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Abstract
This article describes the application of a simplified Bayesian method for estimation of doses from a mixed field using 
cytogenetic biological dosimetry, taking as an example neutron and gamma radiation emitted from the MARIA nuclear 
research reactor in Poland. The Bayesian approach is a good alternative to the commonly used iterative method, which 
allows separate dose estimation. In the present paper, a computer program, which uses the iterative and simplified Bayesian 
methods to calculate mixed radiation doses, is introduced.

Keywords  Bayesian analysis · Cytogenetic biological dosimetry · Mixed radiation dosimetry · Retrospective dosimetry · 
Health physics · Radiation biophysics

Introduction

Cytogenetic biological dosimetry includes a group of meth-
ods based on assessing the frequency of biomarkers, such 
as dicentric chromosomes in human peripheral blood lym-
phocytes, to estimate radiation doses of those who have been 
exposed in occupational accidents or incidents (IAEA 2011). 
Dose estimation with the dicentric assay after accidental 
exposure to mixed, i.e., neutron and gamma radiation (n + γ) is 
more complex than estimation after exposure to a non-mixed 
field, because the human body is irradiated by a combination 
of two (in general R) radiation types. Due to a markedly dif-
ferent relative biological effectiveness (RBE) of components 
of the mixed absorbed dose, there is a strong need to estimate 
not only the total absorbed dose, but also its components. In 
the case of mixed neutron and gamma radiation, if the ratio ρ 
of neutron (Dn) to gamma (Dγ) absorbed doses:

is known from physical measurements, the absorbed doses 
of each component can be obtained by applying an itera-
tive process and assuming that all radiation-induced dicen-
trics are the sum of dicentrics induced by each radiation 
type (IAEA 2011). The iterative method can be general-
ized and presented in one mathematical formula as the 
“analytical method” (Słonecka et al. 2018). The estimation 
of the separate absorbed doses is performed using in vitro 
dose–response calibration curves for each type of mixed 
radiation. In the case where a physical estimate of ρ is not 
precisely known, the above method is not possible to use. 
However, Brame and Groer derived a method based on 
Bayesian statistics (Brame and Groer 2003), which allows 
estimating the neutron and gamma absorbed doses with an 
uncertain ρ with the use of prior distribution(s), known as 
the probability distribution function (PDF), which can be 
assigned to the unknown parameter. Therefore, the Bayesian 
method is an attractive alternative to the currently used clas-
sical methods. However, the Bayesian method is more com-
plicated in comparison with the iterative one and requires 
use of advanced mathematical calculations. Because some-
times the only unknown parameter is ρ, and because cali-
brated curves are usually known from earlier measurements, 
the authors propose simplification of the original Brame and 
Groer method. More specifically it is proposed to assign the 
prior distribution only to the ρ parameter, and to express 
curve parameters as constant values instead of distributions. 
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It is shown here that this approach greatly simplifies the 
calculations and gives comparable results.

The objective of this paper is to present the mentioned sim-
plified Bayesian approach for dose estimation using the results 
of dicentric assay analysis after accidental overexposure to 
mixed n + γ radiation, which was implemented into a computer 
program, and to compare the results with those obtained by 
the full Bayesian method proposed by Brame and Groer (2003) 
and by the classical (iterative) method (IAEA 2011, Słonecka 
et al. 2018). Besides the mixed doses calculation, the devel-
oped program gives also the possibility of fitting curves to 
the data with the use of the robust Bayesian fitting (Fornalski 
et al. 2010; Fornalski 2015; Fornalski and Dobrzyński 2015), 
which has been used to find the dose–effect calibration curves 
and its parameters.

Materials and methods

Mixed n + γ radiation field

The equations of the neutron and gamma dose–response mod-
els can be written as (IAEA 2011):

where Yx (where x = γ for gamma and x = n for neutron radia-
tion) is the frequency of dicentrics, Dx is the absorbed dose, 
Y0 is the control dicentric level (background), α and β are 
the coefficients of the linear terms while γ is the coefficient 
of the quadratic term. Assuming additivity of neutrons and 
gamma rays in dicentrics production (IAEA 2011, Kellerer 
and Rossi 1978), the dose–response relationship for mixed 
n + γ radiation may be described as:

where yf = u/w is the frequency of dicentrics, and u is the 
number of dicentrics observed in w analyzed cells (lympho-
cytes). It is assumed that the number of dicentrics per cell 
observed in a sample after neutron and gamma exposure 
follows a Poisson distribution with a population mean, yf 
(IAEA 2011). In order to calculate absorbed doses it is also 
necessary to know the neutron to gamma absorbed dose ratio 
ρ (Eq. 1). Instead of � , the θ parameter can also be used,

because it proved to be much more convenient in calcula-
tions (Brame and Groer 2003). The θ is normalized to the 
[0, 1] range, whereas � lies between 0 and ∞.

(2)Y� (D� ) = Y0 + � D� + � D�
2,

(3)Yn(Dn) = Y0 + � Dn,

(4)Yn+� (Dn,D� ) = Y0 + � Dn + � D� + � D�
2 ≡ yf,

(5)� =
D�

D� + Dn

=
1

� + 1
,

Having values of Y0, α, β and γ, the number of dicen-
trics observed in an analyzed lymphocytes sample and the 
θ parameter, the absorbed doses can be calculated using the 
Y(D) function (Eq. 4). If the θ is known from measurements, 
the classical iterative (IAEA 2011) or analytical method 
(Słonecka et al. 2018) can be used. In other cases, the Bayes-
ian (Brame and Groer 2003), quasi-Bayesian (Słonecka et al. 
2018), or even the Monte Carlo approach (Powojska et al. 
2018) can be applied. The iterative method is described in 
detail in (IAEA 2011). It involves performing several series 
of calculations using the same input data. Each next series 
gives more accurate results, until the results in the following 
steps begin to repeat. This method is recommended by the 
International Atomic Energy Agency (IAEA 2011).

Bayesian approach to dose calculation

General approach

Bayesian statistics express the final posterior function based 
on both, the prior function (p) and the likelihood function 
(L). All of them are expressed in the form of the probability 
distribution function (PDF). Thus, the prior PDF is utilized 
to estimate the most probable values of unknown parameters 
(here θ or ρ—the ratio of absorbed doses). Such a prior func-
tion [here: p(θ) or p(ρ)] is widely used in Bayesian statistics. 
Data obtained in the experiment are expressed formally as a 
likelihood function. In biological dose assessment, L can be 
found based on biophysical arguments, as a distribution of 
damages, which is given by Poisson statistics (IAEA 2011) 
and can be written as:

Consideration of these two sources (p and L) is the founda-
tion of Bayes’ statistics and allows transforming the prior PDF 
into a posterior PDF according to the Eq. 7:

Full Bayesian method—the Brame and Groer approach

In the original Brame and Groer approach, proper prior func-
tions are used for the ρ or θ parameter as well as for the α, β 
and γ calibration curves parameters. Brame and Groer assumed 
that prior PDFs of curves parameters can be approximated by 
the Gamma distribution (the logarithm of a Gamma distri-
bution has a simple form for analysis, i.e., for the maximum 
likelihood method):

(6)L =
(w yf)

u e−w yf

u!
.

(7)Posterior ∝ Likelihood × Prior = L ⋅ p.

(8)p(�) = �k−1
zk

Γ(k)
exp (−z�),
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where λ = {α, β, γ} are the dose–response curves parameters, 
and Γ is a Gamma function. Parameters k and z are the shape 
and scale parameters, respectively, different for different λ. 
With such an assumption, the posterior function of dose can 
be written as:

The likelihood function, L, is given by the Poisson dis-
tribution (Eq. 6). Parameters λ = {α, β, γ} are given in the 
classical way with some standard deviation. Priors p(λ) can 
be introduced by a Gamma distribution each, like in Eq. 8, or 
obtained in another way, for example, by the robust Bayes-
ian regression analysis (Fornalski and Dobrzyński 2015) 
(which would enhance the Brame and Groer method and 
make it Bayesian in all aspects). The θ parameter (described 
by Eq. 5) is given in the transformed form of a scaled Gauss-
ian distribution (Fig. 1):

where 𝜌̂ is the expected value, �� the standard deviation, and 
θ a variable of distribution.

One has to note, however, that Brame and Groer have 
used the Gamma distribution for priors p(λ) quite arbitrarily, 
to simplify their calculations. Their method, as mentioned 
above, can be enhanced and all priors p(λ) can be presented 
as distributions obtained by the robust Bayesian regression 
method (Fornalski 2014, 2015). This enhancement would 
change the Brame and Groer method into a Bayesian one in 
absolutely all aspects (also in the origin of priors), but would 
then require advanced numerical methods.

Simplified Bayesian method

The methodology presented above, but with several modi-
fications (Pacyniak et  al. 2014), has been successfully 

(9)
P
(
Dx

)
∝ ∫ ∫ ∫ ∫ L

(
Dx|�, �, � , �

)
p(�) p(�) p(�) p(�) d� d� d� d�.
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1

√
2𝜋𝜎𝜌𝜃

2

exp

�
−1

2𝜎2
𝜌

��
1

𝜃
− 1

�
− 𝜌̂

�2
�
,

implemented at the Central Laboratory for Radiological 
Protection (CLOR), Poland. Assuming that in a practical 
situation the only unknown parameter is ρ (or θ), while cali-
brated curves are known from earlier measurements, the 
difference in both methodologies pertains to the expression 
of calibration curves parameters (α ± Δα, β ± Δβ, γ ± Δγ and 
Y0 ± ΔY0). In the simplified Bayesian method, these param-
eters are expressed as fixed values instead of distributions, so 
the method does not use their uncertainties directly in dose 
calculations, but only in the assessment of dose uncertainty. 
Taking parameters as fixed values, the prior PDF can be 
assigned to the ρ parameter only, which greatly simplifies 
the mathematical calculation of dose and still gives compa-
rable results. Additionally, the faster and simpler method is 
of crucial importance when a real nuclear accident happens 
and there is no time for more complicated calculations. More 
than that, most cytogenetic laboratories have their own cali-
bration curves and the exact values of parameters are pretty 
well-known, so it is not necessary to transform them into 
probability distributions to use the full Bayesian method.

Therefore, in the method proposed here, transforming 
Eq. 7 into the form convenient for calculations, the prob-
ability distribution of absorbed dose can be expressed as:

where x = {γ, n}. Potential candidates for prior PDFs, 
p(θ), are detailed below. The likelihood functions for both 
absorbed doses, presented in the form of Eqs. 12 and 13, 
were obtained by the substitution of Eqs. 4 and 5 into Eq. 6:

The curve parameters can be assessed in advance by max-
imum likelihood estimation or even by the robust Bayesian 
regression method (Fornalski 2015). Below the differences 
between the results of those methods are presented.

The uncertainties of dose estimations, σDx, can be 
assessed using the Cramér–Rao theorem:

where ln(P) is the natural logarithm of P(Dx) due to the max-
imal likelihood method. However, the variable presented in 
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Fig. 1   The informative priors for θ=0.92



52	 Radiation and Environmental Biophysics (2019) 58:49–57

1 3

Eq. 14 is the lower bound1 of the variance of the estimator, 
so it can underestimate the uncertainty. Thus, the classical 
assumption, like the independent finite increments method, 
can be applied as well.

In practice, all presented calculations need numerical 
solutions, because analytical solutions are too complicated 
in some cases.

Informative prior functions

The prior function for ρ (or θ) used in the Bayesian 
method should reflect the actual knowledge about the ratio 
of absorbed doses. Prior PDFs may be presented in the 
informative or non-informative form. To select the proper 
prior, information about the θ (or ρ) parameter, such as the 
expected value of the parameter, needs to be considered. 
Based on the detailed information available, the prior func-
tion (with its scale and shape parameters, in some cases) 
should be taken to maximize its PDF for the considered θ (ρ) 
parameter. Information about the parameter can be derived, 
for example, from the standard operation of a nuclear reactor 
(level of nuclear fuel burn-up for instance), that is a main 
source of an intense mixed n + γ radiation field.

The authors have tested different PDFs, both informative 
and non-informative priors. The most practical exemplary 
priors are presented below, in form of Eqs. 15–20.

The Gaussian distribution (Eq. 15) is usually selected in 
biodosimetry worldwide because the estimation of θ (or ρ) 
is prepared using the classical Gaussian regression method 
around 𝜃̂:

where σθ is the standard deviation, 𝜃̂ the expected value, and 
θ the variable of the distribution (Fig. 1).

The Gaussian prior together with Eq. 5 gives the scaled 
Gaussian prior (Eq. 10), where � =

1

�
− 1 . As it has been 

mentioned earlier, this PDF has been proposed and tested 
by Brame and Groer, because it fits better to the θ parameter 
than to ρ.

Likewise, the Beta distribution (Eq. 16) with the appro-
priate shape parameters can be also used as an informative 
prior (Fig. 1):

(15)p(𝜃) =
1

√
2𝜋𝜎𝜃

exp[−
(𝜃 − 𝜃̂)

2

2𝜎2
𝜃

] ,

where Γ is the gamma function, k and l are distribution 
shape parameters, and θ is the variable of distribution.

While the Gaussian (or scaled Gaussian) prior seems to 
be obvious as a standard for biodosimetry, due to its sym-
metrical form (Słonecka et al. 2018), the unsymmetrical 
form of the Beta distribution can be a good solution for 
criticality accidents, where the stream of neutrons can be 
potentially higher than expected.

Non‑informative prior functions

In special cases, even a non-informative prior PDF can be 
used, although such a prior does not specify the exact infor-
mation, it only defines a very general trend of the parameter. 
Such a prior can be used in the rare case of the lack of detailed 
information about the dose ratio. A non-informative prior can 
also be used in situations when a significant contribution of 
one type of radiation is assumed, but the exact value of ρ is 
not known (Słonecka et al. 2018). For example, having the 
information that during the standard operation of a nuclear 
reactor there is an overwhelming dominance of gamma ray 
over neutrons, the non-informative distributions can be useful.

In some cases, the only available information is that there 
was mixed radiation composed of two (generally R) radia-
tion types, e.g., a neutron and gamma radiation field, with 
an unknown θ. In such situations, one can try to assess the 
absorbed doses assuming approximately a similar contri-
bution from neutrons and gamma rays, which corresponds 
to the PDF expressed as the simplified Beta distribution 
(Eq. 16) converted into Eq. 17 (for the parameters k = l = 2):

Such a form of the Beta distribution (Fig. 2) can poten-
tially describe a situation with an uncontrolled fission reac-
tion, i.e., a criticality accident in a fuel pool, where the neu-
tron fluence can be high.

(16)p(�) =
Γ(k + 1)

Γ(k)Γ(l)
�k−1(1 − �)l−1 ,

(17)p(�) ∝ (� − �2).
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Fig. 2   The non-informative priors

1  The Cramér–Rao theorem gives lower bounds of the variances of 
the estimators, that are just the elements of the diagonal of the inverse 
of the Fisher information matrix. These lower bounds are asymptoti-
cally attained by the variances of maximum likelihood estimators, 
and the inverse of the Fisher information matrix can be estimated 
from the inverse of the Hessian matrix, H− 1, of the log-likelihood 
function evaluated at the maximum likelihood estimates.
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Equation 18, hereinafter referred to as the sigmoidal prior 
function, can be used as a non-informative prior function 
(Fig. 2). The sigmoidal form of a prior PDF can represent 
the situation of an uncontrolled fission reaction in a fuel pool 
or the shutdown of a reactor, where usually gamma rays are 
dominating, but some neutrons may also be present.

where k and l are shape parameters, and θ is the variable of 
the distribution.

The simplest non-informative prior is the constant one 
(Eq. 19) (Fig. 2):

This prior represents the situation with completely no 
information about the irradiation conditions (which is rather 
an academic scenario). The use of such a prior gives the 
least precise results whenever used. This is the reason why 
it is important to always try assessing the potential shape 
of prior, which is usually possible. Selection of the correct 
prior PDF depends on the situation. In the present paper, 
several distributions are proposed and used in the calculating 
program, but there might be additional ones.

Proper prior selection

Selection of the appropriate prior function is of crucial 
importance in Bayesian methods. This function reflects the 
existing knowledge from other sources/assumptions, which 
is the main difference between the classical and Bayesian 
statistics approach. Therefore, all additional information 
available shall be connected with the proper prior function.

The Gaussian (or scaled Gaussian) prior function given 
by Eq. 15 (or Eq. 10, respectively) is commonly used in 
cytogenetic biodosimetry (Brame and Groer 2003; Ains-
bury et al. 2013a, b) due to its symmetry. This symmetry 
is reflected in the simple normal distribution of data around 
𝜃̂ . However, in some cases, this symmetry is not perfectly 
appropriate. For example, during some scenarios of nuclear 
accidents, one can assume a lack of knowledge about one 
type of radiation, e.g., neutrons. In that scenario, there is 
completely no information about the emission of neutrons, 
but their existence cannot be excluded. Therefore, a sigmoi-
dal prior shape would be a better option because it describes 
that situation properly: no neutrons at all or some emission 
of neutrons are on equal footing.

It is emphasized, however, that the selection of an accu-
rate prior function depends on the user of the algorithm. It 
is thus subjective, because the user has the best knowledge 
about any additional information on the radiation scenario to 
be investigated. In most cases, the Gaussian function might 
be first choice as it is the simplest one.

(18)p(�) =
2

1 + exp(−k� + l)
,

(19)p(�) = const.

Generalized multi‑field of radiation

The method presented above works well if two radiation 
fields are present. If more (R) fields of different types are 
present, however, it is necessary to find a more general solu-
tion. The required multi-field Bayesian approach was origi-
nally formulated by Fornalski (2014).

For the general case of many types of radiation, Eq. 4 can 
be presented as (Fornalski 2014):

where µ is the degree of the i-th polynomial and R is the 
number of radiation types present. In practice, however, usu-
ally µ is less than or equal to 3, which is be assumed in the 
following considerations. Additionally, one can assume that 
each i-th polynomial has the same degree. Thus, for such the 
generalization of the simplified Bayesian method for dose 
estimation it is necessary to assume (R-1) parameters θi for 
each radiation type i (Eq. 21) and proper prior functions, 
p(θi).

A prior density function should be assumed or established 
experimentally, as in Eqs. 15–19. While making a choice, for 
the benefit of simplicity, the polynomial Eq. 20 can present 
yf dedicated for the exact i-th dose as (Fornalski 2014):

Each absorbed dose Di is written as a proper part of the 
total dose using Eq. 21 and the reasoning used in Eqs. 12 
and 13. Next, the likelihood function based on the Poisson 
distribution (Eq. 6) and yf (Di) from Eq. 22 can be written 
as (Fornalski 2014):

Assuming that all fitted parameters, λ, are given by their 
priors (including λ0 = Y0), the posterior probability distribu-
tion for each absorbed dose equals (Fornalski 2014):

which is the most general form of posterior probability for R 
types of radiation and (µ+1)R numbers of fitted parameters.
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Computational program

A number of authors have suggested Bayesian methods as 
an appropriate tool in biological dosimetry (Brame and 
Groer 2003; Ainsbury et al. 2013a, b; Pacyniak et al. 2014) 
and some of them have written and shared programs, like 
CytoBayesJ (Ainsbury et al. 2013b), utilizing the Bayes-
ian approach. This is a very elaborate and user-friendly 
program which (1) enables testing for the most appropri-
ate model for the distribution of chromosome aberrations 
amongst cells; (2) allows calculating the posterior prob-
ability distribution for the yields of chromosome aberra-
tions; (3) allows calculating the probability distribution of 
radiation dose using a “Bayesian like” method with linear 
and linear-quadratic dose response models; (4) offers full 
Bayesian calculations of the probability of radiation dose 
for Poisson data using a linear dose response model; and 
(5) offers Bayesian methods to calculate decision thresh-
olds and detection limits (Ainsbury et al. 2013b). All of 
the above functions require very complex and compli-
cated mathematical operations, so the software is also very 
complex.

In contrast, in the present paper it was the intention to 
develop a simple tool that is easy to use. Consequently, 
the program proposed in the present paper allows for cal-
culation of separate doses of the components of a mixed 
radiation field composed of low- and high-LET radiation 
(here n + γ) using a simplified Bayesian approach. The 
software contains a list of prior PDFs which can be used. 
In addition, the program offers a few additional options 
including (1) calculating mixed doses using classical 
(iterative) and analytical methods; (2) fitting parameters 
to the data with the use of robust Bayesian method (For-
nalski 2014, 2015; Fornalski and Dobrzyński 2015); and 
(3) automatically choosing the better among two possible 
dose response curves: linear or linear quadratic (Fornalski 
and Dobrzyński 2015).

In general, despite allowing for many applications, the 
program is very easy and intuitive to use. The software 
includes a graphic user interface and is freely available2. 
The program does not require knowledge of complicated 
mathematical expressions, which are of course needed and 
used by the program behind the scenes to perform the dose 
calculations and their uncertainty. The program was writ-
ten in the Java programming language. Its advantage is the 
*EXE file extension, which gives the possibility to install it 
on almost every computer. The beta version of the program 
is being continually developed. In case of any issues or ques-
tions, please contact the authors.

Results and discussion

To test the program, results of a dicentric assay analysis 
performed in CLOR were used (Pacyniak and Kowalska 
2015). In the CLOR experiment, human blood samples were 
irradiated in vitro in the H8 channel of the MARIA nuclear 
research reactor in the National Center for Nuclear Research 
(Otwock-Świerk, Poland) in a mixed neutron and gamma-ray 
field. From physical measurements, it was known that the 
field consisted mainly of gamma rays and thermalized fission 
neutrons. To determine the total dose components, the twin 
detector method and recombination method were used (Gol-
nik et al. 2013). The dose fraction recommended as the con-
tribution of gamma rays to total tissue kerma was 0.92 ± 0.02. 
Hence, the dose fraction of thermal neutrons to the total tis-
sue kerma was 0.08 ± 0.02. Thus, the ρ = Dn/Dγ = 0.087.

Fitting curves parameters

The parameters of the calibration curve were calculated with 
the use of maximum likelihood estimation (MLE) and the 
robust Bayesian method (BM) (Fornalski 2014, 2015; Fornal-
ski and Dobrzyński 2015), and they are compared in Table 1. 
As one can see, both methods give similar results with small 
differences in uncertainties. Generally, the Bayesian method 
works better in the case of outlier points (Fornalski 2015; 
Fornalski and Dobrzyński 2015), because it simply omits 
such points and finds the best curve fit to scattered/biased 
data. More detailed information about this method is given 
in (Fornalski 2014, 2015; Fornalski and Dobrzyński 2015).

Mixed doses assessment—comparison of full 
and simplified Bayesian methods

To compare the full Bayesian method and the simplified 
Bayesian method developed here, the data tested by Brame 
and Groer (2003) were used. These data are related to an 
accident scenario simulated for the French nuclear reactor 
SILENE (Voisin et al. 1997). In that scenario, the blood 
was irradiated by reference pulses of mixed gamma and 
neutron radiation. The used data are characterized by 
the following parameters: u = 85 dicentrics, w = 28 cells, 
ρ = 0.64 ± 0.25, α = 0.835 ± 0.098 dic⋅cell− 1⋅Gy− 1, β = 
0.0142 ± 0.0098  dic⋅cell− 1⋅Gy− 1, γ = 0.0759 ± 0.0126 
dic⋅cell− 1⋅Gy− 2, and Y0 = 0. In the simplified Bayesian 
method developed in the present paper, the scaled Gauss-
ian prior (Eq. 10) for the θ parameter was used (where 
θ = 0.61 ± 0.25) as well as the fixed values of the curve 
parameters and the assumption about the Poisson distri-
bution of aberrations in analyzed cells. In contrast, in the 
full Bayesian method (Brame and Groer 2003), the scaled 
Gaussian prior for θ was used and the α, β and γ param-
eters were expressed in the form of Gamma distributions. 2  http://www.clor.waw.pl/publi​kacje​.html.

http://www.clor.waw.pl/publikacje.html
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Both methods gave consistent results and were compared 
to the iterative method (Table 2) recommended by the 
International Atomic Energy Agency (IAEA 2011).

Mixed dose assessment—simplified Bayesian 
method

To estimate neutron and gamma absorbed doses separately, 
a sample with 35 dicentrics in 500 analyzed cells was used, 

the fitted curve parameters were taken from Table 1, and 
θ = 0.92 ± 0.02. The results of the iterative and simplified 
Bayesian methods are shown in Table 3, as well as the 
absorbed doses, which were measured during the experi-
ment. In the simplified Bayesian method only a few priors, 
as discussed above, were used.

In the situation where the ρ (or θ) parameter is known 
from physical measurements, both the iterative and simpli-
fied Bayesian methods give comparable results (Gaussian, 
scaled Gaussian or Beta priors). Typically, the Bayesian 
method is used when a physical estimate of the composi-
tion of the mixed field was not made (or when its composi-
tion is not exactly known). Then, more detailed information 
would be useful, such as the dominance of one radiation type 
over another. In such a case choosing of a proper prior PDF, 
even non-informative, would be important. As it is shown 
in Table 3, even non-informative prior functions, (especially 
the sigmoidal priors here) can give consistent results. In case 
of the Beta distribution (θ–θ2) and a constant prior, where 
only general information is available, the resulting doses 
are different as compared to the physical absorbed doses 
(Table 3) and, consequently, they are not proper priors in this 
situation. They were used to show that any information about 

Table 1   Fitted parameters for the dose response curves (Eqs.  2–4) 
calculated with the Bayesian method (BM) and maximum likelihood 
estimation (MLE). Y0—background level of dicentrics; α and β—

parameters of linear term of dose response; γ—parameter of quad-
ratic term of dose response

* Uncertainties are presented as one standard deviation

Source Method Y0 ± σY0
* [dic ⋅ cell−1] α, β ± σα,β

* 
[dic ⋅ cell−1⋅Gy−1]

γ ± σγ
* 

[dic ⋅ cell− 1⋅Gy− 2]

Mixed radiation field, n + γ BM 0.0010 ± 0.0001 0.038 ± 0.001 0.048 ± 0.002
MLE 0.0010 ± 0.0001 0.038 ± 0.004 0.048 ± 0.003

Neutrons BM 0.0005 ± 0.0001 0.354 ± 0.002 –
MLE 0.0005 ± 0.0001 0.354 ± 0.003 –

Gamma radiation: 60Co BM 0.0010 ± 0.0001 0.011 ± 0.001 0.056 ± 0.001
MLE 0.0010 ± 0.0040 0.012 ± 0.003 0.056 ± 0.002

Table 2   Comparison of results obtained with the iterative, full Bayes-
ian and simplified Bayesian methods

* RE relative error, the difference between iterative and each next dose
** Scaled Gaussian prior was used to calculate the doses
*** Results were presented in (Brame and Groer 2003) in form of 
graphs without uncertainties

Method Dγ [Gy] *RE [%] Dn [Gy] *RE [%]

Iterative 3.670 ± 1.975 – 2.349 ± 1.342 –
Simplified 

Bayesian**
3.617 ± 1.134 1 2.287 ± 0.733 3

Full Bayesian*** 3.635 1 2.318 1

Table 3   Results of mixed dose 
assessment. In the case of the 
simplified Bayesian method 
several priors, both informative 
(INF) and non-informative 
(NON-INF) have been used

* RE relative error, the difference between actual–physical value of dose and each next dose
** See Figs. 1and 2 for more details

Method Dγ [Gy] *RE [%] Dn [Gy] *RE [%]

Physical 0.782 ± 0.040 – 0.068 ± 0.003 –
Iterative 0.796 ± 0.093 2 0.069 ± 0.008 1
Simplified Bayesian** PRIORS
INF Gauss θ = 0.92 0.798 ± 0.103 2 0.071 ± 0.016 4

Scaled Gauss θ = 0.92 0.798 ± 0.096 2 0.071 ± 0.014 3
Beta θ = 0.92 0.760 ± 0.184 3 0.112 ± 0.041 65

NON-INF Sigmoidal θ > 0.8 0.900 ± 0.129 15 0.060 ± 0.025 12
Sigmoidal θ > 0.5 0.840 ± 0.225 7 0.146 ± 0.043 115
θ–θ2 0.199 ± 0.199 75 0.182 ± 0.034 168
Constant 0.225 ± 0.354 71 0.185 ± 0.035 172
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the event that occurred may be very important. The constant 
prior, which represents a situation where information about 
the irradiation conditions is completely lacking, gives the 
least precise results. This is the reason why it is important 
to always try assessing the potential shape of the prior PDF, 
which is usually possible.

Conclusions

In this study, a simplified Bayesian method was developed 
for biodosimetry applications in mixed radiation fields, 
as an alternative to the full Bayesian approach described 
in (Brame and Groer 2003) and to the iterative approach 
described in (IAEA 2011, Słonecka et al. 2018). The pro-
posed method assumes the use of fixed values for the param-
eters of dose–response curves instead of their distributions, 
which can be applied in situations when the parameters are 
known from earlier physical measurements, which is a very 
common situation in practice. As a major advantage, the 
approach proposed here makes the method faster and sim-
pler, and much more adequate to real experimental/clinical 
situations, which is, for example, of crucial importance dur-
ing real accident scenarios.

The results of all methods investigated here are compa-
rable (depending on the used prior function). Despite the 
implemented simplifications, the method developed here 
is still complicated. Therefore, a code with the Bayesian 
approach was implemented in the form of a computational 
program, which does not require knowledge of complex 
mathematical operations. The code is freely available, and 
the software is presented in a simple form with a graphical 
interface. It allows calculating mixed absorbed doses in fields 
composed of low- and high-LET radiation. Furthermore, the 
code contains a number of priors, which were tested in the 
present study. Depending on the situation, some of these 
priors can be successfully used, especially the informative 
ones, like Gaussian, scaled Gaussian and Beta distributions. 
Some of the non-informative priors, like sigmoidals, also 
provided reasonable results. Although the neutron absorbed 
doses obtained with the sigmoidal prior PDFs differ from the 
physical ones (like the prior for θ > 0.5), gamma doses were 
assessed with good precision. Even this is a very useful infor-
mation despite the prior PDFs used being imprecise. Having 
knowledge about the total absorbed dose, which can be calcu-
lated by the iterative method (IAEA 2011) with the use of the 
mixed curve parameters (Table 1) and the gamma absorbed 
dose, the neutron absorbed dose can be easily calculated. As 
it was mentioned above, the least precise information was 
given by the constant prior PDF.

The program developed has even more options, as it also 
enables doses calculation using the iterative (IAEA 2011) 
and analytical methods (Słonecka et al. 2018). It also allows 

fitting linear or linear quadratic curves to data and auto-
matically identifies the best-fitting model using the Bayes-
ian model selection algorithm (Fornalski and Dobrzyński 
2015).

Future studies will focus mostly on multi-field irradia-
tion with more than two radiation types. Such a situation 
can happen in some rare nuclear accident scenarios, terrorist 
attacks or during space travel. The last case seems to be the 
most important because of future plans of Mars explora-
tion, where radiation protection aspects will be of crucial 
importance (Greco et al. 2003; Testard and Sabatier 1999).
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