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Abstract
In assessments of detrimental health risks from exposures to ionising radiation, many forms of risk to dose–response models 
are available in the literature. The usual practice is to base risk assessment on one specific model and ignore model uncer-
tainty. The analysis illustrated here considers model uncertainty for the outcome all solid cancer incidence, when modelled 
as a function of colon organ dose, using the most recent publicly available data from the Life Span Study on atomic bomb 
survivors of Japan. Seven recent publications reporting all solid cancer risk models currently deemed plausible by the sci-
entific community have been included in a model averaging procedure so that the main conclusions do not depend on just 
one type of model. The models have been estimated with different baselines and presented for males and females at various 
attained ages and ages at exposure, to obtain specially computed model-averaged Excess Relative Risks (ERR) and Excess 
Absolute Risks (EAR). Monte Carlo simulated estimation of uncertainty on excess risks was accounted for by applying 
realisations including correlations in the risk model parameters. Three models were found to weight the model-averaged 
risks most strongly depending on the baseline and information criteria used for the weighting. Fitting all excess risk models 
with the same baseline, one model dominates for both information criteria considered in this study. Based on the analysis 
presented here, it is generally recommended to take model uncertainty into account in future risk analyses.
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Introduction

The research in radiation epidemiology has been devoting 
efforts for many decades, to studying the correlations of 
radiation exposure effects and the related risks of develop-
ing malignant diseases (RERF 2014). Such studies, includ-
ing the Life Span Study (LSS) on atomic bomb survivors 
(e.g., Grant et al. 2017; Hsu et al. 2013; Preston et al. 2007), 
have thoroughly investigated several physical, biological 
and physiological aspects of radiation-related malignancies, 
with the ultimate goal of providing the most accurate model 

to relate ionising radiation exposures with the associated 
disease onset risks (Grant et al. 2017; Preston et al. 2007). 
The information provided by these studies is of paramount 
importance as it constitutes the basis of radiation protection, 
thus impacting activities and situations in which natural or 
artificial ionising radiation is involved (ICRP 2007).

Throughout the decades, the scientific community 
has contributed to an evolution of the models adopted to 
describe the risk related to ionising radiation exposures 
(ICRP 2007). The variety of models proposed comes, not 
only from the diverse approaches and techniques adopted to 
analyse the datasets from radiation epidemiological studies, 
but also, and predominantly, from the facts (a) that more 
studies have gradually become available with the extensive 
use of nuclear technologies and radiation exposure aware-
ness, and (b) that such data-sets, being in fact observational, 
provide more reliable and accurate information the longer 
the follow-up period of the cohort.

Research groups and committees often recommend 
the adoption of the developed radiation exposure risk 
models based on their goodness of fit to the analysed 
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epidemiological datasets, while retaining the simplest math-
ematical form that adequately captures trends in the data, 
i.e., the minimum number of parameters (Grant et al. 2017; 
Little et al. 2008). To this end, a number of statistical meas-
ures, such as the Akaike Information Criterion (AIC) or the 
Bayesian Information Criterion (BIC), have been used to 
give a metric, a criterion, to objectively quantify the good-
ness of fit, additionally taking the number of parameters into 
account (Akaike 1972; Schwarz 1978).

However, due to the existing non-negligible degree of 
uncertainty of the models proposed and the variety of epi-
demiological data-sets available, the choice of preferred 
models to assess the risk of developing cancer remains 
anything but a trivial task (UNSCEAR 2006). As a result, 
when one wishes to calculate radiation-induced cancer risks, 
one is typically confronted with several co-existing up-to-
date models, each of which is often supported by a radia-
tion protection body or committee, that might differ in their 
mathematical form and yield somewhat different assess-
ments and associated uncertainties (BEIR 2006; ICRP 2007; 
UNSCEAR 2006).

From this point of view, a single preferred model for 
the assessment of the onset risk of a specific cancer type 
or category would be desirable. Statistical techniques on 
Multi-Model Inference (MMI) could provide such a pre-
ferred model (Zhang and Townsend 2009). The latter 
would facilitate risk assessment comparisons performed by 
different radiation protection bodies or groups and, more 
fundamentally, would provide a better estimate of the risk 
by considering the uncertainty involved in model choice, as 
by definition it encompasses models obtained with different 
approaches and data-sets (Walsh 2007). An effort in this 
direction was initiated by Walsh and Kaiser (2011) and con-
tinued by Kaiser et al. (2012), Walsh and Schneider (2013) 
and Schöllnberger et al. (2012, 2018, 2020) who applied 
MMI to combine either all the published models or models 
from a pre-defined set with the aim of obtaining a more 
comprehensive estimate of the radiation-related excess risk 
for several outcomes, also accounting for model uncertainty.

In this study, the focus is on all solid cancer risks, with 
the twofold objective of comparing excess risk estimates 
and related uncertainties of eleven currently published and 
recommended risk models, and of performing multi-model 
inference on these with the aim of building a single “com-
posite model” obtained by averaging all the eleven start-
ing models with due weights in order to account for model 
choice uncertainty. Estimation uncertainty on the excess risk 
provided by each model studied, including the composite 
model, has been assessed with Monte Carlo (MC) calcula-
tions. Since the accuracy yielded by MC is influenced by 
the number of realisations defined, in this piece of work a 
section was dedicated to presenting the results of the present 

investigations on this topic, which also justify the number of 
realisations adopted throughout the study.

Materials and methods

Data and software

The models were fitted to the most recent LSS solid can-
cer incidence data of the atomic bomb survivors, published 
by Grant et al. (2017) DATAFILE: https:// www. rerf. or. jp/ 
en/ libra ry/ data- en/ lssin c07/. As described by Grant et al. 
(2017), first solid cancer incidence follow-up data were col-
lected from cities and prefecture cancer incidence registries. 
As the data-set focuses on solid cancers, all lymphohemat-
opoietic malignancies, such as leukaemia, lymphoma and 
myeloma, were not considered. The Dosimetry System 2002 
Revision 1 (DS02R1) was used for the estimation of the 
atomic bombing survivors exposures (Cullings et al. 2017). 
The weighted colon dose D, used to relate the risk of malig-
nancies with radiation exposure, assumes in its calculation a 
value for the neutron relative biological effectiveness (RBE) 
of 10 relative to gammas; i.e., for each given organ, the neu-
tron absorbed dose was multiplied by a factor 10 before 
being summed to the gamma absorbed dose contribution.

Considered models

In the present study, all the published radiation-related solid 
cancer risk models that are known to the authors and cur-
rently deemed plausible by the scientific community were 
considered. In order to compare them, models were re-fitted 
to the most recent publicly available solid cancer incidence 
data of the A-bomb survivors LSS (Grant et al. 2017). Mod-
els based on mortality data were included in the analysis 
under the assumption that model forms developed and fitted 
using cancer mortality data can be directly applied and fit-
ted to cancer incidence data. The disease models used are 
Poisson regression models to describe the distribution of the 
number of solid cancer incidence cases in a given stratum of 
the LSS cohort. The expected number of solid cancer cases 
in a stratum is given by:

where PY  is the number of person-years at risk in this stra-
tum and λ(a, e, d, s, c) is the cancer incidence rate in this 
stratum with average attained age a, average age at exposure 
e, average dose d, sex s and city c.

All solid cancer risk models have historically mainly 
been characterised by linear dose–response trends (BEIR 
2006; ICRP 2007). However, recent analyses including the 
most recent follow-up data, have with due uncertainties 

(1)PY ⋅ λ(a, e, d, s, c),

https://www.rerf.or.jp/en/library/data-en/lssinc07/
https://www.rerf.or.jp/en/library/data-en/lssinc07/


19Radiation and Environmental Biophysics (2023) 62:17–34 

1 3

suggested that a linear-quadratic risk dependence on the 
dose may need to be considered, rather than just a pure lin-
ear one (Grant et al. 2017; Ozasa et al. 2012; UNSCEAR 
2006; Brenner et al. 2022). In particular, the recent works 
of Ozasa et al. (2012) and Brenner et al. (2022) specifically 
focused on investigating this non-linear dose–response 
hypothesis, finding upward curvatures of the excess risk 
with dose for both males and females when mortality data 
were used in the analysis, and for males only, when inci-
dence data were considered. Though the hypothesis of 
a curvature in the dose–response is yet to be generally 
confirmed by the scientific community, its plausibility has 
increased as more recent LSS data have become available. 
For each model, it was therefore decided to implement 
both the linear and the linear-quadratic dose–response 
forms. Exceptions are the BEIRVII Phase 2 (2006) model, 
for which only a linear expression was published, and the 
model of Little et al. (2008), whose form is linear-quad-
ratic-exponential, i.e., considering an additional term that 
depends on the dose exponentially. All the risk models 
considered have the form:

where λ(a, e, d, s, c) is the cancer incidence rate, λ0(a, s, e, c) 
is the baseline cancer incidence rate, and EAR(a, e, d, s) and 
ERR(a, e, d, s) are the radiation-related Excess Absolute Risk 
(EAR) and Excess Relative Risk (ERR) functions in a given 
stratum, respectively.

In the formulation of the excess risks, the dose–response 
(either linear or linear-quadratic) is multiplied by additional 
terms, accounting for risk modification effects, related for 
example to the age attained, age at exposure or sex. A sum-
mary of the models considered, including the mathematical 
expression of their baseline rates and excess risk and their 
relevant risk coefficients, is shown in Table 1.

In the model published in the BEIR VII Phase 2 report 
(2006), the relative risk baseline rate function for the ERR 
model was handled by stratification on sex, city of exposure 
(Hiroshima or Nagasaki), age at exposure, and attained age, 
for a total of 500 parameters to estimate, as described by 
Pierce et al. (1996). The baseline rate function for the EAR 
model was modelled using the parametric model described 
by Preston et al. (2007). Both forms of the excess risks 
depend linearly on the dose, exponentially on the age at 
exposure, and are proportional to a certain power of the age 
attained. The linear dose risk coefficient α is sex-specific.

The models published by UNSCEAR (2006), with linear 
and linear-quadratic dose dependences, were considered. 
These models are based on cancer mortality data. The abso-
lute and relative baseline rates are described by a 22-terms 
parametric function depending on sex (s), attained age (a), 

(2)
λ(a, e, d, s, c) = λ0(a, s, e, c) + EAR(a, e, d, s)

λ(a, e, d, s, c) = λ0(a, s, e, c) ⋅ [1 + ERR(a, e, d, s)]

age at exposure (e) and time since exposure (a–e). The 
excess risks are also a function of the same parameters.

The LSS linear and linear-quadratic models published 
by Preston et al. (2007) considered in the present study are 
based on cancer incidence data. They feature a sex-specific 
parametric expression of the baseline rates, for both rela-
tive and absolute risks. The baseline rate model included 
city-specific (c) effects for the not-in-city (NIC) group. Both 
excess risks depend on sex, age at exposure and attained age. 
An additional term to restrict the considered dose interval to 
between 0 and 4 Gy was added. A dose of 4 Gy was assigned 
to survivors whose exposures were estimated to be larger 
than 4 Gy.

The analysed linear and linear-quadratic dose–response 
risk models proposed by Grant et al. (2017), obtained by 
cancer incidence data, are characterised by baseline rates for 
unexposed non-smokers modelled as sex-specific quadratic 
splines in logarithmic attained age with sex-specific log-
linear trends in year of birth (byr) (i.e., age at exposure). 
The baseline rate model included city-specific (c) effects 
for the NIC group. The form of the excess risks is identical 
to the one proposed by Preston et al. (2007). The linear and 
linear-quadratic mortality-based dose–response risk models 
proposed by Ozasa et al. (2012) are similar in their math-
ematical formulation to the models suggested by Preston 
et al. (2007) and Grant et al. (2017). Their main distinction 
with the aforementioned models is seen in how their baseline 
rates were defined: in the case of the analysis of Ozasa et al. 
(2012), the baselines were modelled by stratification on city, 
sex, age at exposure and attained age (500 parameters) in 
their relative risk form, and by a 10-term parametric expres-
sion, based on the same set of variables, in the absolute risk 
form.

The models proposed by Leuraud et al. (2021), based 
on both the INWORKS and the LSS data-sets, feature a 
baseline rate modelled by stratification on city, sex, year 
of birth (5 years intervals), attained age (5 years interval) 
(547 parameters) for the relative risk and by a parametric 
expression, equivalent to the one described by Ozasa et al. 
(2012) for the absolute risk. The expression of the linear and 
linear-quadratic dose–response models depends also on sex, 
age at exposure and attained age. In particular the model 
adopts three different values of the parameter pertaining to 
the attained age risk modifier, depending on three attained 
age categories (< 60 years, 60–80 years, > 80 years).

The paper by Little et al. (2008) suggests the adoption 
of two dose–response risk models obtained from mortality 
data. The first, with a linear-quadratic dose dependence, is 
identical to the one proposed by UNSCEAR (2006) and, 
therefore, already accounted as such in the following analy-
sis. The second is a variation of the linear-quadratic dose 
dependence of the risk, which includes in the excess risk 
expression an exponential third term as function of the 
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Table 1  List of risk models analysed in the present study

D represents weighted absorbed colon dose in Gy, e and a respectively indicate the age at exposure and the attained age, and s the sex. Risk coef-
ficients in the baseline rate expressions are defined with the letter k. Risk coefficients in the excess risk forms are indicated with Greek letters. 
For Grant et al. (2017), Ozasa et al. (2012), INWORKS-Leuraud et al. (2021) and UNSCEAR (2006) models, the dose–response in the excess 
risk form reported is linear-quadratic. However, each of these models was also considered in their linear form (i.e. β = 0). In the linear form, the 
number of risk coefficients is reduced by 1. RR denotes relative risk and AR absolute risk. c represents the city-specific effects and NIC the not-
in-city group, byr denotes birth year, naga represents residents in Nagasaki and K the total shielded kerma. Indexed expressions like e.g. e>50 
denote a threshold above which the ages are considered in the relevant expression.  Nb1 denotes the number of risk coefficients in the baseline 
and  Nb2 the number of risk coefficients in the excess risk parametrization

Model Baseline rates Nb1 Excess risks Nb2

BEIR VII 
phase 2

(2006)

RR: Stratification on sex, city, age at exposure, and attained age (500 
strata)

AR: exp
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INWORKS-
Leuraud 
(2021)
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dose. However, the risk as function of dose, obtained fitting 
this second model to the LSS incidence data, assumed an 
implausible trend, particularly at high doses. In fact, since 
the quadratic dose risk coefficient (β, Table 1) was nega-
tive rather than positive, and the exponential cell sterilisa-
tion coefficient (δ, Table 1) positive rather than negative, 
the excess risks decreased drastically with increasing dose. 
It was hence decided not to include this model in further 
analyses discussed in this study. To fit models to the data, 
the Epicure/AMFIT software, Version 2.00.02 (Preston et al. 
1993), was used.

Multi‑model inference (MMI)

Risk model selection based on the Akaike’s information cri-
terion (AIC) (Akaike 1972, 1978) has been already used in 
the radiation epidemiology field, with the purpose of giv-
ing a metric to compare different risk models and hence 
select the preferred one (Posada and Buckley 2004). The 
AIC produces a scalar, based on maximum likelihood esti-
mates (MLEs), that summarises, based on maximum likeli-
hood method, how well a model fits the data, relative to 
each of the other considered models, while considering 
how many parameters are used in a model (Akaike 1972). 
Preferable models show smaller AIC values, obtained when 
good agreement between the data and the prediction of the 
model with the fewest number of parameters occurs (Akaike 
1974). Another metric that is used for model selection is the 
Bayesian Information Criterion (BIC) which uses a rough 
asymptotic approximation to the Bayes factors developed 
by Schwarz (Schwarz 1978). The BIC includes the number 
of parameters and the deviance, and it also considers the 
number of data points for individual data or the number of 
data groups or cells for binned data (Walsh 2007). Similar 
to the AIC, the preferable models show smaller BIC values.

Besides constituting a consolidated methodology 
to choose a favourite among a set of models, the AIC 
and BIC also create the basis for multi-model inference 
(MMI), where, instead of just adopting the first-ranked 
model for use in risk assessment, a composite model is 
built as a weighted combination of the existing models, 
whose relative weights are determined by the AIC or BIC 
(Posada and Buckley 2004). Consequently, the largest 
weight will be assigned to the preferred model, which 
ranked first, and therefore, will predominantly influence 
the composite model. The second-ranked model will have 
the second largest weight, and hence will have the second 
largest influence on the composite model, and so forth for 
all the models considered.

Similarly to what was proposed by Walsh and Kaiser 
(2011) regarding the radiation-induced leukaemia risk, in 
this study, the AIC was used here to combine several of 
the all solid cancer risk models suggested by the research 

community into a composite single model. However, two 
different approaches were considered in this study to cal-
culate the model-averaged (composite) relative risk esti-
mate. In a first approach the models as shown in Table 1 
with the according baseline rates and excess risk para-
metrisation were fitted to the most recent publicly avail-
able solid cancer incidence data of the A-bomb survivors 
LSS (Grant et al. 2017). The resulting excess risks will 
be called excess risks calculated with variable baseline in 
the further text. In a second approach, only the baselines 
were fitted to the dataset to find the best fitting baseline, 
relative to each of the other considered baselines, with 
AIC. Then the best fitting baseline has been used to fit 
all excess risk models shown in Table 1 to the dataset 
in order to estimate the model-averaged excess risk only 
based on the comparison of the radiation risk models. 
These excess risks will be called excess risks with con-
stant baseline in the further context.

The resulting composite excess risk model is obtained 
by a weighted average of all the m models illustrated 
above and in Table 1. For each model i ∈ {1,…,m}, the 
associated normalized weight wi has been calculated 
using Eq. (3) (Zhang and Townsend 2009) from the 
respective AIC values obtained from the fittings. Sets of 
Akaike weights were separately assigned to the ERR and 
EAR models.

The model-averaged (composite) ERR estimate 
ERRMMI was obtained by a weighted sum of the ERRs 
estimated in each of the m ERR models described above 
and in Table 1, according to Eq. (4). The same procedure 
was adopted to estimate the composite EAR model.

Additionally, to the AIC, the BIC and the according 
weights have been assessed for all models considered 
in the MMI in order to draw a comparison of these two 
metrics. The results and differences are discussed in the 
according sections later in the article. 

Uncertainties

Uncertainties on the risk coefficients, expressed as 95% 
confidence intervals (CI), were estimated by Monte Carlo 
(MC) methods. Specifically, for each model, attained age, 
age at exposure, sex and dose value, realisations of the 
excess risk estimator were generated by randomly sam-
pling the values for all the risk coefficients estimators 

(3)wi =
exp

�
−0.5

�
AICi − min(AIC)

��
∑m

j=1
exp

�
−0.5

�
AICj − min(AIC)

��

(4)ERRMMI =

m∑
i=1

wiERRi
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(defining this excess risk) from their relative asymptotic 
joint normal distributions (i.e., accounting for their esti-
mated covariance matrices).

It is known that the precision of any MC estimator 
reduces with decreasing number of realisations. Thus, for 
a low number of realisations, the MC estimator of any 
unknown quantity of interest may appreciably vary: that is, 
if one is to repeat the same simulation, it can substantially 
differ from the previously calculated one. As the number 
of realisations increases, the MC estimator computed from 
repeated simulations tends to converge, yielding equiva-
lent results plus/minus an error, which becomes smaller 
the higher the number of realisations. When assessing with 
MC the estimation uncertainty of any excess risk coef-
ficient the precision of the associated MC estimator will 
then likewise be influenced by the number of realisations. 
Hence, as a basis for the subsequent analyses, first the 
magnitudes of the model uncertainties were studied to 
identify a threshold in the number of realisations beyond 
which the MC estimator of the width of the 95% CI on 
the excess risk converges and does not further appreciably 
vary. To study how the widths of the MC estimated 95% 
CIs on the excess risks vary with the number of realisa-
tions, a set of simulations was carried out with increasing 
values of the number of realisations: 5, 10, 20, 50, 100, 
200, 500, 1,000, 2,000, 5,000 and 10,000. For each num-
ber of realisations considered, MC-runs were repeated six 
times to obtain the average value and standard deviation 
of the MC estimator of the widths of the 95% CI on the 
excess risk. The underestimation of the standard deviation 
of the MC estimator arising from the limited number of 
samples (six runs) was corrected multiplying by a factor 
2.45, obtained from the corresponding t-distribution (ISO 
IEC Guide 98-3 2009).

For each model, the uncertainty on the MLEs associated 
to the ERRs and EARs as function of dose and attained age 
has been expressed computing the 2.5% and the 97.5% per-
centiles on the  103 MC-realisations. The uncertainty on the 
model-averaged (or composite) excess risk estimate (EAR 
or ERR) was estimated calculating, the 2.5% and 97.5% 
weighted percentiles associated to the mixture of empirical 
distributions of excess risk estimates obtained from all the 
MC risk realisations of each starting model, appropriately 
weighted using the corresponding Akaike and BIC weights 
(wi). This was performed for each dose and attained age in 
order to get the 95% CI for every excess risk estimate as 
function of these variables.

Results

Uncertainty assessment

The MC approach to assess the estimated uncertainty on an 
ERR, EAR or model-averaged excess risk was first investi-
gated. Specifically, the question to answer was: what is the 
minimum number of MC-realisations required to be confi-
dent that the MC estimator of the width of the 95% CI on a 
given excess risk does not appreciably vary if one is to repeat 
that simulation?

As an example, Fig. 1a shows the six-runs average esti-
mated value and estimated uncertainty of the 95% CI width 
of the excess risk, using the linear Grant et al. (2017) excess 
absolute risk model (EAR), considering an attained age of 
70 years and an age at exposure of 30 years. The uncer-
tainties were acquired using the procedure described above, 
once the model was fitted with the Epicure/AMFIT software, 
for three different doses: 0.5 Gy (red dots), 1 Gy (green 

Fig. 1  a Mean of the widths of the 95% CI values on the EAR reali-
sations for women versus number of simulations, calculated using the 
Grant et  al. (2017) linear model for different weighted colon doses 
of 0.5 Gy, 1 Gy and 2 Gy (attained age = 70 years, age at exposure 
30 years). The error bars represent the standard error of the widths of 
the 95% CI excess risk. b Uncertainty of the estimated 95% CI excess 

risk values versus number of simulations. Black points indicate the 
relative standard error of the 1 Gy dataset illustrated in a. The dot-
ted blue and the dashed red lines, respectively, show the theoretical 
MC- convergence, proportional to N−½, and the number of simulation 
threshold above which an uncertainty on the CI error is kept below 
5% (colour figure online)
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triangles) and 2 Gy (blue squares). Error bars represent the 
standard deviation of the uncertainty on the width of the 
95% CI, obtained from the six MC-runs at each number of 
realisations investigated.

According to Fig. 1a, for a number of simulations < 100, 
one realises that MC can on average overestimate the 95% 
CI width of the excess risk. Besides, the variability of the 
MC estimator of the quantity of interest experienced for such 
limited number of realisations is extremely large, implying 

that any single MC-run can in principle yield quite a dif-
ferent value. As the number of simulations increases, the 
average estimated value of the 95% CI width stabilises for 
all the three doses considered, with the error bars seen to 
progressively reduce and becoming negligible beyond 
 103 realisations. The latter statement is also supported by 
Fig. 1b, where the relative uncertainty on the dose-averaged 
95% CI values (black dots) is plotted against the number of 
realisations considered. With the aid of this plot, one can set 

Fig. 2  Sex-specific excess relative risks (ERRs) for the models fit-
ted with the variable baseline as function of weighted colon dose for 
each model considered in this study, calculated at an attained age of 

70 years and age at exposure of 30 years. Shaded areas represent 95% 
confidence intervals (CIs)

Table 2  Estimation of excess relative risk (ERR) at 1 Gy, for each model and sex, with Monte Carlo simulated confidence intervals (95% CI) in 
brackets

Age at exposure of 30 years and attained age of 70 years

Model Sex ERR with variable 
baseline (95% CI)

ERR with constant 
baseline (95% CI)

Model Sex ERR with variable 
baseline (95% CI)

ERR with constant 
baseline (95% CI)

GrantL Men 0.36 (0.28;0.45) 0.34 (0.26;0.43) GrantL Women 0.65 (0.54;0.77) 0.62
(0.50;0.74)

GrantLQ Men 0.34 (0.26;0.42) 0.32 (0.24;0.41) GrantLQ Women 0.61 (0.50;0.74) 0.58 (0.47;0.69)
BEIR Men 0.29 (0.20;0.36) 0.27 (0.19;0.34) BEIR Women 0.55 (0.43;0.67) 0.51 (0.40;0.61)
UNSCEARL Men 0.38 (0.30;0.46) 0.36 (0.28;0.44) UNSCEARL Women 0.68 (0.57;0.79) 0.64 (0.54;0.75)
UNSCEARLQ Men 0.38 (0.30;0.47) 0.35 (0.27;0.44) UNSCEARLQ Women 0.69 (0.57;0.80) 0.63

(0.53;0.75)
OzasaL Men 0.36 (0.28;0.45) As in GrantL OzasaL Women 0.67 (0.55;0.79) As in GrantL
OzasaLQ Men 0.35 (0.26;0.44) As in GrantLQ OzasaLQ Women 0.65 (0.54;0.78) As in GrantLQ
INWORKSL Men 0.36 (0.27;0.45) 0.32 (0.24;0.41) INWORKSL Women 0.66 (0.53;0.79) 0.59 (0.47;0.72)
INWORKSLQ Men 0.34 (0.26;0.44) 0.30 (0.22;0.39) INWORKSLQ Women 0.64 (0.51;0.77) 0.56 (0.43;0.69)
PrestonL Men 0.34 (0.26;0.42) As in GrantL PrestonL Women 0.62 (0.50;0.74) As in GrantL
PrestonLQ Men 0.32 (0.26;0.38) As in GrantLQ PrestonLQ Women 0.58 (0.47;0.69) As in GrantLQ
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a threshold in the number of simulations required to keep 
the uncertainty on the 95% CI values below a specific target.

In this work, a relative uncertainty on the 95% CI val-
ues < 5% (represented by the dashed red line in Fig. 1b) was 
chosen, implying therefore the need to run  103 simulations 
for each model, dose value and attained age considered. The 
threshold at  103 realisations is also in agreement with the 
theoretical MC convergence ∝ 1∕

√
N , where N is the number 

of realisations, represented by the dotted blue line. As can 
be noted in Fig. 1a, b, a further increase in the numbers of 
simulations would yield only a limited improvement in the 
reduction of uncertainties, while leading to an inconvenient 
dilation of MC-calculation times.

Model comparison

Risks as function of dose

Figure 2 illustrates the comparison of the estimated ERR 
model trends which were calculated with variable baselines 
as function of the weighted colon dose. A list of the val-
ues found for each risk coefficient for the models shown in 
Table 1 after fitting is given in Table 6, in the Appendix. 
The comparison is presented for each sex: solid red lines 
indicate estimated ERRs for women, whereas dashed blue 
lines identify the ERR trends of males. The attained age 
was fixed at 70 years and the age at exposure at 30 years. 

The shadowed areas represent the 95% CI, obtained by the 
MC-calculations. With the exception of the BEIR VII Phase 
2 (2006) model, all the models are presented in their linear 
(L) and linear-quadratic (LQ) dose-dependence formulation. 
Below 1.5 Gy, little deviation (< 6%) of the LQ models from 
their respective L-models is noticed.

The best fitting baseline to the Grant et al. (2017) dataset 
has been found to be the baseline from the PrestonL model. 
All excess risk models have therefore been fitted addition-
ally with the PrestonL baseline parametrisation. A list of the 
resulting values for the risk coefficients is given in Table 7 in 
the Appendix. For the estimated ERR models, fitted with 
the PrestonL baseline, the curves are very similar to the 
estimated ERR-total models and shown in the Appendix 
(Fig. 6).

In the dose range below 1.5 Gy, all the models consid-
ered predict similar risks as function of the dose, as can be 
inferred comparing the resulting ERRs in Table 2, which 
shows average estimated ERRs (with standard deviations) 
at 1 Gy for the models with variable baselines of 0.64 ± 0.04 
and 0.35 ± 0.02 and for the models with constant baseline 
of 0.59 ± 0.05 and 0.32 ± 0.03 for women and men, respec-
tively. At higher doses (above 1.5 Gy), where the discrepan-
cies among the models and the dose dependences become 
more evident, one can appreciate the less pronounced influ-
ence of the quadratic term in the UNSCEAR (2006) model 

Fig. 3  Sex-specific excess absolute risks (EARs) per  104 person years 
(PYRS) as function of weighted colon dose for each model fitted 
with the variable baseline considered in this study, calculated at an 

attained age of 70 years and age at exposure of 30 years. Shaded areas 
represent 95% confidence intervals (CIs)
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compared to the others, only slightly deviating from linearity 
even at higher doses ( �∕� ≈ 10

−2).
Concerning the EAR, dose–response shapes similar to the 

ERR findings can be inferred from the graphs in Fig. 3, where 
the sex-specific estimated EAR per  104 PYRS for the models 
fitted with the variable baselines as function of the weighted 
colon dose is reported for each model investigated. The accord-
ing figure of the estimated EAR per  104 PYRS for the models 
fitted with the constant baseline is shown in the Appendix in 
Fig. 7. Dashed blue lines represent the estimated EAR-model 
trends for males and solid red lines the ones for women. Also 

in the case of EARs, for doses < 1.5 Gy, only small discrepan-
cies among the L- and LQ-models are observed (< 7%); the 
EAR estimates at a dose of 1 Gy (a = 70, e = 30) reported in 
Table 3 are in agreement, with average estimated EARs (and 
standard deviations) calculated with the estimated EAR from 
all models of Table 3 of 61 ± 5 per  104 PYRS and 46 ± 5 per  104 
PYRS for the models fitted with variable baseline for women 
and men, respectively. The according EAR estimates for the 
models fitted with constant baseline are 59 ± 6 per  104 PYRS 
and 44 ± 5 per  104 PYRS for the models for women and men, 
respectively. As noticed for the ERRs, EAR models fitted with 

Table 3  Estimation of excess absolute risk (EAR) per  104 PYRS at 1 Gy, for each model and sex, with Monte Carlo simulated confidence inter-
vals (95% CI) in brackets

Age at exposure of 30 years and attained age of 70 years

Model Sex EAR (95% CI) with 
variable baseline 
(95% CI)

EAR (95% CI) with 
constant baseline 
(95% CI)

Model Sex EAR (95% CI) with 
variable baseline 
(95% CI)

EAR (95% CI) with 
constant baseline (95% 
CI)

GrantL Men 46 (35;59) 44 (33;56) GrantL Women 61 (51;71) 59 (49;69)
GrantLQ Men 43 (32;56) 42 (31;54) GrantLQ Women 58 (48;68) 56 (46;67)
BEIR Men 36 (26;46) 33 (24;43) BEIR Women 49 (40;58) 46 (38;55)
UNSCEARL Men 51 (39;63) 48 (36;60) UNSCEARL Women 66 (56;75) 63 (53;73)
UNSCEARLQ Men 51 (39;63) 47 (34;59) UNSCEARLQ Women 66 (56;76) 62 (52;72)
OzasaL Men 47 (39;56) As in GrantL OzasaL Women 62 (50;78) As in GrantL
OzasaLQ Men 46 (34;58) As in GrantLQ OzasaLQ Women 60 (50;70) As in GrantLQ
INWORKSL Men 52 (39;67) 48 (36;63) INWORKSL Women 67 (55;79) 64 (52;76)
INWORKSLQ Men 50 (38;65) 45 (33;58) INWORKSLQ Women 64 (52;77) 60 (49;58)
PrestonL Men 44 (33;57) As in GrantL PrestonL Women 59 (49;69) As in GrantL
PrestonLQ Men 42 (34;50) As in GrantLQ PrestonLQ Women 56 (45;66) As in GrantLQ

Fig. 4  Sex-specific excess relative risks (ERRs) for the models fitted with the variable baseline as function of the attained age for each model 
considered in this study, assuming a weighted colon dose of 1 Gy. Shaded areas represent 95% confidence intervals (CIs)
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variable baseline at doses larger than 2 Gy exhibit larger vari-
ability, with the UNSCEARLQ model being fairly close to lin-
earity ( �∕� ≈ 6 ⋅ 10

−4).

Risks as function of attained age

In Fig. 4 (ERR) and Fig. 5 (EAR), the comparison of the 
models fitted with variable baselines as function of attained 
age, assuming a dose of 1 Gy and an age at exposure of 
30 years, is illustrated. The according figures for models 
fitted with the PrestonL baseline are shown in Fig. 8 (ERR) 
and Fig. 9 (EAR) in the Appendix. Within each panel, red 
solid curves indicate the ERR trend for women, whereas 
blue dashed lines reproduce the one for men. Shadowed 
areas indicate the 95% CI. Concerning ERRs (Fig. 4 and 
8), albeit the general trend follows a reduction on the risk 
with increasing attained age, a clear difference between 
the UNSCEAR models and the rest of the models can be 
appreciated at attained ages in the range 30–50 years. This 
difference is a consequence of the mathematical expression 
of the UNSCEAR models, developed using a different data 
set, which has a term modelling the time since exposure 
a–e. According to UNSCEAR models, the ERR gradually 
increases in the first 10–15 years following the exposure, 
before experiencing a reduction similarly to other models, 
when the time since exposure exceeds 20 years. Another evi-
dent feature in the diagrams in Figs. 4 and 8 is the presence 

of discontinuities observable in the INWORKS-Leuraud 
models. The reason for these discontinuities straightfor-
wardly follows from the expression of the excess risk. In fact, 
as described above, the risk coefficient related to attained 
age is assumed to take three different values according to 
the defined attained age intervals, to provide a better fit of 
the data (Leuraud et al. 2021). Discontinuities are therefore 
expected at the boundaries of these intervals.

Figures 5 and 9 predictably report an increasing behav-
iour of the EAR with attained age. Besides the aforemen-
tioned discontinuities observed in the INWORKS-Leuraud 
(2021) model, it should be noted that the UNSCEAR 
(2006) models generally present higher risks with increas-
ing attained age, as compared to the other models that 
yield comparable excess risks. It is also noteworthy that 
UNSCEAR (2006) models indicate no excess absolute risk 
at the time of exposure (30 years), whereas all the other 
models display a positive EAR-offset. This behaviour of 
the UNSCEAR (2006) model can once more be attributed 
to the term related with the time since exposure a–e.

Multi‑model inference

Weights of the models with variable baseline

Table 4 summarises the associated AICs and correspond-
ing weights, normalised separately for ERR and EAR, for 

Fig. 5  Sex-specific excess absolute risks (EARs) per  104 person years 
(PYRS) for the models fitted with the variable baseline as function of 
the attained age for each model considered in this study, assuming a 

weighted colon dose of 1 Gy. Shaded areas represent 95% confidence 
intervals (CIs)
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all the considered models. Considering the AIC, weights 
assigned to the EARs span several orders of magnitude, with 
the UNSCEARL and -LQ ones being by far larger than the 
others for the models with variable baseline. According to 
the AIC values, the UNSCEARL and -LQ models ought 
to be preferred over the others comprised in this analysis. 
Furthermore, the model-averaged (or composite) EAR esti-
mated as weighted sum of the EARs estimated from all the 
considered models, is essentially constituted solely by a 
combination of the UNSCEARL and -LQ models, since the 
weights of the other models are negligible. Similar results 
are obtained for the ERRs, where the range of the assigned 
weights extends across even larger orders of magnitude. The 
largest weights are assigned to the UNSCEARL and -LQ 
models: 0.731 and 0.269 for the EAR, and 0.728 and 0.272 
for ERR, respectively.

Considering the BIC (also shown in Table  4), the 
models contributing to the MMI change. For the EAR, 
the models with non-negligible weights (> 0.01) are the 
GrantL, GrantLQ and the PrestonL models, while for 
ERR, only the GrantL and GrantLQ models give non-
negligible contribution to the MMI. For both excess risks, 
the main contribution comes from the GrantL model (0.96: 

EAR and 0.98: ERR). ERR models with stratified base-
lines were all assigned with a weight of 0, confirming 
the disadvantage in model selection related to the large 
number of parameters.

Weights of the models with constant baseline

Using the same baseline for all models and only vary-
ing the radiation excess risk models in the fitting process 
results in AIC and BIC values of the same order of mag-
nitude. Further, radiation ERR models with previously 
stratified baselines can now compete with the ERR mod-
els with parametrized baselines, because the number of 
parameters in the baseline is now constant over all models. 
In Table 4, the AIC, BIC and the according weights of the 
ERR and EAR estimated with the PrestonL baseline are 
shown. Considering the AIC, the contributing weights to 
the MMI for the EAR are those from the BEIR, GrantL 
and GrantLQ models with the main contribution coming 
from the BEIR model (weight: 0.652). Using the BIC, the 
BEIR model is the only model that contributes to the MMI 
with a weight of 0.99. Considering the AIC for the ERR, 
the weights are all of the same order of magnitude and 

Table 4  AIC values, BIC values and estimated normalized weights for each model considered in the study for excess relative risk (ERR) and 
excess absolute risk (EAR) separately

AIC Akaike information criterion; BIC Bayesian information criterion

EAR variable baseline ERR variable baseline

Model AIC Weight AIC BIC Weight
BIC

AIC Weight AIC BIC Weight BIC

BEIR 57,440 1.39⋅10–13 57,651 1.92⋅10–9 57,671 1.09⋅10–15 62,775 0
GrantL 57,439 2.45⋅10–13 57,611 0.96 57,438 1.51⋅10–15 57,610 0.98
GrantLQ 57,436 8.67⋅10–13 57,619 2.16⋅10–2 57,436 3.12⋅10–15 57,619 1.27⋅10–2

INWORKSL 57,417 1.15⋅10–8 57,701 2.90⋅10–20 57,751 1.53⋅10–83 63,363 0
INWORKSLQ 57,416 1.69⋅10–8 57,711 2.70⋅10–22 57,751 1.30⋅10–83 62,767 0
OzasaL 57,410 4.40⋅10–7 57,674 2.78⋅10–14 57,672 2.38⋅10–66 62,787 0
OzasaLQ 57,409 5.64⋅10–7 57,683 2.26⋅10–16 57,672 2.11⋅10–66 62,797 0
PrestonL 57,417 1.35⋅10–8 57,620 1.34⋅10–2 57,417 5.84⋅10–11 57,620 9.52⋅10–3

PrestonLQ 57,414 5.07⋅10–8 57,627 3.18⋅10–4 57,415 1.33⋅10–10 57,628 1.37⋅10–4

UNSCEARL 57,381 0.731 57,655 2.92⋅10–10 57,370 0.728 57,644 4.77⋅10–8

UNSCEARLQ 57,383 0.269 57,667 6.79⋅10–13 57,372 0.272 57,656 1.13⋅10–10

EAR constant baseline ERR constant baseline

Model AIC Weight
AIC

BIC Weight BIC AIC Weight AIC BIC Weight BIC

BEIR 57,413 0.652 57,605 0.99 57,413 0.651 57,605 0.94
GrantL 57,417 0.0698 57,620 6.70⋅10–4 57,417 0.0803 57,620 7.34⋅10–4

GrantLQ 57,415 0.262 57,627 1.59⋅10–5 57,415 0.182 57,628 1.05⋅10–5

INWORKSL 57,426 0.00112 57,648 4.29⋅10–10 57,421 0.0101 57,644 3.68⋅10–9

INWORKSLQ 57,422 0.00531 57,701 1.33⋅10–21 57,420 0.0217 57,653 4.99⋅10–11

UNSCEARL 57,422 0.0065 57,614 9.87⋅10–3 57,418 0.0391 57,611 5.67⋅10–2

UNSCEARLQ 57,423 0.00306 57,626 2.94⋅10–5 57,420 0.0155 57,623 1.42⋅10–4
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no model has a weight smaller than 0.01. Therefore, all 
models contribute to the MMI with the main contribu-
tion coming from the BEIR model with a weight of 0.651. 
Considering the BIC for the ERR, only the BEIR and the 
UNSCEARL models contribute to the MMI with the main 
contribution coming from the BEIR model (weight: 0.94).

Estimation of model‑averaged (or composite) excess risks

In Table 5, the model-averaged (composite) excess risk esti-
mates are shown with weights based on AIC and BIC for the 
models with variable and constant baseline. The weights 
were recalculated by only considering the models with non-
negligible contribution.

Discussion

Despite lying within the same order of magnitude and show-
ing generally similar trends, appreciable differences in the 
estimated excess risks can be noticed among the examined 
models, reported in Figs. 2, 3, 4, 5. The reason resides not 
only in their different mathematical form, but also due to 
the fact that in many cases they have originally been derived 
using different sets of data; for example, different follow-up 
time as in Preston et al. (2007) and Grant et al. (2017), mor-
tality data rather than incidence as in UNSCEAR (2006) and 
Ozasa et al. (2012), or even considering different cohorts as 
in Leuraud et al. (2021).

As shown in Table 5, the model average excess risks 
have different forms when BIC weights are used instead 
of AIC weights. This raises the question which informa-
tion criteria should be used for the purpose of model aver-
aging. Monte Carlo simulations indicated that the AIC 

tends to favour models which have more parameters than the 
true model (Kass and Raftery 1995). This can be observed in 
Table 5 considering the models with the variable baselines 
weighted with AIC weights. For both excess risk estimates, 
the UNSCEARL and -LQ models, which have the most param-
eters in the parametric baseline, have the highest weights. For 
the models fitted to the PrestonL-baseline this trend cannot be 
observed. However, in this case, the number of parameters only 
differ minimally. Another property of the AIC is its dimensional 
inconsistency (Kashyap 1980), which means that the probabil-
ity of AIC favouring an over-parametrised model does not tend 
to zero even as the data set size tends to infinity. In contrast to 
the AIC, the BIC is dimensionally consistent and excludes more 
complex models with higher number of parameters earlier if the 
dataset size is larger than 8 (ln(2) = 2.079 > 2). This behaviour 
can be observed in Table 5, where the highest weighted model 
in the model-averaged excess risk estimates is the one with 
the least number of parameters for every excess risk estimate 
using the BIC weights. The impact of these two information 
criteria is especially visible when the according model-averaged 
excess risk estimates based on the variable baselines are com-
pared. Using these models, the number of fit parameters var-
ies extremely, which results in very different weightings of the 
models due to the properties of the criteria described before. 
However, comparing the model-average excess risk estimates 
based on the PrestonL baseline, it can be observed that the 
BEIR model is the favoured model by both criteria. Of course, 
the weighting of models differs also in this case. Further, the 
BIC involves an asymptotic approximation and does not have an 
information-theoretic justification. However, from theoretical 
considerations of dimensional consistency the BIC appears 
to be the best method for model selection (Walsh 2007).

Moreover, the ERR composite models fitted with the 
variable baseline hide an additional issue arising from the 

Table 5  Model-averaged (composite) excess risk estimates with weights based on AIC and BIC for the models with variable and constant base-
line (BL)

The weights were recalculated by only considering the models with non-negligible contribution from Table 4
AIC Akaike information criterion; BIC Bayesian Information Criterion; EAR excess absolute risk; ERR excess relative risk; MMI multi-model 
inference

Model-averaged excess risk estimates with weights based on AIC

Variable BL EARvar
MMI

= 0.73 ⋅ UNSCEARL + 0.27 ⋅ UNSCEARLQ

Constant BL EARconst
MMI

= 0.67 ⋅ BEIR + 0.24 ⋅ GrantLQ + 0.09 ⋅ GrantL

Variable BL ERRvar
MMI

= 0.73 ⋅ UNSCEARL + 0.27 ⋅ UNSCEARLQ

Constant BL ERRconst
MMI

= 0.65 ⋅ BEIR + 0.18 ⋅ GrantLQ + 0.08 ⋅ GrantL + 0.04 ⋅ UNSCEARL

+0.02 ⋅ UNSCEARLQ + 0.02 ⋅ INWORKSLQ + 0.01 ⋅ INWORKSL

Model averaged excess risk estimates with weights based on BIC

Variable BL EARvar
MMI

= 0.97 ⋅ GrantL + 0.02 ⋅ GrantLQ + 0.01 ⋅ PrestonL

Constant BL EARconst
MMI

= BEIR

Variable BL ERRvar
MMI

= 0.99 ⋅ GrantL + 0.01 ⋅ GrantLQ

Constant BL ERRconst
MMI

= 0.95 ⋅ BEIR + 0.05 ⋅ UNSCEARL



29Radiation and Environmental Biophysics (2023) 62:17–34 

1 3

different baseline definition (parametric or by stratification) 
of the starting models considered. In particular, the 
extremely low weights assigned to BEIR VII Phase 2 (2006), 
Ozasa et al. (2012) and INWORKS-Leuraud et al. (2021) are 
a consequence of the modelling of the baseline rates, which 
are defined by stratification rather than being described by a 
parametric relation, common to the remaining models. These 
models can be clearly distinguished in the ERR panel of 
Fig. 6, clustered at higher AIC values, which consequently 
led to even smaller weights by several orders of magnitude 
(Table 4). In fact, the AIC and BIC methodologies consider 
the number of parameters present in each model, in addition 
to its deviance, penalising those models that are constituted 
by a larger number of parameters (Posada and Buckley 
2004). However, when evaluating models whose baseline 
is defined by stratification, the AIC and BIC methods count 
each stratum as a parameter. While being of no concern 
when applying multi-model inference on models whose 
baselines are exclusively defended either by stratification 
or by parametrisation (such in the case of EARs), the AIC 
and BIC methodologies might suffer from limitations when 
MMI is applied to a set of models whose baselines have 
mixed parametric and stratified expressions. Referring to 
the cases reported in this study, for example, the number of 
parameters introduced by a parametrised baseline is between 
12 and 23, far less that the 500–547 strata present in the 
stratified baselines. If one assumes similar model deviances, 
the relative risk models based on stratifications will then be 
greatly penalised in favour of the parametrised ones, merely 
because they are formulated in a different way.

As shown in the present study, this problem can be 
solved by setting a parametric definition of all the models’ 
baselines. With this method, the different radiation risk 
models can be compared. However, changing the baseline 
inevitably alters the initial models and makes them 
loose the level of detail typical of models with stratified 
baselines, which for example allows to better account for 
confounding factors. To circumvent such limitation of the 
weight assignment procedure based on AIC or BIC for 
total models with stratified baselines, other techniques 
can be explored. Future efforts could focus on devising 
techniques to adjust the obtained models’ weights and to 
normalise the number of parameters, so that the number of 
parameters in the baselines plays a minor role.

Conclusions

In this work, 11 all-solid-cancer risk models have been 
refitted to the most recent LSS data (Grant et al. 2017), with 
the twofold objective of comparing the resulting ERRs and 
EARs and of applying model-averaging techniques to build 

a composite model to predict the risk of all solid cancer 
incidence related to ionising radiation exposures. The 
sex-specific estimates of the risk predicted by the models 
considering a variable baseline vary within 11% for ERR 
and within 16% for EAR, for a weighted colon dose of 
1 Gy. Notwithstanding similar trends and similar order of 
magnitude of the risks predicted by the models considered, 
appreciable differences, induced by the different approach 
or by the dataset used for their development, can be noticed. 
Such differences should be recognised and taken into account 
whenever risk assessments on radiation-related incidence 
(or mortality) are performed. The multi-model inference 
techniques applied to the evaluated set of models yielded 
different composite models, depending on which information 
criteria and baseline parametrization was used. Considering 
BIC weights, the linear and linear-quadratic models from 
Grant et al. (2017) dominate when the models are fitted with 
the model-own baseline. The composite model for these 
models based on AIC weights is predominantly influenced by 
the linear and linear-quadratic models of UNSCEAR (2006). 
Fitting all excess risk models with the baseline from Preston 
et al. (2007), the BEIR model results to be the dominant 
model using AIC and BIC weighting. It is hence generally 
recommended to take model uncertainty into account in future 
risk analyses. As shown in other studies (Walsh 2007; Walsh 
and Kaiser 2011; Zhang and Townsend 2009), the AIC and 
BIC as a basis for model averaging constitute powerful tools 
that can be applied in the field of radiation epidemiology to 
enhance risk inference. However, in some instances, these 
information criteria show some limitations: for example, one 
disadvantage is the penalisation of models whose baseline is 
defined by stratification instead of parametrically. Whenever 
models with both parametric and stratified baselines are 
included in the same analysis, the assignment of weights 
is nevertheless problematic, even considering alternative 
approaches such as e.g. Pearson’s Chi squared, because 
they depend simultaneously on the goodness of fit and the 
number of parameters. Even though fitting the radiation risk 
models to the same parametric baseline provides a solution for 
comparison of the radiation risk models, a comparison of the 
total models is not possible without penalising the models with 
stratified baselines. Future efforts on this topic shall focus on 
investigating methodologies to address such problems, by, for 
example, adjust or re-normalise the number of parameters of 
the stratified models so that parametric ones are not favoured 
a priori, before applying the AIC orBIC.

Appendix 1

See Figs. 6, 7, 8, 9 and Tables 6, 7.
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Fig. 7  Sex-specific excess absolute risks (EARs) per  104 PYRS fit-
ted with the PrestonL baseline as function of weighted colon dose for 
each model considered in this study, calculated at an attained age of 

70 years and age at exposure of 30 years. Shaded areas represent 95% 
confidence intervals (CIs)

Fig. 6  Sex-specific excess relative risks (ERRs) fitted with the PrestonL baseline as function of weighted colon dose for each model considered 
in this study, calculated at an attained age of 70 years and age at exposure of 30 years. Shaded areas represent 95% confidence intervals (CIs)
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Fig. 8  Sex-specific excess relative risks (ERRs) fitted with the PrestonL baseline as function of the attained age for each model considered in 
this study, assuming a weighted colon dose of 1 Gy. Shaded areas represent 95% confidence intervals (CIs)

Fig. 9  Sex-specific excess absolute risks (EARs) per  104 PYRS fitted with the PrestonL baseline as function of the attained age for each radia-
tion model considered in this study, assuming a weighted colon dose of 1 Gy. Shaded areas represent 95% confidence intervals (CIs)
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Table 6  List of the fitted risk coefficients for each model fitted with the variable baseline

The standard errors are also given

Model ERR parameters EAR parameters

BEIR VII phase 2
(2006)

αmen = 0.29 ± 0.04; αwomen = 0.55 ± 0.06
ν = − 1.43 ± 0.23
τ = − 0.35 ± 0.07

αmen = 35.6 ± 4.9; αwomen = 48.6 ± 4.6
ν = 2.43 ± 0.21
τ = − 0.46 ± 0.06

Grant et al. (2017)
Linear

α = 0.50 ± 0.04
ν = − 1.57 ± 0.24
τ = − 0.21 ± 0.05
σ = 0.29 ± 0.06

α = 53.3 ± 4.8
ν = 2.35 ± 0.21
τ = − 0.32 ± 0.05
σ = 0.14 ± 0.06

Grant et al. (2017)
Linear-quadratic

α = 0.40 ± 0.06; β = 0.07 ± 0.04
ν = − 1.56 ± 0.24
τ = − 0.22 ± 0.05
ν = − 1.56 ± 0.24
σ = 0.29 ± 0.06

α = 41.3 ± 6.8; β = 9.2 ± 4.2
ν = 2.35 ± 0.21
τ = − 0.33 ± 0.05
σ = 0.14 ± 0.06

Ozasa et al. (2012)
Linear

α = 0.52 ± 0.04
ν = − 1.47 ± 0.23
τ = − 0.25 ± 0.05
σ = 0.30 ± 0.06

α = 54.8 ± 4.8
ν = 2.41 ± 0.21
τ = − 0.33 ± 0.05
σ = 0.13 ± 0.06

Ozasa et al. (2012)
Linear-quadratic

α = 0.45 ± 0.06; β = 0.05 ± 0.04
ν = − 1.46 ± 0.23
τ = − 0.25 ± 0.05
σ = 0.30 ± 0.06

α = 46.2 ± 6.8; β = 6.8 ± 4.2
ν = 2.41 ± 0.21
τ = − 0.34 ± 0.05
σ = 0.14 ± 0.06

Preston et al. (2007)
Linear

α = 0.48 ± 0.04
ν = − 1.52 ± 0.24
τ = − 0.26 ± 0.05
σ = 0.29 ± 0.06

α = 51.5 ± 4.8
ν = 2.37 ± 0.21
τ = − 0.35 ± 0.05
σ = 0.14 ± 0.06

Preston et al. (2007)
Linear-quadratic

α = 0.38 ± 0.06; β = 0.07 ± 0.04
ν = − 1.51 ± 0.24
τ = − 0.27 ± 0.05
σ = 0.30 ± 0.06

α = 39.7 ± 6.6; β = 9.0 ± 4.1
ν = 2.37 ± 0.21
τ = − 0.35 ± 0.05
σ = 0.15 ± 0.06

INWORKS-Leuraud (2021)
Linear

α = 0.51 ± 0.05
τ = − 0.26 ± 0.05
ν<60 = − 0.28 ± 0.05; ν>60,<80 = − 0.17 ± 0.16; 
ν>80 = − 0.21 ± 0.18;

σ = 0.30 ± 0.06

α = 59.6 ± 5.6
τ = − 0.32 ± 0.05
ν<60 = 0.51 ± 0.04; ν>60,<80 = 0.28 ± 0.14; ν>80 = 0.17 ± 0.16;
σ = 0.12 ± 0.06

INWORKS-Leuraud (2021)
Linear-quadratic

α = 0.44 ± 0.07; β = 0.05 ± 0.04
τ = − 0.26 ± 0.05
ν<60 = − 0.27 ± 0.04; ν>60,<80 = − 0.16 ± 0.16; 
ν>80 = − 0.20 ± 0.18;

σ = 0.30 ± 0.06

α = 49.5 ± 7.6; β = 7.8 ± 4.6
τ = − 0.33 ± 0.05
ν<60 = 0.51 ± 0.04; ν>60,<80 = 0.28 ± 0.14; ν>80 = 0.18 ± 0.16;
σ = 0.13 ± 0.06

UNSCEAR (2006)
Linear

α = 0.38 ± 0.04
σ = 0.58 ± 0.12
ε = 0.86 ± 0.19
ν = − 2.76 ± 0.29

α = 51.1 ± 6.2
σ = 0.26 ± 0.12
ε = 1.13 ± 0.19
ν = 0.73 ± 0.24

UNSCEAR (2006)
Linear-quadratic

α = 0.38 ± 0.06; β = − 0.004 ± 0.022
σ = 0.58 ± 0.12
ε = 0.86 ± 0.19
ν = − 2.76 ± 0.27

α = 51.1 ± 7.9; β = 0.03 ± 3.03
σ = 0.26 ± 0.12
ε = 1.12 ± 0.19
ν = 0.73 ± 0.24
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