase spreads; (4) Individual chro-
mosomes are visible and well separated from one another;
and (5) There are no chromosomes in the background
between cells. Slides were scanned on a raster under phase
contrast, and every metaphase spread which came into view
was examined. Cells that clearly failed to meet the criteria

Fig. 1 Heat treatment of metaphase-arrested FT210 cells induces
reassembly of interphase nuclei and decondensation of chromosomes.
A culture of FT210 growing at 32.0°C was arrested in metaphase by
treatment with nocodazole and then shifted to 40.6°C for 90 min.
Chromosomes and nuclei were visualized by staining with Hoechst
33342 (see “Materials and methods”). a Before heat treatment, most of
the cells are in metaphase arrest (mitotic index=80%). b After heat
treatment, nuclei have reassembled and chromosomes have decon-
densed in virtually all cells. Cell viability, determined by Trypan blue
exclusion, was little affected by the heat treatment
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were not photographed. After printing, when each cell could
be examined more closely, the criteria were applied again.
Only if a cell met all five criteria were its chromosomes
counted and the number included in the data set.

Extraction and gel electrophoresis of histones

For analysis of histone phosphorylation, cell culture
aliquots containing 1.0–1.5×107 cells were quickly chilled
by mixing with three volumes of cold 0.9% NaCl and then
incubated on ice for 30 min. The cells were pelleted,
washed twice with cold 0.9% NaCl solution, and lysed in
3 mL of 10 mM Na+-Hepes pH 7.4, 10 mM NaCl, 5 mM
MgCl2, 0.5 M sucrose, and 0.1% Non-idet P40. The lysis
solution also contained 2 mM p-chloromercuriphenyl
sulfonate or p-hydroxymercuribenzoate to prevent histone
dephosphorylation (Paulson 1980). After pelleting chromo-
somes and nuclei, histones were extracted with 1.0 mL
0.2 M H2SO4, precipitated with four volumes of ethanol
overnight at −20°C, washed with acetone, dried in a
desiccator and redissolved in 1 mM HCl.

For acid-urea polyacrylamide gel electrophoresis, ali-
quots of extracted histones were freeze-dried in 1.5 mL
microcentrifuge tubes in a Centrivap (Labconco), redis-
solved in sample buffer, and run on polyacrylamide gels
containing 2.5 M urea, 5.4% acetic acid, 15% acrylamide,
and 0.1% bisacrylamide as described by Panyim and
Chalkley (1969), except that the gel wells were filled
during pre-electrophoresis with a solution containing 2.5 M
urea, 5.4% acetic acid, and 10% (w/v) polyethylene glycol
8,000 (Sigma) to prevent distortion of the wells (Paulson
and Higley 1999). Acid urea gels were stained with 0.1%
Coomassie Brilliant Blue R250 in 50% methanol, 10%
acetic acid and destained in 5% methanol, 10% acetic acid.

SDS polyacrylamide gels were run as described by
Laemmli and Favre (1973), except that the gels contained
12% acrylamide and 0.321% piperazine diacrylamide
(Bio-Rad). Gels were first stained with ProQ Diamond
fluorescent phosphoprotein-specific stain (Molecular
Probes), imaged using a BioRad FX fluorescence imager,
and subsequently stained with Coomassie Brilliant Blue
R250.

Results

Heat treatment of metaphase-arrested FT210 cells induces
reassembly of interphase nuclei, decondensation
of chromosomes, and dephosphorylation of histones
H1 and H3

It has been shown that the Cdk1 component of MPF is
temperature-sensitive in the mouse mammary carcinoma

cell line FT210 (Th’ng et al. 1990). To test whether
inactivation of Cdk1/cyclin B in mitotic cells is sufficient
to trigger exit from mitosis and reassembly of interphase
nuclei, FT210 cells were arrested in metaphase with
nocodazole at their permissive temperature (32.0°C) and
then shifted to non-permissive temperatures (39.0°C or
higher). At various times, samples were removed, treated
hypotonically, stained with Hoechst 33342, and fixed for
examination in the fluorescence microscope.

Figure 1 shows clearly that heat treatment of metaphase-
arrested FT210 cells induces exit from mitosis. Before heat
treatment, the majority of cells contain condensed meta-
phase chromosomes (Fig. 1a). However, after treatment for
90 min at 40.6°C, more than 90% of the cells contain
interphase nuclei with decondensed chromosomes (Fig. 1b).
This result cannot be explained by preferential death of
metaphase-arrested cells, as the cell viability and cell
concentration dropped by less than 10% during the heat
treatment.

Note that the reassembly of nuclei observed in Fig. 1
occurs in the continued presence of nocodazole and, thus,
in the absence of a mitotic spindle. Cells therefore exit
mitosis without chromosome segregation or cytokinesis.
They clearly do not divide, as the cell population does not
increase and metaphase plates, anaphase or telophase cells,
and G1-pairs are never seen. Presumably, nuclear envelopes
simply reassemble around the clustered chromosomes.
Interestingly, about 20% of the cells contain multiple
micronuclei; an example is seen near the center of
Fig. 1b. This is most likely due to reassembly of nuclear
envelopes around individual chromosomes or small groups
of chromosomes.

The rate of conversion of metaphase-arrested FT210
cells to interphase cells depends upon the temperature at
which they are treated. For example, the process is half
complete in about 20 min at 42.0°C, 30 min at 41.2°C, and
50 min at 40.4°C (Fig. 2). This temperature dependence is
not surprising, as one would expect the heat-labile Cdk1 of
FT210 (Th’ng et al. 1990) to be inactivated more rapidly or
more completely at higher temperatures. Reassembly of
nuclei is not observed in cells left at 32.0°C (Fig. 2).

Histone H1 becomes highly phosphorylated at the onset
of mitosis, but is dephosphorylated during exit from mitosis
(Gurley et al. 1978). The mitosis-specific phosphorylation
of H1 significantly lowers its mobility in acid-urea
polyacrylamide gel electrophoresis (Panyim and Chalkley
1969; Gurley et al. 1978) and, thus, the mitotic and
interphase forms of H1 can be easily distinguished by this
technique. Analysis of FT210 histones on acid-urea gels
shows that histone H1 is dephosphorylated during the
course of heat treatment, roughly in parallel with reassem-
bly of interphase nuclei. For example, in metaphase-
arrested cells treated at 42.0°C, dephosphorylation of H1
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is nearly complete after 25 min (Fig. 3a), at which point the
mitotic index has dropped from its initial value of 75% to
less than 10% (cf. Fig. 2).

Like histone H1, histone H3 also becomes phosphory-
lated at the onset of mitosis and is dephosphorylated during
exit from mitosis (Gurley et al. 1978; Paulson and Taylor
1982). The acid-urea gel in Fig. 3a shows that H3 also
becomes dephosphorylated during heat treatment of meta-
phase-arrested FT210 cells. Dephosphorylation of both
histones H1 and H3 during the heat-treatment has been
confirmed by SDS polyacrylamide gel electrophoresis
followed by staining with a fluorescent phosphoprotein-
specific stain (Fig. 3b).

Effects of heat treatment on metaphase-arrested mouse
FM3A cells and HeLa cells

One could argue that perhaps heat treatment of metaphase-
arrested cells would induce exit from mitosis with any
mammalian cell line and that the results described above
are unrelated to the temperature-sensitivity of Cdk1 in
FT210. To test this possibility, FM3A cells and HeLa cells
were also examined (Figs. 4 and 5). As before, cultures
were arrested in metaphase at 32.0°C and then shifted to
higher temperature. Samples were taken at various times for
determination of mitotic index and for histone extraction.

FM3A is the parent cell line from which FT210 was
produced by mutagenesis (Mineo et al. 1986). When
metaphase-arrested FM3A cells are treated at higher
temperature, reassembly of interphase nuclei and histone

H1 dephosphorylation are observed. However, in nine
repetitions of this experiment, these changes were always
significantly delayed in comparison with FT210 cells
treated in parallel (e.g., Fig. 4). Heat treatment of FM3A
has been shown to lead to loss of Cdk1 kinase activity,
although less rapidly than in FT210, and this is thought to
be due to a heat-shock stress effect rather than a result of
the temperature-sensitivity of Cdk1 itself (Th’ng et al.
1990; Hall, Guo, Bradbury, personal communication).

Fig. 3 Heat treatment of metaphase-arrested FT210 cells induces
dephosphorylation of histones H1 and H3. a Dephosphorylation
observed by acid-urea polyacrylamide gel electrophoresis (Panyim
and Chalkley 1969): Cells were arrested in metaphase with nocoda-
zole (mitotic index, 75%), and histones were acid-extracted after
various times of treatment at 42.0°C. The control (Ctrl, lane 9)
remained at 32.0°C, and histones from unsynchronized (predominant-
ly interphase) cells are shown for comparison in lane 1 (Int). The
positions of some major histone species are shown at the left. H1M and
H3M indicate the positions of mitotic (phosphorylated) histones, and
H1I and H3I indicate the positions of the interphase forms. The gel
was stained with Coomassie blue. b Dephosphorylation observed by
SDS polyacrylamide gel electrophoresis followed by staining with the
phosphospecific stain ProQ Diamond (Molecular Probes): Histones
were acid-extracted from unsynchronized (predominantly interphase)
cells (lane 1); from cells arrested in metaphase at 32°C (mitotic index,
80%; lane 2); from cells arrested as for lane 2 and then treated 80 min
at 42.0°C (lane 3); and from cells arrested as for lane 2 and then
incubated an additional 80 min at 32°C (lane 4). c Same gel as in (b),
but stained with Coomassie blue

Fig. 2 Rate of reassembly of interphase nuclei during heat treatment
of metaphase-arrested FT210 cells at various temperatures. A culture
of FT210 growing at 32.0°C was arrested in metaphase with
nocodazole (mitotic index=69%), and aliquots were then incubated
at 32.0 (control), 39.0, 39.7, 40.4, 41.2, and 42.0°C. Mitotic indices
are plotted as a function of the time of treatment at the indicated
temperatures

Chromosoma (2007) 116:215–225 219



With metaphase-arrested HeLa cells, the mitotic index
also falls during heat treatment, although much more slowly
than with FT210 cells treated in parallel (Fig. 5a). However,
in this case, one does not observe reassembly of interphase
nuclei. Instead, many cells are seen with highly blebbed
plasma membranes and with highly condensed and frag-
mented nuclear material, suggesting apoptosis. Histone H1
dephosphorylation is observed (data not shown), but this is
also characteristic of apoptosis (Kratzmeier et al. 2000).
The occurrence of apoptosis rather than nuclear reassembly
was confirmed by carrying out the heat treatment in the
presence of 200 μM zVAD-fmk (caspase inhibitor 1),
which blocks apoptosis (Fearnhead et al. 1995; Pronk et al.
1996; Thornberry and Lazebnik 1998). In the presence of
zVAD-fmk, the morphological changes characteristic of
apoptosis do not occur, and the HeLa cells remain in
metaphase arrest after the heat treatment (Fig. 5b). By
contrast, zVAD-fmk has no effect on reassembly of nuclei
during heat treatment of metaphase-arrested FT210 cells
(compare Fig. 5a and b). The occurrence of apoptosis as a
result of heat treatment of metaphase-arrested HeLa cells
has been further confirmed by detection of active Caspase 3
and other experiments (Kecskeméti et al. 2002).

Reentry of the cell cycle following heat treatment
of metaphase-arrested FT210 cells

The results described above show that heat treatment of
metaphase-arrested FT210 cells leads to dephosphorylation
of histones, reassembly of nuclei, and decondensation of

chromosomes, three clear indications of exit from mitosis.
But are the nuclei which result from this treatment really
functional? Or do they represent an abnormal state which,
despite its appearance in the light microscope, is unable to
carry out normal interphase functions?

Fig. 5 Comparison of the effects of heat treatment on metaphase-
arrested FT210 and HeLa cells. Cultures of FT210 (○—○) and HeLa
(△—△) were arrested in metaphase with nocodazole at 32°C and then
treated in parallel at 41.4°C either in the absence (a) or in the presence
(b) of 200 μM zVAD-fmk, a specific caspase inhibitor. For ease of
comparison, the ordinate shows the mitotic index as a percentage of
the initial mitotic index, which was 90% for FT210 and 70% for
HeLa. In (a), the decrease in the percentage of metaphase-arrested
FT210 cells is accompanied by an increase in the percentage of
interphase cells, reflecting exit from mitosis. However, the decrease in
the percentage of metaphase-arrested HeLa cells is due to induction of
apoptosis, not reassembly of interphase nuclei. When apoptosis is
blocked with zVAD-fmk (b), the percentage of metaphase-arrested
HeLa cells does not decrease during the heat treatment

Fig. 4 Comparison of the effects of heat treatment on metaphase-
arrested FT210 and FM3A cells. Cultures of FT210 (●—●) and
FM3A (○—○) were arrested in metaphase with nocodazole at 32°C
and then treated in parallel at 41.2°C. For ease of comparison, the
ordinate shows the mitotic index as a percentage of the initial mitotic
index, which was 90% for FT210 and 79% for FM3A
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To answer these questions, the cells were tested for their
ability to progress through another cell cycle after heat
treatment. A nocodazole-arrested FT210 culture (mitotic
index, 87%) was treated at 40.6°C for 90 min to induce
reassembly of nuclei, and then shifted back to the
permissive temperature of 32.0°C. At various times, mitotic
index, cell concentration, cell viability, and percentage of
cells in S-phase were determined.

Figure 6 shows that most cells entered S-phase between
8 and 20 h after the heat treatment. The percentage of cells in
S-phase reached amaximum of nearly 70% after 24 h and then
began to fall as cells completed DNA synthesis. Moreover,
many cells which exited metaphase arrest during the heat
treatment were able to progress to the next mitosis. As
nocodazole was still present in the culture medium, they again
arrested in metaphase, eventually reaching a mitotic index of
more than 50% in this second metaphase arrest (Fig. 6).

As heat treatment of metaphase-arrested FT210 cells
appears to cause exit from mitosis without chromosome
segregation or cytokinesis, cells which reach the next
metaphase would be expected to have double the normal
number of chromosomes. This is indeed the case. Before
heat treatment (T=0 in Fig. 6), metaphase-arrested FT210
cells typically have about 40 chromosomes (e.g., Fig. 7a),
but after heat treatment and further incubation of the cells
for 45 h at 32.0°C (T=45 in Fig. 6), a typical metaphase-
arrested cell has about 80 chromosomes (e.g., Fig. 7b). The
mean number of chromosomes was found to be 41.0±1.4
(n=68) before heat treatment (Fig. 7c) and 81.1±2.6
(n=59) at the next metaphase after heat treatment (Fig. 7d).

These results indicate that a majority of the metaphase-
arrested FT210 cells which exit mitosis as a result of heat-
inactivation of Cdk1 are able to progress through another
cell cycle. When arrested at the next mitosis, they have
twice the usual number of chromosomes, confirming that
the heat treatment caused them to return to interphase
without dividing.

Discussion

Heat treatment of metaphase-arrested mouse FT210 cells
induces exit from mitosis without chromosome segregation
or cytokinesis and allows passage through another cell
cycle

The results presented above show that heat treatment of
metaphase-arrested mouse FT210 cells leads to reassembly
of interphase nuclei (Figs. 1 and 2), decondensation of
chromosomes (Fig. 1), and dephosphorylation of histones H1
and H3 (Fig. 3), all of which are clear signs of exit from
mitosis. On the other hand, segregation of sister chromatids
and cytokinesis do not occur. In the presence of the spindle
poison nocodazole, nuclear envelopes simply reassemble
around the clustered, condensed chromosomes (Glass and
Gerace 1990; Marshall and Wilson 1997), and the cells
return to interphase without dividing. Apparently, nuclear
envelopes sometimes reassemble around individual chromo-
somes or small groups, giving rise to cells with multiple
micronuclei. This phenomenon has also been observed
previously in other situations where mammalian cells escape
from metaphase arrest (Nakamura and Antoku 1993; Paulson
et al. 1996; Ajiro et al. 1996; Brito and Rieder 2006).

After heat-induced exit from mitosis, the cells are able to
replicate their DNA and progress through another cell cycle
(Fig. 6), showing that the treatment does not simply induce
an abnormal, interphase-like state. However, when arrested
at the next metaphase, they have twice the normal number of
chromosomes, confirming that they exited mitosis without
dividing (Fig. 7). Endoreduplicated chromosomes are not
observed, suggesting that even with an active spindle
checkpoint, Cdk1 inactivation somehow leads to loss of
chromosome cohesion, presumably by destruction of cohe-
sins (Nasmyth et al. 2000). Potapova et al. (2006) have also
shown that Cdk1 inhibition in mitotic cells leads to
chromatid separation, provided that the proteasome is active.

Cdk1/cyclin B inactivation as the trigger for exit
from mitosis and reestablishment of the interphase state

The purpose of these experiments was to test the hypothesis
that specific inactivation of Cdk1 in mammalian cells is
sufficient to trigger exit from mitosis. This hypothesis

Fig. 6 Heat treatment of metaphase-arrested FT210 cells leads to
reassembly of functional nuclei as demonstrated by the cells’ ability to
progress through another cell cycle. Nocodazole-arrested FT210 cells
(mitotic index, 87%) were treated for 90 min at 40.6°C, causing the
mitotic index to drop to less than 10%. The cells were then shifted
back to 32.0°C and further incubated. At various times, the mitotic
index (●—●) and the percentage of cells in S-phase (○—○) were
determined
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predicts that as Cdk1 is temperature-sensitive in FT210
(Th’ng et al. 1990), heat treatment of metaphase-arrested
FT210 cells should lead to mitotic exit.

The results presented here tend to confirm the hypothesis
for mammalian cells. In particular, they show that Cdk1 has
a unique function in keeping cells in mitosis which cannot
be substituted by Cdk2. Previous studies using protein
kinase inhibitors to induce mitotic exit in mammalian cells
could not draw this conclusion because those inhibitors
would also have blocked Cdk2 (Gadbois et al. 1992; Vesely
et al. 1994; Meijer 1996; Kitagawa et al. 1993). Studies in
yeast cannot shed light on this problem, as they lack Cdk2
(Nasmyth 1993). Cdk1 may be an essential gene, whereas
Cdk2 apparently is not, at least in part because only Cdk1
can keep cells in mitosis long enough for chromosome
segregation to be executed successfully.

A number of other studies in the literature can also be
considered tests of this hypothesis (although few of them
mention the idea of sufficiency explicitly and none of them

discusses it thoroughly). In all cases, inactivation or
inhibition of Cdk1 leads to signs of exit from mitosis.
First, inhibition of Cdk1 in vivo with various protein kinase
inhibitors leads to exit from mitosis in metaphase-arrested
mammalian cell cultures (Nakamura and Antoku 1993;
Th’ng et al. 1994; Paulson et al. 1996; Hall et al. 1996;
Potapova et al. 2006). Potapova et al. (2006) also showed
that flavopiridol-induced exit from mitosis is reversible as
long as cyclins are not degraded. Second, inhibitors of
Cdk1 induce exit from meiotic metaphase II arrest in
oocytes (Lee et al. 1999; Phillips et al. 2002). Third,
treatment of metaphase-arrested cells with sodium vana-
date, a Cdc25 inhibitor (Dunphy and Kumagai 1991), leads
to inactivation of Cdk1/cyclin B via inhibitory phosphory-
lation of Cdk1 at Tyr-15, and this induces exit from mitosis
in Chinese hamster tsTM13 cells (Ajiro et al. 1996) and in
HeLa cells (J.R. Paulson, unpublished work). Vanadate also
induces exit from meotic metaphase-II arrest in pig oocytes
(Lee et al. 1999). Fourth, inactivation of Cdk1/cyclin B by

Fig. 7 Doubling of chromosome numbers following heat treatment of
nocodazole-arrested FT210 cells. a, b Metaphase spreads viewed by
phase contrast (unstained). a Spread chromosomes of a metaphase-
arrested FT210 cell from T=0 in Fig. 6: This cell contains approximately
40 chromosomes. b Spread chromosomes of an FT210 cell which was
arrested in metaphase, treated at 40.6°C for 90 min and then shifted to
32.0°C and allowed to progress to the next metaphase (T=45 h in Fig. 6):
This cell contains approximately 80 chromosomes. c, d Distribution of

chromosome numbers in metaphase-arrested FT210 cells before heat
treatment and at the next mitosis after heat treatment. c Before heat
treatment (T=0 in Fig. 6): The majority of cells cluster in a peak with a
mean chromosome number of 41.0±1.4 (n=68), but a few cells with
about 80 chromosomes are observed. d After heat treatment (T=45 h in
Fig. 6): The majority of cells cluster in a peak with a mean chromosome
number of 81.1±2.6 (n=59), but a few cells with about 160
chromosomes are observed (not shown)
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heat-treatment of cells carrying appropriate temperature-
sensitive mutations has been shown to induce mitotic exit
in budding yeast (Ghiara et al. 1991), in fission yeast (He et
al. 1997), and in Drosophila embryos (Sigrist et al. 1995;
Onischenko et al. 2005). Finally, inactivation of Cdk1
(Cdc28) in metaphase-arrested S. cerevisiae carrying the
cdc28-as1 mutation, which makes Cdc28p uniquely sensi-
tive to inhibition by an ATP analog (Bishop et al. 2000),
leads to exit from mitosis in those cells (J.M. Keaton, B.G.
Workman, L. Xie and J.R. Paulson, unpublished work).

None of these studies can by itself confirm the
hypothesis with absolute certainty. With any single ap-
proach used to inactivate Cdk1/cyclin B, one cannot
completely rule out the possibility that the treatment
fortuitously triggers another event that is also required for
mitotic exit. However, a wide variety of approaches, in
several different systems, have given similar results. If there
existed another event independent of Cdk1/cyclin B
inactivation that was also required for mitotic exit, that
event would have to be a chance by-product of all the
treatments listed above. As this seems extraordinarily
unlikely, we can confidently conclude that Cdk1/cyclin B
inactivation alone is sufficient to trigger the mitosis to G1-
phase transition.

What happens downstream from Cdk1 inactivation?

Evidence suggests that the dramatic cellular changes
which occur at the onset of mitosis are most likely due
to phosphorylation of proteins by Cdk1 (MPF) and
secondary protein kinases, and that their reversal is due
to dephosphorylation of the same proteins. How does
Cdk1/cyclin B inactivation at the end of mitosis lead to
protein dephosphorylation?

Evidence suggests that protein phosphatase 1 (PP1) is
responsible for the dephosphorylation of proteins, and
particularly nuclear proteins, at the end of mitosis. It
localizes to mitotic chromosomes and is required for mitotic
exit in mammalian cells (Fernandez et al. 1992) and in
fission yeast (Kinoshita et al. 1991), and it is required
downstream from Cdk1 inactivation during exit from
mitosis in S. cerevisiae (J.M. Keaton, B.G. Workman,
L. Xie and J.R. Paulson, unpublished work). During mitotic
exit, PP1 is involved in nuclear reassembly and dephos-
phorylation of histone H1 (Paulson et al. 1996), dephos-
phorylation of nuclear lamin proteins (Peter et al. 1991;
Thompson et al. 1997; Steen et al. 2000), dephosphoryla-
tion of histone H3 (Hsu et al. 2000), and dephosphorylation
of the retinoblastoma protein (pRb) (Ludlow et al. 1993;
Nelson and Ludlow 1997; Nelson et al. 1997; Puntoni and
Villa-Moruzzi 1997a; Yan and Mumby 1999). Other
evidence strongly suggests that PP1 is down-regulated
during mitosis, possibly via phosphorylation of its catalytic

subunit by Cdk1/cyclin B (Yamano et al. 1994; Dohadwala
et al. 1994; Ishii et al. 1996; Puntoni and Villa-Moruzzi
1997b,c; Kwon et al. 1997). Alternatively, PP1 may be
controlled by phosphorylation of regulatory subunits
(Ichikawa et al. 1996; Aggen et al. 2000) or by its
localization in the cell (Andreassen et al. 1998; Haneji et
al. 1998; Kotani et al. 1998).

These observations suggest a simple model in which PP1
is phosphorylated and down-regulated at the onset of
mitosis by Cdk1/cyclin B or other protein kinases, and
later dephosphorylated (by itself or other protein phospha-
tases) and reactivated after Cdk1 inactivation, thus leading
to dephosphorylation of mitotic phosphoproteins and exit
from mitosis. Indeed, inactivation of protein phosphatases
may be just as important a feature of the onset of mitosis as
activation of protein kinases. As initiation of mitosis
involves protein kinases gaining the upper hand over
protein phosphatases, this model would help explain the
hysteresis observed in mitotic onset in which the level of
Cdk1/cyclin B activity required to drive the cell into mitosis
is greater than the level required to maintain the mitotic
state (Sha et al. 2003; Pomerening et al. 2003).

Conclusions

Evidence has been presented that specific inactivation of
Cdk1 in metaphase-arrested mammalian cells is sufficient
to induce exit from mitosis and reestablishment of the
interphase state. It is reasonable to suppose that Cdk1/
cyclin B inactivation, via proteolytic destruction of cyclin
B, is also the trigger for reestablishment of interphase at the
end of normal mitosis, not only in mammalian cells but in
all eukaryotes.

Heat treatment of metaphase-arrested FT210 cells could
provide a tool for inducing mitotic exit quite synchronously
in large populations of mammalian cells for biochemical
and structural studies. Such a system would allow events
downstream from Cdk1/cyclin B inactivation to be studied
independently of the anaphase signal, chromosome segre-
gation, and cytokinesis.
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