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Abstract
Recent analyses of the Canadian fluoroscopy cohort study reported significantly increased radiation risks of mortality from 
ischemic heart diseases (IHD) with a linear dose–response adjusted for dose fractionation. This cohort includes 63,707 
tuberculosis patients from Canada who were exposed to low-to-moderate dose fractionated X-rays in 1930s–1950s and were 
followed-up for death from non-cancer causes during 1950–1987. In the current analysis, we scrutinized the assumption of 
linearity by analyzing a series of radio-biologically motivated nonlinear dose–response models to get a better understand-
ing of the impact of radiation damage on IHD. The models were weighted according to their quality of fit and were then 
mathematically superposed applying the multi-model inference (MMI) technique. Our results indicated an essentially lin-
ear dose–response relationship for IHD mortality at low and medium doses and a supra-linear relationship at higher doses 
(> 1.5 Gy). At 5 Gy, the estimated radiation risks were fivefold higher compared to the linear no-threshold (LNT) model. This 
is the largest study of patients exposed to fractionated low-to-moderate doses of radiation. Our analyses confirm previously 
reported significantly increased radiation risks of IHD from doses similar to those from diagnostic radiation procedures.
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Introduction

One of the most important questions in radiation research 
relates to the shape of the dose–response for different det-
rimental health outcomes at low exposures levels. Various 
international radiation protection organizations use the linear 
no-threshold (LNT) model to predict risks of cancer after 

ionizing radiation (IR) exposures (NCRP 2018; Shore et al. 
2018, 2019; ICRP 2005; UNSCEAR 2000). However, the 
most recent analysis of the Life Span Study (LSS) data sug-
gests a significant quadratic upward curvature, especially 
for the incidence of all solid cancers in males (Grant et al. 
2017). For cardiovascular diseases (CVD), doses above 5 Gy 
IR have been shown to be associated with a significantly 
elevated risk (HPA 2010). At doses between 0.5 and 5 Gy, 
there is clear evidence for an increased risk (HPA 2010; 
Kreuzer et al. 2015; Azizova et al. 2015a, 2015b; Moseeva 
et al. 2014). Radiation risks at low (< 0.1 Gy) and low-to-
moderate (0.1–0.5 Gy) doses have been examined only in 
a few studies with considerable discrepancies in findings 
and require further research (for example, Shimizu et al. 
2010; Mitchel et al. 2011, 2013; Little et al. 2012; Ozasa 
et al. 2012, 2017; Schöllnberger et al. 2012, 2018; Simon-
etto et al. 2014, 2015; Takahashi et al. 2017; Gillies et al. 
2017). In this context, the question whether even small-
est doses of IR may increase the risk of CVD or whether 
nonlinear dose–response curves may be better suited to 
describe the health risk is of special interest. There could 
also be a threshold for the dose below which radiation may 
have no effect, or lead to either a strongly elevated risk or a 
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protective effect. Such questions are of great importance for 
radiation protection, especially against the rising worldwide 
use of IR in medical applications. They are also relevant for 
occupationally exposed groups of individuals. For CVD, the 
question of the shape of the dose–response is as important as 
it is for cancer because even though relative radiation risks 
of CVD are smaller than radiation risks of cancer (Ozasa 
et al. 2012), the overall burden of disease is much larger due 
to high background rates of CVD in Western populations 
(World Health Organization 2013).

Recently, significantly elevated risks of death from 
ischemic heart diseases (IHD) in a cohort of tuberculosis 
patients from Canada exposed to low-to-moderate doses 
of highly fractionated X-ray radiation from repeated chest 
fluoroscopies were reported (Zablotska et al. 2014). The 
reported dose–response was strictly linear, and research-
ers described a novel finding of a significant inverse dose-
fractionation association in IHD mortality (Zablotska et al. 
2014). The aim of the present study is to investigate radi-
ation-associated risk of IHD in the Canadian fluoroscopy 
cohort study (CFCS) with a larger set of radio-biologically 
motivated dose–response models and to comprehensively 
characterize model uncertainties using multi-model infer-
ence (MMI, Burnham and Anderson 2002; Claeskens and 
Hjort 2008; Walsh and Kaiser 2011).

Materials and methods

Data sources

The CFCS data have been described in detail elsewhere 
(Zablotska et al. 2014). The cohort includes 63,707 tubercu-
losis patients from Canada who were first treated for tuber-
culosis between 1930 and 1952 and could have received 
multiple fluoroscopic X-ray examinations to maintain ther-
apeutic pneumothorax, one of the preferred treatments in 
the pre-antibiotic era. Most individuals in the cohort were 
born between 1920 and 1929 (see Table 2 in Zablotska et al. 
2014). Absorbed lung doses from fluoroscopic examina-
tions were estimated for each patient for each year since 
first admission for treatment of tuberculosis (Zablotska 
et al. 2014). For each lung dose to be estimated 100,000 
simulations were carried out and an arithmetic mean of all 
simulations was used for dose–response analyses. The lung 
dose was used because it should be a reasonable surrogate 
for doses to the heart and associated major blood vessels 
(Zablotska et al. 2014). There could be substantial uncertain-
ties in dose estimates. These are partially accounted for in 
the dose-estimation methods, where doses were estimated 
using Monte Carlo simulation techniques, which are sam-
pled from probability distributions of various data sources 
and should provide a reasonable estimate of radiation doses 

to the lung and heart. As stated by Zablotska et al. (2014), 
the impact of errors in exposure estimates in dosimetry was 
estimated in previous studies and shown to be relatively 
small and primarily of Berkson type (Howe and McLaughlin 
1996) and therefore unlikely to introduce a substantial bias 
in risk estimates (Carroll et al. 2006).

Thirty-nine percent of the cohort (24,932 patients) were 
exposed to at least one fluoroscopy while the remaining 
38,775 are considered unexposed to radiation from fluoros-
copy. On average, exposed patients were treated 64 times with 
a typical fluoroscopic examination delivering a mean lung 
dose of 0.0125 Gy at a dose rate of approximately 0.6 mGy 
s−1. The mean cumulative person-year-weighted lagged lung 
dose among exposed was 0.79 Gy (range, 0–11.6 Gy). Doses 
were lagged by 10 years, a minimal latent period that has 
been used in several studies of long-term risks of radiation 
exposure on cancer and non-cancer mortality risk (Zablotska 
et al. 2014; Little et al. 2012; Darby et al. 2010).

Study participants had to be alive at the start of follow-
up in 1950 and were followed-up for mortality until the end 
of 1987 with 1,902,251.68 person-years. During this time, 
5818 deaths from IHD (ICD-9 codes 410–414 und 429.2) 
were identified through a linkage with the Canadian Mortal-
ity Database. The cohort was evenly split between men and 
women. Patient age at first admission for tuberculosis treat-
ment ranged from 1 to 81 years. Additional characteristics of 
the CFCS are provided in Table S1 of the Online Resource.

Statistical methods

The present analysis applied the same dataset cross-classi-
fied by sex, Canadian province of most admissions (Nova 
Scotia, other), type of tuberculosis diagnosis (pulmonary, 
nonpulmonary), stage of tuberculosis (minimal, moder-
ate, advanced, or not specified), smoking status (unknown, 
non-smoker, smoker), age at first exposure (0–4, 5–9, 
10–19, or 20–87  years), attained age (0–24, 25–29, … 
80–84, or 85–100 years), calendar year at risk (1950–1954, 
1955–1959,… 1980–1984, or 1985–1987), duration of 
fluoroscopy screenings, and 10-year cumulative lagged 
lung dose as (Zablotska et al. 2014). Poisson regression 
was based on time-dependent person-year–weighted mean 
cumulative dose in cross-classified cells, using excess rela-
tive risk (ERR) models in combination with a parametric 
baseline model.1 The general form of an ERR model is 

1  In this study, mortality follow-up was conducted through record 
linkage with the Canadian Mortality Database using probabilistic 
linkage. The term "record linkage" refers to the process of comparing 
two or more records which contain identifying information to deter-
mine whether those records refer to the same individual enrolled in 
a cohort study. In the absence of personal identifying numbers which 
would allow definitive linkage to mortality outcomes (social insur-
ance numbers were not introduced in Canada until 1964 while the 
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h = h0 × (1 + ERR(D, Z)), where h is the total hazard func-
tion and h0 is the parametric baseline model. ERR(D, Z) 
describes the change of the hazard function with cumula-
tive lagged lung dose D allowing for dose–effect modifica-
tion by co-factor(s) Z, such as sex, age at first exposure or 
dose fractionation so that ERR(D, Z) = err(D) × ε(Z). Here, 
err(D) represents the dose–response and ε(Z) contains the 
dose–effect modifiers2 (DEMs). A parametric baseline 
model had been developed to analyze the risk for IHD in the 
Mayak Workers Cohort (Simonetto et al. 2014). It was taken 
as guidance for developing a parametric baseline model for 
the CFCS data. Both models for cohorts Mayak and CFCS 
are provided on pages 4–6 of the Online Resource. The 
baseline model in equation (S4) of the Online Resource was 
combined with the LNT model and adjusted for dose frac-
tionation (Zablotska et al. 2014):

where β1 denotes the slope of the linear dose–response and 
β2 is the parameter associated with the DEM drate − 0.2. 
Parameter drate represents the dose fractionation, a surro-
gate for dose rate, defined as drate: = D × time−1 where time 
is the overall duration of fluoroscopic procedures.3 The unit 
of drate is Gy year−1. By centering drate parameter β1 cor-
responds to the risk for a patient with radiation exposures 
at 0.2 Gy year−1, i.e., approximately 16 fluoroscopic proce-
dures per year (Zablotska et al. 2014).

(1)h = h0{1 + β1 × D × exp[β2(drate − 0.2)]},

Subsequently, the dose–response model from Eq.  (1) 
(i.e., β1 × D) was substituted by the models in Fig.  1 
(Q-model–Gompertz model). They were chosen with 
care to reflect as many biologically plausible shapes for 
dose–responses as possible, including supralinear and sub-
linear models. Motivations for these models from the bio-
logical scientific literature are provided in Table 1 and in the 
“Discussion” section. The mathematical forms and names 
of the functions illustrated in Fig. 1 are given in columns 1 
and 2 of Table 1, respectively. Columns 3 and 4 of Table 1 
state which types of radiation biological experiments have 
previously provided evidence for applying these functions 
in the present analysis, and the relevant citations of the biol-
ogy papers, respectively. Mathematical details of all models 
in Fig. 1 are also given on page 7 of the Online Resource; 
that also includes the categorical model. The threshold-dose 
parameter (Dth) contained in some models (LTH, smooth-
step, sigmoid, hormesis, two-line spline) was optimized dur-
ing the model fits. The smooth-step model was implemented 
as a modified hyperbolic tangent function, which can accom-
modate various different shapes. With this function, a step 
is not imposed a priori but results from fitting that model 
to data.

Multi‑model inference (MMI) method

The term MMI was coined to describe a frequentist approach 
to model averaging (Burnham and Anderson 2002) and has 
been applied to model selection in radiobiology. In contrast 
to Bayesian model averaging (BMA) (Hoeting et al. 1999), 
which is based on the evaluation of model-specific marginal 
likelihood functions to determine a model average, MMI 
relies on the Akaike Information Criterion (AIC; Akaike 
1973, 1974) and AIC-based model weights for model build-
ing. BMA is computationally more demanding and only a 
few radiation epidemiological studies have used it to account 
for uncertainties in dose estimation (Little et al. 2014, 2015, 
Land et al. 2015, Hoffmann et al. 2017). Both BMA and 
MMI apply the concept of Occam’s group (Madigan and 
Raftery 1994, Hoeting et al. 1999, Noble et al. 2009, Kai-
ser and Walsh 2013), where a group of models deemed 
adequate for averaging is selected from a larger group of 
candidate models (see Fig. 1). The methods of picking mod-
els for Occam’s group can vary. For example, Walsh and 
Kaiser (2011) selected all published models, which have 
been applied to the same LSS dataset for the same end-
point, whereas Kaiser and Walsh (2013) developed a rigor-
ous selection process based on likelihood ratio tests (LRTs).

The shape of the MMI-derived dose–response is more 
reliably determined than the shape for any individual 
dose–response because the MMI dose–response shape 
accounts for strengths of evidence for each of the contrib-
uting dose–response shapes. MMI also provides a more 

2  Co-factor(s) Z, such as sex, age at first exposure or dose fractiona-
tion are often referred to in radiation epidemiology as risk effect 
modifiers because they are factors that modulate the main central risk 
per unit dose estimate.
3  Duration of fluoroscopic procedures, respectively, fluoroscopy 
screenings refers to the timespan over which fluoroscopic examina-
tions were provided.

study is based on the medical records for patients first admitted for 
treatment during 1930–1952), study investigators used a combination 
of identifying items such as surname; given name; day, month, and 
year of birth to conduct a linkage. Each pair of linked records was 
assigned  a probabilistic weight which depends on the likelihood of 
the link being true (Howe 1998). A cutoff value was then used to sep-
arate possibly true links with higher linkage weights from those less 
likely to be true. A higher cutoff point for the internal dose–response 
analysis was used to avoid dilution of any association due to the pres-
ence of false positives (i.e., false linkages); the change in cutoff would 
not be expected to bias estimates of relative risk. Under quite general 
conditions, potentially substantial bias could be introduced by using 
absolute risk models. Therefore, analyses with EAR models should 
not be performed with the CFCS data because the linkage of the 
cohort with the mortality registry is probabilistic which could affect 
absolute mortality but not relative mortality models (Zablotska et al. 
2014).

Footnote 1 (continued)



66	 Radiation and Environmental Biophysics (2020) 59:63–78

1 3

comprehensive characterization of model uncertainties by 
accounting for possible bias from model selection. It is a 
statistical method of superposing different models that all 
describe a certain data set about equally well (Burnham and 
Anderson 2002, Claeskens and Hjort 2008). In the present 
study, the MMI approach aims to detect nonlinearities in 
the dose–response by combining biologically plausible 
dose–responses based on goodness-of-fit.

Model selection

To assess the influence of model-selection criteria on the 
risk estimates, we used two approaches. In the “sparse model 

approach”, candidate dose–response models from Fig. 1 are 
compared using the LRT at a 95% confidence level. With 
this method, a small set of final non-nested models with 
highly significant dose–responses was identified for Occam’s 
group. Specifically, for each final non-nested model we cal-
culated the AIC using the formula:

where dev is the final deviance and Npar is the number of 
model parameters. Models with smaller AIC are favored 
based on fit (via dev) and parameter parsimony (models with 
more parameters get punished by the factor 2 × Npar) (Walsh 

AIC = dev + 2 × Npar,

Fig. 1   Typical shapes of the functions that were used to analyze 
the dose–response for IHD mortality in the Canadian Fluoroscopy 
Cohort Study (follow-up 1950–1987). 1st row: linear no-threshold 
(LNT) model, quadratic (Q), linear-quadratic (LQ); 2nd row: linear-

exponential (LE) model, linear-threshold (LTH), smooth-step model; 
3rd row: sigmoid model, hormesis model, two-line spline model; 4th 
row: Gompertz model, categorical model. Additional dashed lines 
show the flexibility of some of the models
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Table 1   Dose–response models used for MMI and related biological studies that motivate the use of these specific models in the present study; 
Canadian Fluoroscopy Cohort Study, 1950-1987

err(D) Name of model Biological outcome and dose type investigated References

β1 × D LNT Number of carotid artery lesions per animal, plaque area and 
inflammatory content of carotid artery lesions in ApoE–/– 
mice; 0 or 14 Gy of X-rays

Stewart et al. (2006)

Number of atherosclerotic lesions in carotid arteries per animal, 
plaque area and plaque phenotype in ApoE–/– mice; 0, 8 Gy or 
14 Gy of X-rays

Hoving et al. (2008)

β1 × D2 Q Number of atherosclerotic lesions in carotid arteries per animal, 
plaque area and plaque phenotype in ApoE–/– mice; 0, 8 Gy or 
14 Gy of X-rays

Hoving et al. (2008)a

β1 × D + β2 × D2 LQb See Q model Hoving et al. (2008)
See hormesis model Mitchel et al. (2011)
See hormesis model Mitchel et al. (2013)
See hormesis model Ebrahimian et al. (2018)
See LE model Mancuso et al. (2015)

β1 × D × exp(β2 D) LE Atherosclerotic features (plaque density, plaque size and plaque 
vulnerability) in ApoE–/– mice; acute irradiation with single 
doses of 0.3 or 6 Gy X-rays at 0.89 Gy min−1; low-dose-rate 
exposures with 137Cs γ-rays (22 h day−1) yielding cumula-
tive total doses of 0.3 or 6 Gy in 300 days (dose rate of 
1 mGy day−1 or 20 mGy day−1, respectively)

Mancuso et al. (2015)

{
0 for D < D

th

β1 × (D − D
th
) for D ≥ D

th

LTH Disease frequency and severity of chronic ulcerative dermatitis 
in Trp53 normal (Trp53+/+) or heterozygous (Trp53+/–) female 
C57BL/6 mice; fractionated low-dose and low-dose-rate 60Co 
γ-radiation (0.33 mGy per day delivered at 0.7 mGy hr−1; 
5 days week−1; for 30 weeks, 60 weeks or 90 weeks yielding 
48 mGy, 97 mGy or 146 mGy, respectively

Mitchel et al. (2007)

See hormesis model Mitchel et al. (2011)
See hormesis model Mitchel et al. (2013)
See hormesis model Ebrahimian et al. (2018)
Inflammatory and thrombotic markers in the heart of ApoE–/– 

mice; total body irradiation (60Co γ-irradiation) with 0.025, 
0.05, 0.1, 0.5 or 2 Gy at low (1 m Gy min−1) or high dose rate 
(150 m Gy min−1)

Mathias et al. (2015)

Atherosclerotic features (plaque size and phenotype, plaque 
inflammatory profile and oxidative stress status) in ApoE–/– 
mice; chronic internal exposure to 137Cs via drinking water; 
the resulting absorbed doses were 3, 15, and 75 mGy after 
6 months and 6, 30, and 150 mGy after 9 months exposure to 
4, 20 and 100 kBq l−1 of 137Cs, respectively

Le Gallic et al. (2015)

0.5× scale×
[
tanh (s(D − D

th
))−tanh (−sD

th
)
]

Smooth step See LTH model Mitchel et al. (2007)

See LTH model Mathias et al. (2015)
See LTH model Le Gallic et al. (2015)
See hormesis model Mitchel et al. (2011)
See hormesis model Mitchel et al. (2013)
See hormesis model Ebrahimian et al. (2018)
See LE model Mancuso et al. (2015)

λ0

⎛⎜⎜⎝
1 −

1

1+

�
D

D
th

�λ1

⎞⎟⎟⎠

Sigmoidc See LTH model Mitchel et al. (2007)

See LTH model Mathias et al. (2015)
See LTH model Le Gallic et al. (2015)
See hormesis model Mitchel et al. (2011)
See hormesis model Mitchel et al. (2013)
See hormesis model Ebrahimian et al. (2018)
See LE model Mancuso et al. (2015)
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Table 1   (continued)

err(D) Name of model Biological outcome and dose type investigated References

λ0 −
λ0+λ2D

1+
(

D

Dth

)λ1

Hormesisd Atherosclerotic features (aortic lesion frequency, size and 
severity, total serum cholesterol levels and the uptake of 
lesion lipids by lesion-associated macrophages) in ApoE–/– 
mice; 0, 0.025, 0.05, 0.10 or 0.50 Gy 60Co γ-irradiation at 
either low dose rate (1.0 mGy min−1) or high dose rate (app. 
0.15 Gy min−1)

Mitchel et al. (2011)

Atherosclerotic features (aortic lesion frequency, size and 
severity, total serum cholesterol levels) in ApoE–/– mice 
with reduced p53 function (Trp53+/–); 0, 0.025, 0.05, 
0.10 or 0.50 Gy 60Co γ-irradiation at either low dose rate 
(1.0 mGy min−1) or high dose rate (app. 0.15 Gy min−1)

Mitchel et al. (2013)

Atherosclerotic development (plaque size and phenotype, 
inflammatory profile and oxidative stress status) in ApoE–/– 
mice; chronic γ-irradiation for 8 months at 12 or 28 μGy hr−1, 
yielding cumulative doses of 67 and 157 mGy, respectively

Ebrahimian et al. (2018)

{
β1 × D for D < D

th

β1 × D
th
+ β2 × (D − D

th
) for D ≥ D

th

Two-line splinee See LNT model Stewart et al. (2006)

See LNT model Hoving et al. (2008)
See LTH model Mitchel et al. (2007)
See LTH model Mathias et al. (2015)
See LTH model Le Gallic et al. (2015)
See hormesis model Mitchel et al. (2011)
See hormesis model Mitchel et al. (2013)
See hormesis model Ebrahimian et al. (2018)
See LE model Mancuso et al. (2015)

β1 × exp{−β2exp [−β3 ×
(
D−D

th

)
]}−

β1 × exp{−β2exp[−β3 ×
(
−D

th

)
]}

Gompertzf See LNT model Stewart et al. (2006)

See LQ model Hoving et al. (2008)
See LTH model Mitchel et al. (2007)
See LTH model Mitchel et al. (2011)
See LTH model Mitchel et al. (2013)
See LTH model Mathias et al. (2015)
See LTH model Le Gallic et al. (2015)
See LTH model Ebrahimian et al. (2018)
See LE model Mancuso et al. (2015)

a The publication by Hoving et al. (2008) shows that female mice 30 weeks after a 14 Gy exposure exhibited a higher number of initial athero-
sclerotic lesions per animal compared to a linear extrapolation from the number of lesions obtained after 8 Gy (Fig. 3, panel B). Panel E of Fig. 3 
in Hoving et al. (2008) shows a similar result for the mean of the individual plaque area for initial lesions in female mice 30 weeks after expo-
sure. These findings exhibit a quadratic or linear-quadratic dose–response
b The LQ model has the capability to describe shallow U-shaped or J-shaped dose–responses (Fig. 1). Therefore, in addition to the reference 
Hoving et al. (2008), which gives support for the use of quadratic or linear-quadratic dose–response models, the same references are provided as 
for the hormesis model. In addition, the LQ model can describe supralinear dose–responses. Consequently, the reference Mancuso et al. (2015) 
is also listed in this context
c The sigmoid model can exhibit similar shapes as the smooth-step model. Therefore, the same references are relevant as for the smooth-step 
model
d This empirical hormesis model has been introduced by Brain and Cousens (1989) to describe stimulation of plant growth after low-dose herbi-
cide exposures. Some adaptations to the model by Brain and Cousens (1989) have been made by Cedergreen et al. (2005) and Simonetto et al. 
(2014) to yield the specific mathematical form applied in the present study
e  The two-line spline model was applied because of its capability to describe supralinear or sublinear dose–responses (Fig. 1). Therefore, the 
same references are provided as for the LE, LTH and hormesis models. Because it can also describe LNT dose–responses, the references Stewart 
et al. (2006) and Hoving et al. (2008) were added
f  The Gompertz model is very flexible and can exhibit linear no-threshold dose–responses, sublinear and smooth-step responses but also supra-
linear dose–responses. Therefore, its use in the present study is motivated by the same biological findings referenced in the context of the LNT 
model, the linear-quadratic, LTH, smooth-step and linear-exponential models
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2007). For a set of final non-nested models, AIC-weights are 
calculated; models with smaller AIC are assigned a larger 
weight (see page 9 of the Online Resource). The resulting 
weights, multiplied by a factor of 104, gave a number of 
samples for risk estimates to be generated by uncertainty 
distribution simulations. We then combined model-specific 
probability density functions into one dataset. The resulting 
probability density distribution represents all uncertainties 
arising from the different models and their superposition. 
Central risk estimates from MMI were calculated from AIC-
weighted maximum likelihood estimates (MLE) for single 
risk models. 95% confidence intervals (CI) were derived 
from the final merged MMI probability density distributions.

In the second, “rich model approach”, an LRT-based 
reduction of dose–response parameters of the candidate 
models was not performed. The AIC was calculated for each 
different model fit together with the AIC-weights. Models 
with bilateral AIC-weights smaller than 5% did not survive 
the selection process; all others were included into the set 
of final non-nested models. This approach leads to a larger 
number of models deemed suitable for MMI. The calcula-
tion of AIC-weights for the two sets (or Occam’s groups) of 
dose–response models based on both approaches (“sparse” 
versus “rich”) is detailed on page 9 of the Online Resource. 
The software used to perform all analyses is briefly intro-
duced on page 10 of the Online Resource.

Results

Similar to the previously published results (Zablotska et al. 
2014), the slope parameter β1 was not significant with-
out adjustment for dose fractionation (β1 = − 0.046 Gy−1, 
Table  2). Adjustment led to a significant ERR per 
dose = 0.182 Gy−1 with 95% CI (0.049, 0.325) (Table 2) 
(ERR per dose = 0.176  Gy−1 in Zablotska et  al. 2014). 

Subsequently, the LNT model from Eq. (1) was substituted 
by all other models from Fig. 1, keeping the DEM drate 
− 0.2.

Considering the relations in Figure S1 of the Online 
Resource and a sparse model approach, four final non-nested 
models survived the selection process and were included into 
Occam’s group: LNT, Q, two-line spline4 and the Gompertz 
models. For these four models, the model parameters (base-
line and radiation-associated), their MLE and symmetric, 
Wald-type standard errors are provided in Table S2 of the 
Online Resource. Details related to model selection accord-
ing to the sparse model approach are provided in the Online 
Resource (see pages 9, 15, 16, and Table S3).

According to the rich model approach, 10 models sur-
vived the selection process and contributed to MMI with 
normalized weights provided in Table 3. Figure 2 shows 
the ERR plotted against the cumulative lagged lung dose 
for the four final non-nested models and for the simulated 
dose–response curve from MMI, calculated with the sparse 
and the rich model approaches. Figures 3 and 4 show the 
best models and MMI for doses < 2 and 0.1 Gy, respectively. 
Table 4 provides risk predictions based on MMI (sparse) and 
the LNT, Q, two-line spline and Gompertz models. The radi-
ation-associated excess cases according to the four final non-
nested models and MMI (sparse) are presented in Table 5.

The Gompertz model had the best fit to the data (Table 3). 
Both Q and Gompertz models predicted no increase in 
risk below 0.05 Gy (Fig. 4). While both models predicted 

Table 2   Maximum likelihood estimates of model parameters, related 95% confidence intervals and final deviances of fitting ERR-LNT models 
to the mortality data for ischemic heart diseases (Zablotska et al. 2014); Canadian Fluoroscopy Cohort Study, 1950-1987

dev: final deviance, ERR-LNT: linear no-threshold model implemented as excess relative risk model
a The difference between the model applied by Zablotska et al. (2014) and the one from the present study is the baseline model (stratified in the 
first case, parametric in the present study)
b Fit was performed with model given in Eq. (1) with β2 = 0
c Fit was performed with model given in Eq. (1)
d As a comparison, the fit of the parametric baseline model alone with its 21 parameters led to dev = 13252.68

Parameter Zablotska et al. (2014), LNT 
model without dose-fractiona-
tion adjustmenta

Zablotska et al. (2014), LNT 
model with dose-fractionation 
adjustmenta

Present study, LNT model 
without dose-fractionation 
adjustmenta,b

Present study, LNT model 
with dose-fractionation 
adjustmenta,c,d

β1 0.007 Gy−1 (–  0.044, 0.072) 0.176 Gy−1 (0.011, 0.39) –0.046 Gy−1 (–0.075, – 0.013) 0.182 Gy−1 (0.049, 0.33)
β2 – 10.2 years Gy−1 (– 25, – 2.1) – 12.0 years Gy−1 (– 21, – 5.1)
dev 9884.50 9879.76 13250.95 13247.75

4  It is noted that the two-line spline model is nested with the LNT 
model. This can be seen in Figure S1 of the Online Resource: The 
two-line spline model is nested with the LTH model and the latter is 
nested with the LNT model (in general, Model A is nested in Model 
B if the parameters in Model A are a subset of the parameters in 
Model B). The reason why the two-line spline model was nonetheless 
included into Occam’s group is explained on pages 15 and 16 of the 
Online Resource.
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a sublinear dose–response at low and medium doses up 
to ~ 1 Gy, the two-line spline model predicted a risk higher 
than all other models (Figs. 2 and 3). The ERR predictions 
from MMI and LNT model at 0.1 Gy and 1 Gy are identi-
cal within their 95% CI (Table 4) and the dose–response 
from MMI is roughly linear at low doses (Fig. 4). At low and 
medium doses up to ~ 1 Gy, MMI and the LNT model predict 
similar risk values (Fig. 3). Consequently, up to 1 Gy both 
models (LNT and MMI) predict very similar excess cases 
(Table 5). At doses > 1.5 Gy, the dose–response from MMI 
predicted a higher risk compared to the LNT model (Figs. 2 
and 3, Table 4). For the entire dose range, the dose–responses 
from MMI calculated using both the sparse and the rich model 
approaches were similar to each other (Figs. 2 to 4). For exam-
ple, at 1 Gy, MMI predicted an ERR of 0.216 with 95% CI 
(0.062, 0.48) and ERR = 0.218 with 95% CI (0.058, 0.473), for 
rich and sparse model approaches, respectively.

Figure S2 of the Online Resource shows the baseline cases 
as predicted by the ERR-LNT model versus attained age with 
the secular trend together with crude rates.

Discussion

CFCS is the largest cohort of patients exposed to fraction-
ated low-to-moderate doses of IR via fluoroscopic X-rays. 
About 15.5% of exposed CFCS patients were exposed to 
doses < 0.1 Gy and thus provide direct evidence of pos-
sible risks from low-dose exposures such as CT scans 
(like fluoroscopic examinations, CT scans in their most 
commonly known form apply X-rays). We examined ten 
biologically plausible dose–response models together with 
a categorical model. At low and medium doses the MMI 
technique predicted an almost linear dose–response.

Table 3   Results of fitting the dose–response models from Fig. 1 as ERR models to the mortality data for ischemic heart diseases (Zablotska 
et al. 2014); Canadian Fluoroscopy Cohort Study, 1950–1987

AIC: Akaike Information Criterion, dev: final deviance, ERR-LNT: linear no-threshold model implemented as excess relative risk model, ERR-
Q: quadratic model implemented as excess relative risk model, ERR-LQ: linear-quadratic model implemented as excess relative risk model, 
ERR-LE: linear-exponential model implemented as excess relative risk model, ERR-LTH: linear-threshold model implemented as excess relative 
risk model
a As a comparison, the fit of the baseline model alone with its 21 parameters led to dev = 13252.68
b The difference in final deviance is denoted by Δdev with respect to the model with the smallest final deviance
c AIC = dev + 2 × Npar, where Npar is the number of model parameters
d The difference in AIC-values with respect to the model with the smallest AIC-values is denoted by ΔAIC
e According to the sparse model approach four models survive the selection process and are used for MMI. The normalized AIC-weights pro-
vided here were calculated with equation (S5) of the Online Resource
f According to the rich model approach all models except the categorical model survive the selection process because when compared to the 
model with ΔAIC = 0 they have an AIC-weight > 0.05 (see Table S3 of the Online Resource). The normalized AIC-weights provided here were 
calculated with equation (S5) of the Online Resource

deva Δdevb Npar AICc ΔAICd Normalized AIC-weights, 
sparse model approache

Normalized AIC-
weights, rich model 
approachf

ERR-LNT 13247.75 6.19 23 13293.75 2.19 0.1183 0.0776
ERR-Q 13246.01 4.46 23 13292.01 0.46 0.2815 0.1847
ERR-LQ 13245.38 3.83 24 13293.38 1.83 0.0930
ERR-LE 13245.68 4.13 24 13293.68 2.13 0.0802
ERR-LTH, Dth = 0.58 Gy 13246.81 5.26 24 13294.81 3.26 0.0455
ERR-smooth-step, Dth = 4,47 Gy 13244.45 2.90 25 13294.45 2.90 0.0546
ERR-sigmoid, Dth = 41,53 Gy 13245.94 4.39 25 13295.94 4.39 0.0259
ERR-hormesis, Dth = 3,28 Gy 13242.84 1.29 26 13294.84 3.29 0.0449
ERR-two-line spline, Dth = 1.72 Gy 13242.28 0.73 25 13292.28 0.73 0.2461 0.1615
ERR-Gompertz, Dth = 0 13241.55 0 25 13291.55 0 0.3541 0.2323
ERR-categorical 13242.19 0.63 29 13300.19 8.63
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While the sparse model selection approach led to a set 
of four final non-nested models, the rich model approach 
yielded an Occam’s group that contained ten out of the 
eleven dose–response models that were fitted to the 
data. Both sets of dose–response models describe the 
data approximately equally well (see values of ΔAIC in 
Table 3).

The reason for MMI-predicted risks being significantly 
higher compared to the LNT model at doses > 1.5 Gy is the 
relatively strong contributions of the Q, two-line spline and 
Gompertz models to the MMI (88% of the total, Table 3). 
At 5 Gy, MMI predicted an approximately fivefold risk com-
pared to the LNT model, at 10 Gy a sixfold risk.

To better understand predicted radiation risks at higher 
doses, we used a restriction analysis based on cohort data 
with restricted dose-ranges and observed that the second 
slope of the two-line spline model (β2) was driven by high 
doses (> 2 Gy). When restricting the data to doses smaller 
than 2 Gy, the first slope (β1) of this model became very 
similar to the slope of the LNT model (results not shown). 

The LNT model was influenced mostly by doses < 2 Gy. 
The higher doses hardly influence the slope of the LNT 
model due to the lower number of cases in this dose range 

Fig. 2   ERR for IHD mortality in the Canadian Fluoroscopy Cohort 
Study (follow-up 1950–1987) versus cumulative lagged lung dose 
for the four final non-nested ERR models (Table  3) and the simu-
lated dose–response curves from MMI, calculated with the sparse 
model approach and the rich model approach. The shaded area rep-
resents the 95% CI region for the MMI (sparse model approach). For 
AIC-weights see the insert. The dotted-straight line shows the risk 
prediction from (Zablotska et  al. 2014). The ERR-LNT model from 
the present study and the LNT model from Zablotska et  al. (2014) 
give almost identical risk predictions. The figure is valid for males 
and females. A dose fractionation of 0.2  Gy  year−1 was assumed. 
Point estimates and related 95% CI from the fit of an ERR-categor-
ical model that divides the dose range into the following categories 
(D < 10−6 Gy, 10−6 Gy ≤ D < 1 Gy; 1 Gy ≤ D < 2 Gy, 2 Gy ≤ D < 6 Gy, 
and D ≥ 6  Gy) are as follows: ERR = 0.0089 (– 0.0173, 0.0348), 
ERR = 0.1820 (– 0.0652, 0.428), ERR = 1.002 (– 0.225, 2.23), 
ERR = 10.3 (– 17.8, 38.1). In the categorical fit, zero risk was 
assigned to the dose range D < 10−6 Gy. The point estimates and their 
95% CI are not shown in the figure because of the very large 95% CI 
for the highest dose category. Online version contains color

Fig. 3   ERR for IHD mortality in the Canadian Fluoroscopy Cohort 
Study (follow-up 1950–1987) versus cumulative lagged lung dose 
up to 2 Gy for the four final non-nested ERR models (Table 3) and 
the simulated dose–response curves from MMI, calculated with the 
sparse model approach and the rich model approach. Vertical-dot-
ted lines represent the 95% CI region for the MMI (sparse model 
approach). For AIC-weights see the insert. The dotted-straight line 
shows the risk prediction from (Zablotska et al. 2014). The figure is 
valid for males and females. A dose fractionation of 0.2  Gy  year−1 
was assumed. Online version contains color

Fig. 4   ERR for IHD mortality in the Canadian Fluoroscopy Cohort 
Study (follow-up 1950–1987) versus cumulative lagged lung dose 
up to 0.1  Gy for the four final non-nested ERR models (Table  3) 
and the simulated dose–response curves from MMI, calculated with 
the sparse model approach and the rich model approach. Vertical-
dotted lines represent the 95% CI region for the MMI (sparse model 
approach). For AIC-weights see the insert. The dotted-straight line 
shows the risk prediction from (Zablotska et al. 2014). The figure is 
valid for males and females. A dose fractionation of 0.2  Gy  year−1 
was assumed. Online version contains color
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(212 cases out of 5818). Thus, the fit of the two-line spline 
model, which predicts a more than two times higher num-
ber of excess cases than the LNT model (Table 5), is con-
sistent with the fit of the latter model.

The present study applied a larger range of biologically 
realistic smooth dose–response models (Fig. 1). Exploring a 
larger range of different dose–response models is motivated 

by the following biological findings, which are summarized 
in Table 1. The use of the LNT model finds support from 
the study of Stewart et al. (2006). These researchers inves-
tigated the effects of a high-dose (14 Gy) exposure on the 
development of atherosclerotic plaques (number of lesions, 
plaque area and plaque composition) in ApoE–/– mice. They 
found that after the high-dose exposure the mean number 
of atherosclerotic lesions (initial plus advanced) in carotid 
arteries of irradiated mice was significantly larger than in 
age- and sex-matched controls. Their study also revealed 
a significantly enhanced inflammatory content and plaque 
hemorrhage of irradiated carotid artery lesions compared to 
controls (Stewart et al. 2006). Because only one high-dose 
exposure was investigated, these findings infer an LNT-like 
dose–response. Analyses with a quadratic or linear-quadratic 
model are supported by the work of Hoving et al. (2008). 
They found that the number of initial atherosclerotic lesions 
and the plaque area in female mice 30 weeks after exposure 
to 0, 8 or 14 Gy clearly exhibit a dose–response consistent 
with a quadratic or linear-quadratic response (see panels 
B and E in their Fig. 3). In addition, some of the findings 
reported by Hoving et al. (2008) support the use of an LNT 
model. The specific feature of the linear-quadratic model 
that it can exhibit a U-shape at low doses is supported by 
the findings of Mitchel et al. (2011, 2013) and Ebrahim-
ian et al. (2018). The findings of these three studies will 
be briefly described below in the context of the hormesis 
model. The application of the linear-exponential model is 
justified because of the findings by Mancuso et al. (2015) 
related to atherogenesis in ApoE–/– mice. Although the pat-
tern of radiation-induced aortic alterations and their severity 
increased at 6 Gy compared with a 20-fold lower dose of 
0.3 Gy, their results tend to be far from linearity and suggest 
that lower doses may be more damaging than predicted by a 

Table 4   Values for ERR for mortality from ischemic heart diseases (Zablotska et  al. 2014) at various cumulative lung doses calculated with 
MMI (sparse model approach) and the four final non-nested models; Canadian Fluoroscopy Cohort Study, 1950–1987

ERR-LNT: linear no-threshold model implemented as excess relative risk model, ERR-Q: quadratic model implemented as excess relative risk 
model, MMI: multi-model inference
a Calculated with the sparse model approach
b 95% CI are provided in parenthesis
c As a comparison, the ERR per dose from Zablotska et al. (2014) is 0.176 Gy−1 with 95% CI (0.011, 0.393)

Lung 
dose 
(Gy)

MMIa,b ERR-LNT modelb,c ERR-Q modelb ERR-two-line splineb ERR-Gompertzb

0.1 0.01263 (0.00075, 0.048) 0.0182 (0.0045, 0.032) 0.0014 (0.00049, 0.0024) 0.036 (0.017, 0.054) 0.0036 (0.0013, 0.0060)
0.2 0.0266 (0.0028, 0.095) 0.0364 (0.0089, 0.064) 0.0057 (0.0020, 0.0094) 0.071 (0.035, 0.11) 0.0089 (0.0033, 0.015)
0.5 0.079 (0.016, 0.24) 0.091 (0.022, 0.16) 0.036 (0.012, 0.059) 0.179 (0.087, 0.27) 0.040 (0.015, 0.066)
1 0.216 (0.062, 0.48) 0.182 (0.045, 0.32) 0.142 (0.049, 0.24) 0.36 (0.17, 0.54) 0.188 (0.070, 0.31)
2 0.88 (0.21, 1.7) 0.364 (0.089, 0.64) 0.57 (0.20, 0.94) 1.17 (0.64, 1.7) 1.1 (0.41, 1.8)
5 4.70 (0.60, 10) 0.91 (0.22, 1.6) 3.6 (1.2, 5.9) 7.2 (2.3, 12) 5.2 (1.9, 8.5)
10 11 (1.2, 26) 1.82 (0.45, 3.2) 14.2 (4.9, 24) 17.2 (4.8, 30) 6.4 (2.4, 11)

Table 5   Radiation-associated excess cases for the mortality data for 
ischemic heart diseases (Zablotska et al. 2014) according to the four 
final non-nested models and MMI (sparse model approach); Canadian 
Fluoroscopy Cohort Study, 1950–1987

ERR-LNT: linear no-threshold model implemented as excess relative 
risk model, ERR-Q: quadratic model implemented as excess relative 
risk model, MMI: multi-model inference
a Calculated with the sparse model approach

Dose-
bin (Gy)

MMIa ERR-
LNT

ERR-Q ERR-two-
line spline

ERR-
Gompertz

0–0.05 2.8 5.7 0.2 7.4 0.6
0.05–0.1 1.1 2 0.2 2.7 0.3
0.1–0.2 1.3 2.2 0.3 3.3 0.3
0.2–0.3 2.8 4 0.8 7.5 0.7
0.3–0.4 2.6 3.8 1.1 6.4 0.7
0.4–0.5 3.6 4.8 1.8 8.4 1.4
0.5–0.75 8.9 10 4.6 20.2 4
0.75–1 11.5 11.7 7.2 23.1 6.9
1–1.5 19.7 15.6 12.3 33.9 17
1.5–2 14 8.9 9.4 19.9 15.2
2–3 18 6.2 8.2 32.6 19.7
3–4 7.8 2 3.8 13.3 9.1
4–5 3.3 0.7 1.7 5.4 3.9
5 4.7 1.1 3.6 7.3 5
Sum 102.1 78.7 55.2 191.4 84.8
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linear dose–response (Mancuso et al. 2015). The LTH model 
is another realistic possibility for a dose–response related to 
radio-epidemiological cohorts given the findings from ani-
mal studies on protective anti-inflammatory effects induced 
by low doses of radiation (Mitchel et al. 2011, 2013; Mathias 
et al. 2015; Le Gallic et al. 2015; Ebrahimian et al. 2018). 
Investigating the expression of various inflammatory and 
thrombotic markers in the heart of ApoE–/– mice, Mathias 
et al. (2015) provided evidence for anti-inflammatory effects 
after 0.025–0.5 Gy exposures: they found slight decreases of 
ICAM-1 levels and reduction of Thy 1 expression at these 
doses. In contrast, an enhancement of MCP-1, TNFα and 
fibrinogen at 0.05–2 Gy indicated a proinflammatory and 
prothrombotic systemic response (Mathias et al. 2015). In 
such a situation, a LTH model may describe the data bet-
ter than the LNT model. Interestingly, Mitchel et al. (2007) 
reported that their dermatitis data from C57BL/6 J mice 
indicate that low doses may generally produce either no 
effect or protective effects with respect to this autoimmune-
type and age-related non-cancer disease that has been linked 
to inflammation (Williams et al. 2012). The findings of anti-
inflammatory protective effects at low doses (Mitchel et al. 
2007, 2011, 2013, Mathias et al. 2015, Le Gallic et al. 2015, 
Ebrahimian et al. 2018) and detrimental effects at moderate 
(0.3 Gy) and higher doses (6 Gy) (Mancuso et al. 2015) 
provide a biological context for applying the smooth-step 
model (Fig. 1). A step-type response (with a steep slope) 
may reflect the distinct dose at which protective mechanisms 
are lost. Different tissues and different individuals can be 
expected to have different threshold-doses, leading to an 
overall smooth transition. While at low doses it is feasible 
that risk increase may be balanced by a protective decrease 
as in the LTH model, a smooth transition zone may exist 
where risk increases steadily, followed by a plateau. The 
sigmoid model can exhibit similar shapes as the smooth-
step model. Therefore, the same references are relevant as 
for the smooth-step model (Mitchel et al. 2007, 2011, 2013; 
Mathias et al. 2015; Le Gallic et al. 2015; Mancuso et al. 
2015; Ebrahimian et al. 2018). The empirical hormesis 
model applied in the current study has been introduced to 
describe stimulation of plant growth after low-dose herbi-
cide exposures (Brain and Cousens 1989). Dose–responses 
which allow for protective effects at low doses, such as LQ, 
hormesis and two-line spline models, can be justified from 
mouse studies (Mitchel et al. 2011, 2013). Mitchel et al. 
(2011) exposed ApoE–/– mice to 0.025, 0.05, 0.10 or 0.50 Gy 
60Co γ-irradiation at either low dose rate (1.0 mGy min−1) 
or high dose rate (approximately 0.15 Gy min−1) and inves-
tigated biological endpoints associated with atherosclero-
sis (aortic lesion frequency, size and severity, total serum 
cholesterol levels and the uptake of lesion lipids by lesion-
associated macrophages). In general, low doses given at 
low dose rate during either early- or late-stage disease were 

protective, slowing the progression of the disease by one 
or more of these measures (Mitchel et al. 2011). The influ-
ence of low doses (0.025, 0.05, 0.10 or 0.50 Gy) of 60Co 
γ-irradiation at low dose rate (1.0 mGy min−1) or high dose 
rate (approximately 0.15 Gy min−1) on atherosclerosis in 
ApoE–/– mice with reduced p53 function was investigated 
by Mitchel et al. (2013). Radiation exposure to doses as 
low as 25 mGy at early-stage disease, at either the high or 
the low dose rate, inhibited lesion growth, decreased lesion 
frequency and slowed the progression of lesion severity in 
the aortic root. In contrast, exposure at late-stage disease 
produced generally detrimental effects. Both low- and high-
dose-rate exposures accelerated lesion growth and high-
dose-rate exposures also increased serum cholesterol levels. 
All effects were highly nonlinear with dose (Mitchel et al. 
2013). An increase in anti-inflammatory and anti-oxidative 
parameters resulting in atherosclerotic plaque size reduction 
in ApoE–/– mice after chronic exposure to external low-dose 
γ-radiation was reported by Ebrahimian et al. (2018). Their 
results suggest that chronic low-dose gamma irradiation 
induces an upregulation of organism defenses leading to a 
decrease in inflammation and plaque size. Low-dose induced 
anti-inflammatory effects which play an important role in 
that context are currently intensely studied (see for example 
the reviews by Rödel et al. 2012a, 2012b, Frey et al. 2015) 
and have also been reported by Le Gallic et al. (2015) and 
Mathias et al. (2015). Earlier, low doses of γ-radiation deliv-
ered at low dose rates exhibited a protective effect related to 
chronic ulcerative dermatitis, an inflammatory skin reaction, 
in C57BL/6 mice, decreasing both disease frequency and 
severity and extending the lifespan of older animals (Mitchel 
et al. 2007). The two-line spline model can describe supra-
linear or sublinear dose–responses (Fig. 1) but also linear 
dependencies. Therefore, its application in the present study 
finds support from the same studies referenced in the context 
of the LNT model, the linear-exponential, LTH and hormesis 
models (refer to Table 1). The Gompertz model can exhibit 
linear, sublinear and smooth-step dose–responses but also-
supralinear responses. Therefore, its use in the present study 
is motivated by the same biological findings referenced in 
the context of the LNT model, the linear-quadratic, LTH, 
smooth-step and linear-exponential models, see Table 1.

Interpretation of our findings is limited by the absence 
of information on important independent risk factors for 
CVD in the CFCS data (Zablotska et al. 2014), particularly 
socioeconomic status and smoking. Only a limited amount 
of information is available on smoking for approximately 
20% of the cohort (smoking was therefore not included 
in the baseline model, in accordance with Zablotska et al. 
2014). Some studies suggest that these factors account for a 
substantial proportion of observed increase in CVD (see for 
example Yusuf et al. 2004). However, smoking was not asso-
ciated with radiation (Zablotska et al. 2014), so could not be 
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considered as a confounding variable in the current analyses. 
Furthermore, numerous recent studies found weak evidence 
for interaction between radiation and smoking (for example, 
Kreuzer et al. 2018). The CFCS data also lack information 
on other important CVD risk factors, such as family history 
of heart disease, diabetes, high blood pressure, obesity, and 
cholesterol plasma levels. However, because these factors 
are unlikely to be associated with radiation dose, they are 
unlikely to have biased the observed association between 
exposure and IHD mortality (Zablotska et al. 2014).

Another limitation is that all study participants had tuber-
culosis. We are aware that the precise relationship of radia-
tion dose to IHD risk in immunocompromised, chronically 
ill tuberculosis patients may well differ from that in healthy 
individuals.

Our study findings are also limited by the end of follow-
up in 1987 (Zablotska et al. 2014). It is noted that out of the 
63,707 tuberculosis patients 34,717 individuals were still 
alive at the end of follow-up. CFCS study investigators are 
in the process of extending mortality follow-up by 30 years 
(1988–2017). In addition, they will also conduct, for the 
first time, cancer incidence follow-up of the cohort during 
1969–2017. New doses to all organs within and outside the 
field of fluoroscopic irradiation will be estimated using com-
puterized phantoms specific to the CFCS population.

Within the approach of the present study, the dose 
fractionation proportionally affects the magnitude of 
the dose–response function but not the shape of the 
dose–response. Given evidence of a significant inverse dose-
fractionation association in the primary analysis (Zablotska 
et al. 2014), it seems to be a hypothesis of interest that the 
dose–response shape might differ by the dose rate, i.e., dose 
fractionation (while the person-year-weighted mean dose 
fractionation within the whole cohort is 0.109 Gy year−1, for 
mean cumulative person-year-weighted lagged lung doses  
≤ 0.1 Gy and > 0.1 Gy that quantity is 0.008 Gy year−1 and 
0.101 Gy year−1, respectively). To investigate whether there 
may be any difference in the shape of the dose–responses at 
low- and high-dose fractionations the analyses of the present 
study could in principle be repeated within several strata of 
dose rate. Zablotska et al. (2014) performed such an analysis 
and calculated the ERR for three categories of dose frac-
tionation. For IHD an inverse dose-fractionation association 
was found using the LNT dose–response model (see Table 6 
in the publication by Zablotska et al. 2014). While such an 
effort is beyond the scope of the present study, there is also 
concern that such an in-depth analysis performed in the con-
text of MMI may outstrip the CFCS data in terms of their 
ability to characterize risk of subsequent IHD in meaningful 
populations due to the above mentioned absence of informa-
tion on classical modifiable cardiovascular risk factors such 
as lipids, hypertension, diabetes, abdominal obesity, diet, 
psychosocial factors, etc., as well as family history of IHD.

Generally, inference based on a set of multiple plausible 
models is a sound alternative to inference relying only on 
a single “best” model when the uncertainty in the model 
selection is large. The pitfall of using the MMI approach 
is, however, related to that specific aspect: the subjectivity 
of the model selection. In the present study, this problem 
is addressed with a two-tiered strategy. On the one hand, 
as already stated above, the models in Fig. 1 are carefully 
chosen to reflect as many biologically plausible shapes for 
dose–responses as possible. On the other hand MMI was 
applied in two different approaches, sparse and rich, as 
described in the “Materials and methods”. In the center of 
the case-weighted means (case-weighted mean age, case-
weighted mean dose, etc.) all models yield similar risks. 
Only at the borders of the data space where only a few cases 
are located the calculated risks will differ strongly. Here, 
MMI helps with the comprehensive characterization of 
uncertainties.

In the context of subjectivity of model selection the fol-
lowing aspect is noted. It would be generally possible to 
choose a larger number of non-nested plausible models (of 
the same or similar number of parameters) that could lead 
to fits of similar shapes. That way one could end up with a 
situation of having a very large number of models in the set 
of final non-nested models, each of which with a very small 
AIC-weight. This situation is prevented by only including 
into Occam’s group those non-nested models with a bilat-
eral AIC-weight larger than 5% (see Table S3 of the Online 
Resource including the related footnote e).

At low and medium doses our results are in agreement 
with the earlier findings (Zablotska et al. 2014) and based 
on a more comprehensive analysis with a larger series of 
biologically plausible dose–responses. An essential differ-
ence with the primary analysis (Zablotska et al. 2014) is the 
use of a different baseline model. The present study applied 
the parametric baseline model given in equation (S4) of 
the Online Resource with 21 baseline parameters while in 
(Zablotska et al. 2014) a stratified baseline model with one 
free parameter for each possible combination of available 
categories in the data was used. Their baseline model con-
tained several thousand free parameters and was not suitable 
for AIC-based MMI analysis for which parsimony in param-
eters is essential (Walsh and Kaiser 2011).

In a recent MMI-based analysis of the LSS mortality 
data for heart diseases observed during 1950-2003 an 
ERR of 0.08 at 1 Gy with 95% CI (0, 0.20) was reported 
(Schöllnberger et al. 2018). Shimizu et al. (2010) reported 
an ERR per dose of 0.14 Gy−1 with 95% CI (0.06, 0.23). 
Within the error bars these values are consistent with our 
estimate of 0.216 at 1 Gy with 95% CI (0.062, 0.48). For 
IHD, however, these authors did not find a significant asso-
ciation between radiation exposure and IHD (refer to Web 
Table B in Shimizu et al. 2010). The latest analysis of the 
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LSS mortality data with extended follow-up from 1950 to 
2008 found no significant association between radiation 
exposure and IHD either (Takahashi et al. 2017). For IHD 
mortality in male Mayak workers, an ERR per dose of 
0.09 Gy−1 with 95% CI (0.02, 0.16) was reported (Simon-
etto et al. 2014). This value is consistent with the risk 
prediction from the present study. For females, no signifi-
cant elevation in risk was found (Simonetto et al. 2014). 
Azizova et al. (2015a) did not find a significant associa-
tion of total dose from external γ-rays with IHD mortal-
ity in Mayak workers. A population-based case–control 
study of major coronary events (i.e., myocardial infarc-
tion, coronary revascularization, or death from IHD) in 
2168 women who underwent radiotherapy for breast can-
cer between 1958 and 2001 in Sweden and Denmark was 
conducted by Darby et al. (2013). The study included 963 
women with major coronary events and 1205 controls. 
Rates of major coronary events increased linearly with 
the mean dose to the heart by 7.4% per gray (95% confi-
dence interval, 2.9 to 14.5; P < 0.001), with no apparent 
threshold (this corresponds to an ERR per dose of 0.074 
with 95% CI (0.029, 0.145)). Darby and colleagues had 
applied a linear dose–response model. In that context it is 
noted that Schneider et al. (2017) put forward arguments 
that the dose–response may not necessarily be linear. It 
follows from Darby et al. (2013) that for a mean heart 
dose of 5 Gy ERR = 0.37 with 95% CI (0.15, 0.73). The 
value of ERR = 0.37 is considerably lower than our MMI 
estimate for 5 Gy (see Table 4: ERR = 4.70 at 5 Gy with 
95% CI (0.60, 10)). Ghobadi et al. (2012) report results 
from rodent experiments showing that irradiation of heart, 
lung, or both independently induces specific cardiac dys-
function and pulmonary vascular damage, mutually 
enhancing each other. Their findings suggest that irradia-
tion of an already diseased lung can indirectly increase the 
IHD risk, compared to irradiation of a healthy lung. We 
may hypothesize that this biological effect increases the 
IHD risk significantly compared to LNT behavior at doses 
above 2 Gy, which are concomitantly associated with long 
duration of tuberculosis.

There remains considerable controversy over the effects 
of dose-protraction on long-term health outcomes. In fact, 
the ICRP is putting a major effort into evaluating the many 
modern studies with dose-protraction (Shore et al. 2017). 
Survivors of atomic bombings in Hiroshima and Nagasaki 
were exposed to acute exposure and could not provide use-
ful information on the effects of dose fractionation. Lim-
ited data exist on the dose rate effects in Mayak workers, 
primarily in the form of annual absorbed doses. In con-
trast, the CFCS has detailed exposure information on the 
dose and dose rate of a typical fluoroscopic examination 
and number of fluoroscopic procedures for each patient per 
year. Altogether, the CFCS is the largest study of patients 

exposed to moderately fractionated low-to-moderate doses 
of IR and presents one of the most valuable cohorts world-
wide to derive information related to radiation effects at 
low, moderate and high doses of IR.

For IHD mortality among 308,297 nuclear industry work-
ers from France, United Kingdom and United States, as part 
of the International Nuclear Workers Study (INWORKS), an 
ERR per dose of 0.18 Sv−1 with 90% CI (0.004, 0.36) was 
reported (Gillies et al. 2017). Recently, the CFCS data for 
IHD (Zablotska et al. 2014) were combined with a cohort 
of tuberculosis fluoroscopy patients from Massachusetts 
and analyzed with a linear dose–response model applying 
two different dose regimes with a fixed cut-point at 0.5 Gy 
(Tran et al. 2017). The authors reported increasing trends for 
doses < 0.5 Gy; over the entire dose range a negative dose 
trend was observed (Tran et al. 2017). This is probably due 
to the inability to adjust for dose fractionation effects in the 
Massachusetts data where only cumulative doses to the lung 
have been estimated. The present study used a more com-
prehensive and flexible approach by analyzing the data with 
a variety of different linear and nonlinear models including 
those that exhibit flexible threshold-doses without apply-
ing artificial cut-points at certain doses and without relying 
on LNT as a foregone conclusion (Little et al. 2012, Little 
2016).

Conclusions

The present study confirms previous findings in a number 
of studies of essentially linear dose–response for death from 
IHD at low and moderate doses (0–1 Gy). Our analyses sug-
gest that different biological mechanisms may operate at low 
and medium doses compared to high doses and that at higher 
doses, the LNT model may underestimate the risk compared 
to the dose–response from MMI by a factor of 5. Our results 
should be of particular interest to international radiation 
protection organizations, which largely rely on analyses of 
radio-epidemiological cohorts using the LNT model. We 
conclude that our findings have important implications for 
risk assessment of IR in the context of medical applications 
(such as CT scans and radiotherapy), nuclear energy produc-
tion and accident related long-term risks.
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