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Abstract
The aim of the present study was to review the available models developed for calculating red bone marrow dose in radi-
oiodine therapy using clinical data. The study includes 18 patients (12 females and six males) with metastatic differentiated 
thyroid cancer. Radioiodine tracer of 73 ± 16 MBq 131I was orally administered, followed by blood sampling (2 ml) and 
whole-body scans (WBSs) done at several time points (2, 6, 24, 48, 72, and ≥ 96 h). Red bone marrow dose was estimated 
using the OLINDA/EXM 1.0, IDAC-Dose 2.1, and EANM models, the models developed by Shen and co-workers, Keizer 
and co-workers and Siegel and co-workers, and Traino and co-workers, as well as the single measurement model (SMM). 
The results were then compared to the standard reference model Revised Sgouros Model (RSM) reported by Wessels and 
co-workers. The mean dose deviations of the Traino, Siegel, Shen, Keizer, OLINDA/EXM, EANM, SMM, and IDAC-Dose 
2.1 models from the RSM were − 17%, − 24%, 6%, − 29%, − 15%, 40%, 48%, and − 8%, respectively. The statistical analysis 
demonstrated no significant difference between the results obtained with the RSM and with those obtained with the Shen, 
Traino, OLINDA/EXM, and IDAC-Dose 2.1 models (t test; pvalue > 0.05). However, a significant difference was found 
between RSM doses and those obtained with the EANM, SMM, and Keizer models (t test; pvalue < 0.05). The correlation 
between red marrow dose from the SMM and EANM models was modest (R2 = 0.65), while the crossfire dose calculated 
with the OLINDA/EXM and IDAC-Dose 2.1 models were in good agreement with each other and with the reference model. 
The findings obtained indicate that most of the dosimetry models can be used for a reliable dosimetry, and the calculated 
total body doses can be considered as a reliable non-invasive option for a conservative activity planning. In addition, the 
excellent performance of the IDAC-Dose 2.1 model will be of particular importance for a practical and accurate dosimetry, 
with the advantages of allowing for the use of realistic advanced phantoms and updated dose fractions, and of providing 
information about the blood dose contribution to the red bone marrow.
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Introduction

Adjuvant therapy with radioiodine is a standard procedure for 
differentiated thyroid cancer (DTC) and iodine-avid metastases. 
Most commonly, the administered 131I activity is determined 
based on institutional guidelines of adequate dosage rather than 
individualized dose planning (Lassmann et al. 2010; Franzius 
et al. 2007). Benua et al. (1962) indicated that the blood dose 
should be used as surrogate for the bone marrow dose, and 2 Gy 
was identified as the threshold for severe hematologic toxic-
ity. Treatment activity is usually determined by several strate-
gies. Empiric dosage is the most common strategy for making 
decisions about the therapeutic activity in the advanced DTC. 
A broad range of fixed activities are commonly applied that 
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include the risk of exceeding bone marrow’s dose limit (2 Gy) 
(Mazzaferri and Kloos 2001; Breitz et al. 1995). More recently, 
there is an increasing emphasis on personalized therapy for a 
safe and more effective therapy. Currently, there is no stand-
ardized way for estimating red bone marrow dose (Brans et al. 
2007; Luster et al. 2008). The variety of dosimetry methods 
applied demonstrates the need for more clinical and dosimet-
ric data with regard to red bone marrow dose estimation and 
toxicity levels. An important task in dosimetry is to periodi-
cally quantify the retained activity in the body of a patient 
by means of image analysis obtained from planar or hybrid 
imaging modalities. More recently, three-dimensional tomo-
graphic techniques become more and more available including 
pixel-wise attenuation correction and accurate quantification. 
Unfortunately, the dispersed nature of red bone marrow in the 
entire body complicates the direct quantification of red bone 
marrow uptake. Therefore, blood dose is increasingly used 
as a surrogate for red bone marrow dose (Chiesa et al. 2009). 
Accordingly, blood sampling and a series of whole-body scans 
made at multiple time points are required to accomplish blood 
dosimetry. However, the costs and required time involved con-
sumption due to subsequent acquisitions hamper personalized 
dose planning. The dosimetry approaches discussed in the pre-
sent study allow dose estimation to red bone marrow from the 
administration of therapeutic activities. Certainly, protocols of 
patient-specific dosimetry might allow an actual optimization 
of the therapy, but further efforts are required to improve the 
standards of dosimetry and its efficacy on the overall tumour 
response. The OLINDA/EXM 1.0 code has been increasingly 
utilized with user-friendly features to provide dose calculations 
for plenty of organs and hundreds of radionuclides (Stabin et al. 
2005). More recently, OLINDA/EXM has been updated with 
a new version using the RADAR anthropomorphic phantom 
instead of the MIRD phantom that was used in the previous 
version. Likewise, several models have been introduced to cal-
culate red bone marrow dose with different compensation for 
the red bone marrow self-dose and dose from source organs 
and remainder body (crossfire dose) (Hänscheid et al. 2013). 
Finally, IDAC-Dose 2.1 has been recently released to calculate 
absorbed dose based on earlier published SAF values for the 
ICRP adult computational voxel phantoms described in ICRP 
Publication 110 (ICRP 2009). This code also includes a repre-
sentation for the circulating blood to perform dose estimation 
for 83 source organs and tissues irradiating 47 target organs and 
tissues with more than 1000 radionuclides published in ICRP 
Publication 107 (ICRP 2008).

The main goal of the current study was to find out the cor-
relation between numerous dosimetry models including the 
readily available IDAC-Dose 2.1 and OLINDA/EXM codes. 
The study should also, if possible, identify the most reliable 
model for dosimetry-based therapy and explore the possibil-
ity to perform red bone marrow dosimetry excluding red bone 
marrow self-dose when blood sampling is impossible.

Materials and methods

Data collection

The present study included 18 patients (12 females and 6 
males) suffering from metastatic differentiated thyroid cancer. 
All patients underwent the previous sessions of radioiodine 
therapy based on an empiric dose protocol. The age of the 
patients was 48 ± 16 years and the average Tg level was 398 ng/
ml at the time of dosimetry. Blood test was requested to verify 
a TSH level above 30 µIU/ml before 131I tracer administration.

The average mass and height of the patients were 
78 ± 17 kg and 1.7 ± 0.1 m, respectively. The orally admin-
istered radiotracer of 131I was 73 ± 16 MBq pursued by blood 
sampling (2 ml) and whole-body scans (WBSs) at several 
time points (2, 6, 24, 48, 72, and ≥ 96 h) as seen in Fig. 1.

When the scanning room was activity-free, a 1-min static 
image was acquired prior each scintigraphy for background cor-
rection. Anterior and posterior whole-body scans were obtained 
at 10 cm/min scan speed using a dual-head gamma camera 
equipped with a high-energy parallel hole collimator (Sie-
mens Symbia T16, Erlangen, Germany). Camera settings were 
adjusted for scanning as followings: 364 keV energy photopeak, 
15% window width, and matrix size of 256 × 1024. The body 
contour was delineated and the ROI’s (regions of interest) counts 
were counted. The first whole-body scan at (2 h) was considered 
equal to 100% of the administered activity. The magnitude of 
remaining activity was estimated from the geometric mean of 
the corresponding counts to the initial count-activity proportion. 
Residence time (τ) was calculated by the following equation:

where τ is the residence time, Ã the cumulative activity, and 
Ao the administered activity.

Blood specimens were measured using a well counter 
(Capintec. CRC25) which was calibrated for 131I. An aliquot 
of 0.5 ml was withdrawn from each blood sample and then 
measured immediately. The sample was counted three times 
to reduce the counting errors, and the geometric mean of 
raw counts was corrected due to physical decay. The method 
reported by Pearson et al. (1995) was used to fınd the total 
blood volume (TBVml) as follows (Eqs. 3–5):

where S is the surface area (cm2), H the patient height (cm), 
and W the patient mass (kg).

(1)𝜏 = Ã∕Ao

(2)Ã =
∞

∫
t=0

(
A
o
(t)
)
dt,

(3)TBVml(Male) = ((1486 × S) − 825) + (1578 × S)

(4)
TBVml(Female) = ((1.06 × age) + (822 × S)) + [1395 × S]

(5)S = (W × 0.425) × (H × 0.725) × (0.007184),
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Red bone marrow‑absorbed dose calculation

Various models were used to calculate doses of red bone 
marrow after 131I administration.

OLINDA/EXM 1.0

Dose calculation was made by choosing the corresponding 
anthropomorphic phantom of the right gender. Then, the 
appropriate radioisotope was selected and the residence time 
was generated by a built in option (fit data to model) that 
allowed exponential fitting. A mass scale factor was used 
to calculated the mass of red bone marrow of the patient 
from that of the phantom, based on the ratio of patient mass/
phantom mass including red bone marrow.

IDAC‑Dose 2.1

This computer program is based on the ICRP phantom from 
ICRP Publication 110 (ICRP 2009). IDAC incorporates a 

representation for the blood dose contribution to red bone 
marrow and enables calculating red bone marrow dose 
according to SAF tables reported in ICRP Publication 133 
(ICRP 2016). Both dose components of crossfire and red 
bone marrow self-dose can be quantified by entering the 
residence time of 131I in total blood and whole body. The 
red bone marrow mass of the patients was inserted accord-
ing to the ratio between the mass of the patient and that of 
the adult reference phantom used in the program. The total 
red bone marrow dose was given in the results with two 
forms. The first one was using total body and blood param-
eters in the program (TD) and the second way (TDrm) was 
achieved by deriving red bone marrow residence time from 
the blood circulation (via IDACBLood model built in the 
code) besides to the total body dose contribution.

Model by Traino et al. (Traino Model)

Traino et al. (2007) provided different model with a nonlin-
ear mass scaling factor for red bone marrow self-dose and 
crossfire dose:

(6)
DRm = [Ãbl] × mRm × RMBLR × SRm←Rm ×

(
mTB

mtb

)x3

+
(
Ãtb −

[
Ãbl

]
× mRm ×

mtb

mTB
× RMBLR

)

×

{
SRm←TB ×

(
mTB2

mtb ×mRB

)x1(
mTB

mtb

)x2

− SRm←Rm ×

(
mTBmRm2

mtbmRB2

)x3
}

Fig. 1   Solid line: bi-exponential 
fit of the mean 131I activity 
retention (y-axis) as a function 
of time (x-axis) as derived from 
whole-body scans (WBSs) at 
different time points (2, 24, 
48, 72, and 100 h). Dashed 
lines: bi-exponential fits of the 
standard deviation (± SD) of the 
131I activity retention as derived 
from the patient’s data. Average 
SD was 9% (range 8–13%) for 
all time points
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where DRm is the red bone marrow dose, [Ãbl] the concentra-
tion of cumulative activity in blood, mRm the red bone mar-
row mass of standard male and female phantoms (1.12 kg for 
males, and 1.3 kg for females), RMBLR the red bone mar-
row-to-blood ratio [0.19/(1 − HCT); HCT: patient-depend-
ent haematocrit value], SRm←Rm the bone marrow to bone 
marrow S factor (for males: 1.55 × 10− 5 mGy/MBq.s; for 
females: 1.41 × 10− 5 mGy/MBq.s), Ãtb the total body cumu-
lative activity, mtb the patient mass, mTB the standard phan-
tom mass (for male: 73.7 kg; for female 56.9 kg), SRm←TB the 
total body to bone marrow S factor (for males: 6.29 × 10− 7 
mGy/MBq.s, for female: 7.72 × 10− 7 mGy/MBq.s), and mRB 
the standard phantom’s remainder of body mass (mRB = mTB 
− mRm), and values of x1, x2, and x3 are 0.50, 0.831, and 
0.974 for males, and 0.47, 08.02, and 0.972 for females.

Model by Siegel et al. (Siegel Model)

Siegel (2005) offered a two-component model including a 
blood-based method for red bone marrow self-dose estima-
tion (Eq. 7):

where DRM is the red bone marrow dose (mGy), [Ãbl] the 
blood cumulative activity concentration (MBq s/Kg), and 
[Ãwb] the total body cumulative activity concentration 
(MBq s/Kg).

Revised Sgouros Model (RSM)

Wessels et al. (2004) provided a mathematical model for 
dose calculation in radio-labelled antibody therapy rely-
ing on the MIRD (Medical Internal Radiation Dosimetry) 
scheme. A standardized approach was added to account 
for the variations in patient mass for the body remainder 
dose component. To simplify the clinical implementation, 
regional marrow uptake and time-dependent changes in 
the marrow–blood concentration ratio were not included. 
Equation 8 illustrates the process of red bone marrow dose 
calculation:

(7)DRM = 0.00000515 ×
{[
Ãbl

]
+
[
Ãwb

]
× 7.5

}
,

(8)

DRm = DRm(self) + DRm(cross)

DRm(self) = Ãbl ×
RMECFF

1 − HCT
×
�
1.5

5.2

�
× SRM←RM ×

70

Mwb patient

DRm cross =
�
Ãwb −

�
Ãbl

�
×
RMECFF

1 − HCT

�
1.5

70

�
×Mwb

�
× S(Rm←RB)

S(Rm←RB)=
SRM←WB ×

⎛
⎜⎜⎜⎝

1

1 −
�

1.5

70

�
⎞
⎟⎟⎟⎠
− SRM←RM ×

⎛
⎜⎜⎜⎝

�
1.5

70

�

1 −
�

1.5

70

�
⎞
⎟⎟⎟⎠
,

where Ãbl is the cumulative activity in the blood, HCT the 
haematocrit value, S(RM←RM) the red bone marrow self-dose 
factor for male phantom (1.725 × 10− 5 mGy/MBq.s), Mwb 
the patient mass, Ãwb the total body cumulative activity, 
[Ãbl] the blood cumulative activity concentration [kg− 1], and 
S(Rm←WB) the S value of whole body to red bone marrow 
dose. Willegaignon et al. (2012) reported a correction on 
the S value of the remainder body when using the Sgouros 
model; S (Rm←RB) was expressed as (3.26 × 10− 5/Mwb patient).

Model by Sui Shen et al. (Shen Model)

Shen et al. (1999) provided a model (Eq. 9) where RMBLR 
can be derived from patient’s haematocrit and RM extracel-
lular fluid fraction:

where Cblood is the cumulated radioactivity concentration 
(µCi-h/mL) in blood, ÃTB the cumulated activity (µCi-h) in 
total body, mTB the patient’s real body mass (g), RMBLR the 
red bone marrow-to-blood ratio [RMBLR = 0.19/(1 − HCT); 
HCT: patient-dependent haematocrit value].

Model by De Keizer et al. (Keizer Model)

De Keizer et  al. (2004) suggested the following model 
(Eq. 10):

where DRM is the red bone marrow dose, DRM
blood: the blood 

self-dose, DRm
TB the red bone marrow dose from the entire 

body, [τ] the residence time (h: hour) of the blood concen-
tration (L), mRM

(model) the red bone marrow mass of body 
phantom (1.120 kg), and mTB the patient and phantom total 

(9)
DRM(rad∕mCi) = 0.313 × RMBLR × Cblood + 0.456 × ÃTB∕mTB,

(10)

DRM = DRM
blood + DRm

TB

= A0[�] m
RM

(model)

mTBPatient

mTB model

RMECFF

1 − HCT
× S(RM←RM)

+A0�TB

mTB (model)

mTB (patient)
× SRm←TB,
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body mass (MIRD phantom: 73.7 kg), RMECFF the red 
bone marrow extracellular fluid fraction, and HCT the vol-
ume fraction of red blood cells.

In Eq. 10, SRm←Rm is the red bone marrow self-dose S 
value for 131I (1.55 × 10− 5 mGy/MBq.s) and SRm←TB is the 
total body to red bone marrow S value (2.78 × 10− 7 mGy/
MBq s).

EANM‑modified Model

Lassmann et al. (2008) published the EANM (European 
Association of Nuclear Medicine) guidelines for dosimetry 
including the model given in Eq. 11 to be conservatively 
used in dose calculation (Gy/GBq):

where Drm/A0 is the absorbed dose to red bone marrow per 
administered activity, τml (h) the residence time in 1 ml 
blood, τtotal body (h) the total body residence time, and wt the 
body mass.

Single Measurement (SMM) Model

If Eq. 12 holds:

(11)Drm∕A0 = 61 × �blood ml (h) +
(
0.106

wt

)
× �total body (h),

(12)

�blood ml (h) =
0.17

TBV
× �total body (h) and �total body (h) =

48

ln(AT)
,

where (AT) is the activity retention (%) (Hänscheid et al. 
2009).

Then, Eqs. 11 and 12 can be joined to estimate blood dose 
from one measurement (3):

where Drm/A0 is the absorbed dose per administered activ-
ity (Gy/GBq), τml (h) the residence time in 1 ml blood, 
τtotal body (h) the total body residence time, wt the body mass, 
(0.17) is the average ratio of the blood residence time to the 
total body residence time of the participant patients, and 
TBV is the total blood volume.

Statistical analysis

All results are reported by mean, minimum, maximum, and 
standard deviation values. Shapiro–Wilk test was used for 
exploring whether the data follow a normal distribution. 
Accordingly, the non-parametric Mann–Whitney U test was 
applied to determine any significant difference between the 
groups using the SPSS 15.0 software (SPSS Complex Sam-
ples™ 15.0 Copyright © 2006 by SPSS Inc., USA) with 95% 
confidence levels.

(13)

Drm∕A0 =
[
61 ×

0.17

TBV
× �total body (h)

]
+

[(
0.106

wt

)
×

48

ln(AT)

]
,

Table 1   Red bone marrow-
absorbed dose (mGy) calculated 
from several dosimetry models

A
0
 administered activity (MBq), RSM Revised Sgouros Model

Patient A0 Traino RSM Siegel Shen Keizer OLINDA EANM SMM

1 103.6 7.4 9.1 9.7 9.7 6.0 10.2 10.4 13
2 61.4 2.5 3.0 1.9 3.2 2.3 2.2 4.8 1.0
3 74 3.2 3.9 3.1 3.9 2.6 3.6 5.0 5.0
4 18.5 1.8 2.2 1.1 2.3 1.4 1.3 1.7 4.7
5 66.6 1.8 2.2 1.7 2.4 1.6 1.9 3.3 5.0
6 76.2 2.1 2.6 2.5 2.8 1.9 2.4 3.6 5.6
7 78.8 3.7 4.4 3.7 4.8 3.3 3.5 6.2 6.6
8 87.0 2.7 3.1 2.2 3.4 3.0 3.7 3.9 3.5
9 79.6 3.6 4.2 2.4 4.6 3.1 2.3 7.2 6.2
10 71.8 4.3 5.2 4.2 5.3 3.6 4.8 6.9 6.2
11 74.0 7.6 9.3 8.9 10.0 6.2 9.5 11.2 11.1
12 72.2 4.3 5.1 4.2 5.7 3.7 4.5 8.0 10.2
13 82.9 7.0 8.0 7.3 9.2 6.7 7.5 12.1 9.0
14 66.6 4.1 5.1 3.5 5.0 3.4 4.1 7.9 7.4
15 78.4 5.4 6.8 4.3 7.0 3.9 5.2 10.5 8.7
16 87.7 4.8 5.8 4.1 6.2 4.2 4.4 10.1 8.9
17 69.6 3.8 5.1 2.5 4.8 3.0 3.2 8.0 7.6
18 70.3 3.1 3.8 2.8 3.7 2.3 3.1 5.0 6.0
Mean 73.3 4.1 4.9 3.9 5.2 3.5 4.3 7.0 6.8
SD 16.3 1.7 2.1 2.3 2.3 1.5 2.4 2.9 2.5
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Results

Tables 1, 2 show the red bone marrow doses from all the 
dosimetry models as described in the methodology. Table 2 
summarizes the total red bone marrow dose generated by 
the IDAC-Dose 2.1 program with two types of data input 
including red bone marrow self-dose surrogated by blood 
and the other with deriving the red bone marrow activity 
portion from the circulating blood, plus the cross fire dose 
component for both types. Among the results generated by 
IDAC-Dose 2.0 code, it was demonstrated that the accumu-
lated activity fraction of the red bone marrow was 0.2 ± 0.10 
from the circulating blood and the proportion of the cor-
responding residence time was 0.04 ± 0.005 from that of 
the total blood. Upon to Table 1, EANM model was highly 
varied from the reference model with respect to the abso-
lute values of red bone marrow dose. In addition, attempt 
was made to provide analytical comparison between these 
models. The degree of deviation in red bone marrow dose 
between most of the models as compared to the Revised 
Sgouros model is summarized in Table 3 and illustrated in 
Fig. 2. The minimum deviation among these models was 
observed in the Traino, OLINDA/EXM 1.0, IDAC-Dose 

2.0, and Shen models. Table 3 also incorporates the mean, 
minimum, and maximum deviation percentages for each 
dosimetry model as compared to the reference RSM model. 
The calculated absorbed dose using the EANM code and the 
single measurement based (48 h) SMM model shows moder-
ate correlation (R2 = 0.63), as shown in Fig. 3, and there was 
no statistical difference in red bone marrow dose between 
IDAC 2.1 (TD section) and EANM. Similarly, the correla-
tion between OLINDA/EXM 1.0 and EANM was not strong 
(R2 = 0.52) as shown in Fig. 4. In contrast, Fig. 5 exhibits 
pretty strong association between the results of the Traino 
and Revised Sgouros models (R2 = 0.99), similar to the 
correlation between the results of the OLINDA/EXM and 
Revised Sgouros models, and those the Traino and OLINA/
EXM 1.0 models (R2= 0.90 and 0.91, respectively; Fig. 6). 
Interestingly, the Shen model which is considered a simple 
estimation model shows a robust correlation with more com-
plex models like the Revised Sgouros model (R2 = 0.98), as 
shown in Fig. 7. The results obtained with the IDAC-Dose 
2.1 and OLINDA/EXM 1.0 models agreed very well, in 
terms of the red bone marrow cross fire dose (R2= 0.90) as 
illustrated in Fig. 8, and also the results of the total red bone 
marrow dose (TDrm) were highly correlated to the reference 
RSM model, as shown in Fig. 9.

Discussion

Radioiodine (131I) is the most common radionuclide applied 
for metastatic DTC therapy all over the world. Particularly, 
distant metastatic thyroid cancer requires a large activity 
administration to achieve satisfactory treatment, but, at 
the same time, toxicity risk should be kept as low as pos-
sible (Salvatori and Luster 2010; Lassmann et al. 2010). At 

Table 2   Red bone marrow dose (mGy/MBq) generated by IDAC-
Dose 2.1

TD total dose including self-dose from blood and crossfire dose from 
total body per administered activity (A0), TDrm total dose including 
self and crossfire dose per administered activity (A0) from red bone 
marrow activity (derived from the circulating blood activity) and the 
remaining body

Patient Crossfire dose TD TDrm

1 16.0 17.1 10.2
2 3.3 4.6 2.6
3 5.0 6.1 3.6
4 1.5 1.9 1.1
5 2.9 3.8 2.1
6 3.9 4.9 2.8
7 7.2 8.9 5.3
8 5.9 7.0 4.2
9 3.8 5.6 2.8
10 7.6 9.2 5.4
11 14.7 16.6 9.7
12 7.0 9.5 5.1
13 16.5 19.8 9.3
14 5.7 7.9 4.4
15 4.9 7.9 3.9
16 7.2 10.9 5.5
17 3.4 5.5 3.0
18 3.9 5.3 2.9
Mean 6.5 8.5 4.6
SD 4.4 4.7 2.6

Table 3   Deviation of the results (%) obtained with various dosimetry 
models to those obtained with the reference model (Revised Sgouros 
Model)

a CI confidence interval 95%. Mann–Whitney U (t) test
b Min/Max: minimum deviation/maximum deviation
c Results refer to TDrm (Table 2)
d P value for the crossfire dose section in Table 2

Dosimetry model Mean SD Min/Maxb Pvalue
a

Traino et al. − 17 3 − 25/− 12 0.18
Siegel et al. − 24 16 − 50/7 0.06
Shen et al. 6 5 − 5/16 0.74
Keizer et al. − 29 9 − 42/− 1.3 0.03
OLINDA/EXM − 15 17 − 37/21 0.26
IDAC-DOSE 2.1c − 8c 23c − 52/36c 0.6c/0.4d

SMM 48 45 − 67/127 0.02
EANM 40 23 − 23/74 0.04
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present, determination of a maximum safe activity is con-
sidered as the best choice for optimizing treatment and mini-
mizing adverse effects to blood-forming stem cells. Over the 
last 2 decades, many models have been developed for red 

Fig. 2   Deviation of red bone 
marrow dose estimated by 
means of several dosimetry 
models as compared to the 
RSM model

Fig. 3   Correlation between red bone marrow-absorbed dose (mGy) 
calculated with the EANM and SMM models, for the investigated 18 
patients

Fig. 4   Correlation between red bone marrow-absorbed dose (mGy) 
calculated with the EANM and OLINDA/EXM 1.0 models, for the 
investigated 18 patients

Fig. 5   Correlation between red bone marrow-absorbed dose (mGy) 
calculated with the RSM and Traino models, for the investigated 18 
patients

Fig. 6   Correlation between red bone marrow-absorbed dose (mGy) 
calculated with the Traino (open circles, dashed line) and RSM mod-
els (full circles, solid line) as compared with that calculated with 
OLINDA/EXM 1.0, for the investigated 18 patients
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bone marrow dose estimates. One of the most challenging 
problems in red bone marrow dose calculation is the fact that 
red bone marrow is distributed in multiple regions within the 
body rather than in one organ (Bernier et al. 2001; Siegel 
et al. 1999). This makes the activity quantitation quite dif-
ficult and led to the concept that red bone marrow self-dose 
can be estimated through the blood dose which should be 
less than or equal to 2 Gy. The current guidelines of the 
European Association of Nuclear Medicine (EANM) sug-
gest the use of the total cumulative activity in the blood for 
an estimate of self-marrow dose (Hindorf et al. 2010). In 
contrast, the models implemented in the present study con-
sider partial blood activity contribution to red bone marrow 
dose. EANM justified using the total blood activity by the 
fact that the size of the iodine molecule is larger than that of 
monoclonal antibodies.

One of the purposes of the present study was to compare 
the performance of available dosimetry models via realis-
tic dosimetry data. The OLINDA/EXM 1.0 code is utilized 
worldwide for internal dose assessment in radiopharmaceuti-
cal procedures using the classic MIRD phantom. This phan-
tom is known as the so-called stylized phantom with math-
ematically defined organs and tissues occupying finite spaces 
in the body. The new version of OLINDA/EXM (version 
2.0) implements more realistic anatomic models (NURBS 
phantoms) based on non-uniform rational b-spline modelling 
techniques, to define reference male and female phantoms 
using the defined organ masses given in ICRP publication 
89 (ICRP 2002). In the IDAC-Dose 2.1 program, the MIRD 
phantom was also replaced by a more realistic phantom, i.e., 
by the computational voxel phantoms described in ICRP 
Publication 110, also including further biokinetic models to 
describe the uptake, distribution, and retention of radiophar-
maceuticals within the human body. Furthermore, most of 
the models involve calculating red bone marrow’s self-dose 
plus crossfire dose from the remaining body dose. In the pre-
sent study, the Revised Sgouros Model (RSM) was selected 
as a reference model, because it has been tested in multicen-
tre comparison studies (Wessels et al. 2004). This model also 
includes the standard MIRD approach for the dose contribu-
tion from the remainder body to red bone marrow dose, and 
an additional correction was included to account for vari-
ations in patient mass (Wessels et al. 2004). In the present 
study, for the first time, an attempt was made to evaluate the 
correlation between the red bone marrow crossfire dose as 
calculated with OLINDA\EXM, and the dose to the blood 
calculated by various models. As a result, the statistical anal-
yses performed in the present study did not demonstrate any 
statistically significant difference between the results of the 
Revised Sgouros Model and those of the OLINDA/EXM, 
Shen, Traino, IDAC-Dose 2.1 (TDrm and crossfire dose), 
and Siegel models (t test; pvalue > 0.05). In contrast, a sig-
nificant difference was observed between the results of the 

Fig. 7   Correlation between red bone marrow-absorbed dose (mGy) 
calculated with the Shen (full circles, dashed line) and Siegel (open 
circles, solid line) models with those calculated with the RSM model, 
for the investigated 18 patients

Fig. 8   Correlation between red bone marrow crossfire dose (mGy) 
calculated by the OLINDA/EXM 1.0 and IDAC-DOSE 0.2 models, 
for the investigated 18 patients

Fig. 9   Correlation between red bone marrow dose (mGy) calculated 
by RSM and IDAC-DOSE 0.2 models (TDrm), for the investigated 18 
patients
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RSM and those of the Keizer’s, EANM, IDAC-Dose 2.1(TD 
section), and SMM models (t test; pvalue < 0.05). The recent 
model of Traino involves a nonlinear STARGET←SOURCE scal-
ing factor instead of the linear approximation usually used, 
to obtain a more accurate estimation for the self-irradiation 
and cross-irradiation dose components. However, the dose 
values obtained in the present study with the Traino model 
showed a strong association with those calculated with 
the RSM and OLINDA/EXM models (R2 = 0.98 and 0.92, 
respectively). In contrast, the simple analytical model by 
Shen et al. (1999) showed a surprisingly good agreement 
with more advanced models like the RSM (R2 = 0.98, pvalue 
> 0.05) and Traino model (pvalue > 0.05). All the models 
investigated here involved red bone marrow self-dose plus 
gamma dose contributions except for the OLINDA/EXM 
code. The agreement between the dose values generated by 
OLINDA/EXM and those obtained with the other blood-
based models suggests that the crossfire dose can be used for 
activity dose planning when blood sampling is impossible. 
Similarly, the results of the IDAC-Dose 2.1 code showed a 
robust association with those from the OLINDA/EXM 1.0 
code in terms of red bone marrow crossfire dose (R2 = 0.94 
and pvalue > 0.05). The small variation observed is attrib-
uted to the different reference phantoms and dose fractions 
used in the codes. Table 2 illustrates higher dose values for 
the ICRP phantom compared to those for the other models 
owing to the underestimation of the S values when using the 
Snyder phantom. A substantial variation in the dose frac-
tions was also reported for various source and target organs 
between ICRP voxel class phantoms and the stylised model, 
due to differences in organ morphology and different dis-
tances between source and target tissues within the body.

In the present study, red bone marrow dose from a single 
measurement was also compared to that obtained with the 
EANM model, but the resulting correlation was only modest 
(R2 = 0.63). However, it might be worth of developing alter-
native simplified models that make dose assessment easier 
and more convenient.

In the same context, the Council of the European Union 
issued a new directive regarding all the types of radiation 
therapy. The directive states (Article 56—Paragraph 1) that 
exposure and dose optimization in all radio-therapeutic 
procedures shall be planned individually with respect to 
the ALARA principle (ALARA: As Low As Reasonably 
Achievable) by 2018 (Council of the European Union 2013). 
Accordingly, this directive supports applying dosimetry in 
targeted radionuclide therapy. Particularly, metastatic thy-
roid cancer therapy implies the administration of large activ-
ities for successive treatment. Because metastatic lesions are 
difficult to detect and measure by radiotracers, the accuracy 
of dose prediction for these lesions is limited. As an alterna-
tive, activity could be administered therapeutically accord-
ing to the maximum safe activity for the most critical tissues 

or organs. Owing to that, the therapeutic activity used in 
radioiodine treatment can be administered up to the red bone 
marrow dose limit. Some studies highlighted the outcome of 
dosimetry-oriented therapy as compared to the fixed activity 
approach (Lee et al. 2008; Klubo et al. 2011). More recently, 
it was advocated that dosimetry-based 131I therapy seems 
more effective in improving treatment outcome and overall 
survival in advanced differentiated thyroid cancer, with an 
emphasis on the need for more controled studies regarding 
the efficacy and the benefits of radioiodine therapy when 
relying on the tolerated dose of bone marrow.

In summary, it is a fact dosimetry still requires a long 
time and large effort for blood sampling and imaging, i.e., up 
to a couple of days. However, the strong correlation between 
the results from OLINDA/EXM and IDAC-Dose 2.1 with 
those from other blood-based models will support reason-
able and costless dose planning. As a result, routine dosim-
etry implementation in radioiodine therapy of metastatic 
DTC will be easier with readily available methods.

Conclusion

Results from most of the dosimetry models investigated 
in the present study did not show any significant differ-
ence with those from the Revised Sgouros Model, and 
they showed good agreement with doses obtained with the 
OLINDA/EXM and IDAC-Dose 2.1 software. The present 
study emphasizes the feasibility of the IDAC-Dose 2.1 code 
for dose calculations using ICRP reference voxel phantoms.
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