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Abstract
The present paper proposes two methods of calculating components of the dose absorbed by the human body after exposure 
to a mixed neutron and gamma radiation field. The article presents a novel approach to replace the common iterative method 
in its analytical form, thus reducing the calculation time. It also shows a possibility of estimating the neutron and gamma 
doses when their ratio in a mixed beam is not precisely known.
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Introduction

Radiation biodosimetry refers to the analysis of biologi-
cal changes in a particular tissue after exposure to ionizing 
radiation, and allows for an estimation of absorbed doses in 
an exposed person based on this analysis. The quantifying 
measurement of chromosome alterations, mainly dicentrics 
in lymphocytes, is the most widely used method for biologi-
cal dose assessment (IAEA 2011). The aim of radiation bio-
dosimetry by cytogenetic methods is to calculate doses and 
the associated confidence intervals to exposed (or suspected 
to have been exposed) individuals after a radiation accident 
or incident. Assessing the absorbed dose based on the dicen-
tric assay in peripheral blood lymphocytes is a very sensitive 
method that can be used when measured doses are not avail-
able. The analysis is performed in the lymphocytes during 
their first mitosis after radiation exposure. The advantage 
of the method is the low spontaneous frequency of dicentric 
chromosome aberrations in healthy individuals, indicating 
that this indicator is caused mainly by ionizing radiation.

The process of dose assessment through a dicentric assay 
requires the presence of dose–response calibration curves. 
Such curves are produced by exposing human blood in vitro 
to several doses of radiation under carefully controlled con-
ditions. It is implicitly assumed that in vivo and in vitro irra-
diations of peripheral blood lymphocytes produce similar 
alterations in the cells. Accordingly, the dicentric frequency 
observed in vivo can be converted to absorbed dose by com-
paring it with the dose–response calibration curve obtained 
in vitro. The shape of a dose–response curve is influenced 
by the linear energy transfer, LET, for any particular radia-
tion quality. For low-LET radiation, the relation between 
absorbed dose and dicentric chromosome frequency can be 
expressed as a combination of linear and quadratic terms 
(Eq. 1), while for high-LET radiation the dose dependence is 
linear (Eq. 2). The linear and quadratic terms are consistent 
with the single- and two-track model of dicentric formation 
by both radiation qualities (IAEA 2011; Kellerer and Rossi 
1978):

where Yx (x = g is for gamma and x = n for neutron radiation) 
is the frequency of dicentrics, Dx is the absorbed dose, Y0 is 
the background frequency of dicentrics (dose independent), 
α and β are the linear coefficients, and γ is the quadratic 
coefficient.

(1)Yg
(
Dg

)
= Y0 + � Dg + � Dg

2,

(2)Yn
(
Dn

)
= Y0 + � Dn,
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In the case of exposure to mixed neutron and gamma radi-
ation, n + γ (e.g., after a nuclear reactor accident), biological 
dosimetry is more complex than in the case of exposure to a 
single type of radiation. Mixed radiation fields are composed 
of particles with varying biological effectiveness, which 
have different biological effects on the body. Therefore, 
there is a strong need to calculate not only the total absorbed 
dose, but also its components, Dn and Dg, separately. Unfor-
tunately, there is no visible difference between dicentrics 
induced by the two types of radiation, and therefore, it is 
not possible to directly discriminate between dicentrics pro-
duced by gamma radiation and those produced by neutrons. 
Discrimination is only possible by quantifying the separate 
dose components and using the additivity assumption in the 
production of chromosomal damages (IAEA 2011; Kellerer 
and Rossi 1978).

Dose estimation using biodosimetry methods for a mixed 
neutron and gamma radiation field can be found in the lit-
erature (IAEA 2011; Brame and Groer 2003; Szłuińska 
et al. 2005; Fornalski 2014). The most common approaches 
are the classical iterative method, promoted widely by the 
International Atomic Energy Agency (IAEA 2011), and 
the increasingly used Bayesian methods (Brame and Groer 
2003; Ainsbury et al. 2013a, b; Pacyniak et al. 2014). The 
iterative method is adopted in many accredited laboratories 
worldwide, including the Central Laboratory for Radiologi-
cal Protection (CLOR), Poland. This method is generally 
well-known due to its simplicity and relative accuracy. 
Bayesian methods are also becoming more and more popu-
lar. However, they are not yet commonly used probably due 
to the much more advanced mathematical approach required. 
Thus, some intermediate methods, which will improve the 
iterative approach without being as complex as the Bayes-
ian approach, are developed and tested in the present paper.

Materials and methods

Assessment of neutron and gamma doses

In practice, it is assumed that the number of dicentrics 
in an analyzed sample is characterized by a Poisson dis-
tribution, and that the observed alterations are the sum of 
those induced by neutron and gamma radiation. Thus, the 
dose–response relationship for a mixed neutron and gamma 
radiation field may be described as a combination of Eqs. 1 
and 2:

which is usually called a combined linear-quadratic equa-
tion for the frequency of chromosome aberrations yf after 

(3)
Yn+g

(
Dn,Dg

)
= Y0 + � Dn + � Dg + � Dg

2
≡ yf =

u

w
,

irradiation by a mixed neutron and gamma radiation field 
with doses Dn and Dg. Parameters Y0, α, β and γ are usually 
found as a result of a regression analysis (defining the so-
called calibration curve). The parameter yf can be written 
as a ratio of u/w, where u represents the number of chromo-
some aberrations and w is the number of cells in the ana-
lyzed sample.

Having the fit parameters of the calibration curves, (Y0, 
α, β, and γ), the Y(Dx) functions can be used to estimate the 
doses (Dx) and/or the frequency of chromosome aberrations 
(Yx) after exposure to gamma radiation, neutron radiation, or 
to a mixed neutron and gamma radiation field. In cases when 
the ratio of neutron to gamma absorbed dose is estimated by 
physical methods (Eq. 4):

it is possible to calculate the separate neutron and gamma 
radiation doses using the iterative method (IAEA 2011) 
mentioned earlier. In this method, the doses and the chro-
mosome aberration frequencies are estimated by a manual 
iterative approach, meaning that the values are precisely 
determined.

Iterative method

The iterative method involves performing several series 
of calculations using the same input data. Each consecu-
tive series gives more accurate results, until the results of 
the next steps do not change significantly any more. In this 
method, it is initially assumed that all aberrations found in 
the analyzed sample, yf, are caused by neutron radiation, i.e., 
using the recurrence relation, Yni=0 = yf  . Thus, the neutron 
dose can be defined directly from Eq. 2, as:

The dose from gamma radiation in the (i + 1)th step, Dgi+1
 , 

is calculated with the use of the actual Dni+1
 value and the 

neutron/gamma dose ratio, ρ, according to Eq. 6:

also formulated as the recurrence equation. With informa-
tion about the gamma dose, the dicentric frequency due to 
gamma radiation, Ygi+1 , can be obtained from Eq. 1:

The dicentric frequency caused by neutrons ( Yni+1 ) is then 
obtained (Eq. 8) by subtracting the gamma dicentric fre-
quency from the measured aberrations, yf.

(4)� =
Dn

Dg

,

(5)Dni+1
=

Yni − Y0

�
.

(6)Dgi+1
=

Dni+1

�
,

(7)Ygi+1 = Y0 + �Dgi+1
+ �D2

gi+1
.
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The neutron dose is estimated using Eq. 5 and the above 
steps are repeated using recurrence equations from Eqs. 5–8. 
With this algorithm, all parameters are calculated iteratively 
until their values are stable ( Dxi

≅ Dxi−1
).

Obviously, the more repetitions done, the more accurate 
the achieved values will be. All the fitting parameters of 
the calibration curves (Y0, β, γ, and α) as well as the ratio 
of doses (ρ) should be calculated in advance. However, a 
significant disadvantage of the iterative method is the large 
effect of the propagation of uncertainty. The presented itera-
tive algorithm is usually time-consuming and requires many 
repetitions to obtain final results. Hence, it was proposed to 
transform the iterative method into its analytical description, 
which was originally introduced by Fornalski (2014).

Analytical method

The analytical method (Fornalski 2014; Pacyniak et al. 
2015) was proposed to automate the iterative algorithm used 
for calculating the absorbed doses in mixed radiation fields 
and exclude the propagation of uncertainty effect. In this 
approach, the neutron/gamma dose ratio, ρ (Eq. 4), must 
be known. However, because ρ varies from zero to infinity, 
it can conveniently be replaced by θ (Eq. 9), which cor-
responds to the contribution of the gamma dose to the total 
dose and is more practical in use than ρ. It is normalized to 
the range of [0, 1] and is defined as (Brame and Groer 2003):

With Eqs. 3 and 9, Dg and Dn can be simply calculated as 
a function of θ (Fornalski 2014):

It is assumed that all constants (α, β, γ, yf, Y0 and θ) are 
precisely known from experimental data with proper uncer-
tainties. The solution of Eq. 10 can be presented graphically 
in terms of dose and θ (Fig. 1).

Finally, the uncertainties associated with the estimated 
doses, �Dx

 , in the presented method can be calculated using 
the delta method (as it was used in the current work):

(8)Yni+1 = yf − Ygi+1 .

(9)� =
Dg

Dg + Dn

=
1

� + 1
.

(10)

⎧⎪⎨⎪⎩
Dg(�) =

��
�

1−�

�
+�

�2

+4�(yf− Y0)−
�
�

1−�

�
+�

�

2�

Dn(�) =
1−�

�
Dg(�)

.

(11)�Dx
=

√(
�Dx

��

)2

�2
�
+

(
�Dx

��

)2

�2
�
+

(
�Dx

��

)2

�2
�
+

(
�Dx

�yf

)2

�2
yf
+

(
�Dx

�Y0

)2

�2
Y0
+

(
�Dx

��

)2

�2
�
,

where x = {g, n}, and �� =
{
�� , �� , �� , �yf , �Y0 , ��

}
 are 

uncertainties of parameters ε = {α, β, γ, yf, Y0, θ}. Uncertain-
ties of Dg and Dn can be calculated from Eq. 11 finding 
partial derivatives of Dx.

Quasi‑Bayesian (Q‑B) method

When the ratio of doses is not precisely known, the iterative 
and analytical methods cannot be used. In this case, the prob-
ability density function (PDF) can be utilized to estimate the 
most probable value of θ (or ρ). Such a PDF, which is widely 
used in Bayesian statistics, is called a prior probability p(θ) or 
p(ρ). In the most common cases it can be approximated by a 
Gaussian distribution for θ (or ρ) with a standard deviation of 
σθ (or σρ), for example:

where �̂� represents the expected value of θ with the uncer-
tainty σθ. The Gaussian distribution is usually selected 
because the estimation of θ (or ρ) is done using the classi-
cal Gaussian regression method. However, one can also use 
other priors reflecting the knowledge on θ (or ρ); this issue 
will be discussed later.

Having sufficient information on the dose ratio, one can 
try to estimate the neutron and gamma doses, as well as the 
dicentric frequencies. To enhance the classical method for the 

(12)p(𝜃) =
1√
2𝜋𝜎𝜃

exp

⎡⎢⎢⎣
−

�
𝜃 − �̂�

�2
2𝜎2

𝜃

⎤⎥⎥⎦
,

Fig. 1  Distributions of gamma and neutron doses for a sample 
with 53 dicentrics in 19 analyzed cells obtained with the analytical 
method. θ = 0.653 is marked with a dotted line
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possibility that θ is not given by the value, but by the prior 
probability density function (PDF), which is the first step to 
Bayesian reasoning, one has to transform classical relation-
ships into probability distributions (put this way the method 
can also be called the Bayesian–frequentist hybrid method). 
However, contrary to the full-Bayesian method, the multipli-
cation of prior and likelihood functions is avoided. Thus, the 
proposed quasi-Bayesian method is somewhere between the 
analytical (classical) method and the full-Bayesian method.

The proposed quasi-Bayesian method uses fixed values for 
the dose response parameters α, β, γ, and Y0, which can be 
assessed beforehand by means of maximum likelihood estima-
tion, the least squares method, or even by the robust Bayesian 
regression method (Fornalski 2014). The Q-B method does not 
use the uncertainties of those parameters directly in the dose 
calculations, but only in the assessment of dose uncertainty. 
This approach is much easier than using probability densities 
of all parameters [which are used in the full-Bayesian method 
(Brame and Groer 2003)], and can be efficiently utilized in 
the case when the parameter values are known from earlier 
estimations.

In practice, Eqs. 3 and 9 must be solved to find distributions 
of θ in a mixed neutron and gamma radiation field (Eq. 13) 
(Fornalski 2014):

The two different designations of θ result from the fact that 
θ is not precisely described by its value, but by the prior prob-
ability function. Thus, using changing variables, the probabil-
ity distribution of the dose can be generally written as:

Changing variables (Eq. 14) jointly with the expressions in 
Eq. 12 (which exemplifies a potential PDF for θ; here it is a 
normal distribution, but other distributions can be used as well, 
as seen below) and Eq. 13 gives a system of two probability 
distributions for Dg and Dn (Eq. 15).

(13)

⎧⎪⎨⎪⎩

�g
�
Dg

�
=

Dg

Dg+
1

�
(yf− Y0−�Dg−�Dg

2)

�n
�
Dn

�
=

√
�2−4�( Y0+�Dn−yf )−�√

�2−4�( Y0+�Dn−yf )−�+2�Dn

.

(14)P
(
Dx

)
= p

(
�x(Dx)

)
⋅

��x

�Dx

≅ p(�) ⋅ const.

(15)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

P(Dg) =
1√

2 𝜋𝜎𝜃

exp

⎡
⎢⎢⎢⎣
−

�
Dg

Dg+
1
𝛼 (yf −Y0−𝛽Dg−𝛾D2g)

− �̂�

�2

2 𝜎2
𝜃

⎤
⎥⎥⎥⎦

P(Dn) =
1√

2 𝜋𝜎𝜃

exp

⎡⎢⎢⎢⎢⎣
−

⎛
⎜⎜⎝

√
𝛽2−4𝛾(Y0+𝛼Dn−yf )−𝛽√

𝛽2−4𝛾(Y0+𝛼Dn−yf )−𝛽+2𝛾Dn
− �̂�

⎞⎟⎟⎠

2

2 𝜎2
𝜃

⎤⎥⎥⎥⎥⎦

.

Finally, dose Dx can be estimated from the maximum of 
the distributions given in Eq. 15or calculated from the first 
derivative equation:

The dose uncertainties �Dx
 , obtained in the presented 

method can be assessed using the approach described for the 
analytical method (Eq. 11). In this case, one needs to deter-
mine the equation for Dx directly from Eq. 15 (or generally 
from Eq. 14) using numerical methods, because an analytical 
solution is usually impossible. After that, the calculated Dx 
is included into Eq. 11 to get the uncertainty value, finding 
partial derivatives of Dx. This approach was used in the cur-
rent work to calculate all uncertainties in the quasi-Bayesian 
method (see Table 1).

Prior distribution functions

The PDF used in the Q-B method (see example given in 
Eq. 12) should reflect the actual knowledge about the dose 
ratios. To select the proper PDF, information about θ (or 
ρ), such as, for example, the expected value, needs to be 
considered. Based on all the available information, the prior 
function (in some cases with its scale and shape parameters) 
should be used to maximize the PDF for the considered θ 
(ρ) parameter. As it was mentioned earlier, the most often 
used Gaussian distribution (Eq. 12) may be substituted by 
other PDFs. For the present work, different functions were 
tested, both symmetrical and unsymmetrical ones. In special 
cases, even a non-informative prior can be used, which does 
not specify any exact information, but instead only defines 
a very general way of parameter search. This approach can 
be used if detailed information about the dose ratio is miss-
ing. Non-informative priors can also be used in situations 
when it is assumed that one type of radiation contributes 
most significantly to the investigated biological effect, but 
the knowledge about the percentage value of ρ does not exist 
(Pacyniak et al. 2015).

All results presented below were obtained with the 
Gaussian PDF (Eq. 12).

Statistical test En

To verify the accuracy of the proposed methods, results were 
tested using En test (Pacyniak et al. 2015).

where Dref is the dose from the reference source (here bio-
logical doses), DM is the dose assessed by the proposed 

(16)
dP(Dx)

dDx

= 0.

(17)En =
||Dref − DM

||√
�2
ref

+ �2
M

,
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method, σref and σM are their uncertainties, respectively 
(see Table 1). In the case when σref is not available, it was 
assumed here that σref = 10% Dref, which is typical in this 
type of biodosimetric assessments. If En ≤ 1, the result is 
satisfactory. Any result is classified as an outlier if the En 
value is greater than 1.

Computational program

As part of the project, a mobile phone application includ-
ing the described algorithm was created. The application 
is designed for devices with the Android operating system 
and was written using the Android Studio Integrated Devel-
opment Environment (IDE). The graphs were implemented 
using the GraphView open-source library.

The structure of the program is relatively simple, as it 
relies on the implementation of a basic Android graphics 
component (TabLayout), which allows the user to choose 
between one of the methods discussed above (iterative, ana-
lytical or quasi-Bayesian). The program allows the user to 
change the dose–response curve parameters and select one 
of the methods to assess absorbed dose. This can be done by 
selecting the dose–response curves tab from the drop-down 
menu located at the top right-hand corner of the menu. An 
important feature of the app is the possibility of drawing the 
prior function (for the Bayesian and quasi-Bayesian meth-
ods), allowing the user to quickly and efficiently choose the 
distribution and its parameters.

The program includes a user-friendly interface, which 
allows the automation of all calculations. The calculation 
algorithms for determining absorbed doses were imple-
mented in accordance with the theory. There were no 
approximations done in any of the methods, only the final 
results displayed on the screen are rounded (with a 1/1000 
precision). The program is constantly being improved, and 
work is underway to enhance its responsiveness. It is avail-
able for testing on the website: http://www.clor.waw.pl/publi 
kacje .html. A sample screenshot of the program is shown 
in the Fig. 2.

Results

In this work, a number of published dose estimates from bio-
dosimetry studies have been used for comparison with the 
dose estimates obtained by means of the proposed analytical 
and quasi-Bayesian methods. More specifically, to verify the 
validity and credibility of these methods, mixed gamma and 
neutron radiation doses were calculated using data from the 
peer-reviewed literature: from IAEA (2011), Szłuińska et al. 
(2005), Voisin et al. (1997), and Voisin et al. (2004). The fitted 
coefficients of the dose–response curves, the values for θ or 
ρ, the number of analyzed cells and the number of dicentrics 

measured in the sample were used to make the calculations. 
Table 1 shows the corresponding data and biological doses for 
gamma and neutron radiation from the literature mentioned 
above, as well as the results of the dose assessments obtained 
by applying the described analytical and quasi-Bayesian meth-
ods. Note that the biological doses taken from the literature 
were obtained using the iterative procedure. Reference values 
of doses and the neutron/gamma dose ratios were determined 
experimentally by the use of sophisticated physical instru-
ments. These values are typically not available during a real 
accident and were made available by the exercise organizers 
for comparison only. In some cases, the uncertainty is not 
given in the literature and, accordingly, could not be added to 
Table 1. For the calculations performed in the present paper, 
the uncertainty of θ is assumed to be equal to 0.02.

Discussion

In the present paper two methods are proposed to assess 
biodosimetric doses, which offer reasonable alternatives to 
the widely used iterative and Bayesian methods.

Fig. 2  Screenshot of the computational program which uses the pre-
sented methods

http://www.clor.waw.pl/publikacje.html
http://www.clor.waw.pl/publikacje.html
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The first analytical method is a straightforward math-
ematical development of the iterative method. It substan-
tially reduces the propagation of uncertainties effect and 
is generally faster. Moreover, it reduces the probability of 
errors because it only requires to solve a set of equations 
instead to perform a series of calculations. The second Q-B 
method is substantially different because of the implemen-
tation of prior functions. This may provide more realistic 
results, because the knowledge about θ (or ρ) is usually not 
very precise. Therefore, the Gaussian prior is usually used, 
but other priors can be also appropriate. Choice of the prior 
will however influence the uncertainty which can be non-
symmetrical. This choice is sometimes necessary, due to 
the limited knowledge about θ (or ρ) where some additional 
information might increase the reliability of the deduced 
parameter value, in some range of values.

In the Q-B method, the influence of other prior distribu-
tions such as gamma, cauchy, beta and geometric distribu-
tions was also evaluated here. It turned out that for the same 
θ value (the maximum of the distribution) all those PDFs 
give comparable (practically the same) results. The only 
difference is the uncertainty that is caused by the shape of 
distribution—generally the uncertainty is larger when the 
PDF is wider.

Table 1 shows doses obtained using both of the proposed 
methods, the analytical and the Q-B method with a Gauss-
ian distribution, together with the original values from the 
literature. Additionally, the accuracy factor, En, given by 
Eq. 17 provides a measure for the relative goodness of all 
assessments (Figs. 3, 4). For all results En is much below 
1; this indicates only small deviations from the reference 

values. Thus, both methods provide results which are fully 
comparable with those the classical method. The biggest dif-
ference between the biological doses, and the doses obtained 
from the proposed methods using the Gaussian distribution 
as the PDF is visible for both the neutron and gamma doses, 
for samples A, B and C, especially B3 and C2. For sample 
B3, the En value equals 0.55 for the neutron dose, and 0.52 
for the gamma dose. For sample C2 in the analytical method, 
En is 0.29 for the neutron dose, while for the gamma dose, 
equals 0.42. For quasi-Bayesian method it is 0.28 and 0.42, 
respectively. Interestingly, the above values do not seem to 
be caused by PDF selection and are rather method-inde-
pendent. This is so especially for cases where the original 
dose uncertainties are unavailable and thus, an uncertainty 
of 10% Dref had to be assumed in the calculations. Because 
Table 1 demonstrates that for samples A, B, and C there is 
also a quite significant difference between the biological and 
reference doses, it is concluded that the analytical and Q-B 
methods work also well for these cases, and large En values 
must have some other reasons.

It is generally not possible to identify one method as the 
best one, since the problem depends on the exact situation. 
While the analytical method provides almost identical point 
estimates as the Q-B method, the uncertainties obtained with 
the analytical method are slightly lower than those obtained 
with the Q-B method, which is probably due to the com-
pletely different methodology of both approaches, mostly 
the representation of θ as the PDF in the Q-B method. This 
might suggest that the uncertainties calculated by the Q-B 
method are more realistic than those calculated by the ana-
lytical method.

Fig. 3  En values for neutron 
radiation
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Conclusion

In the case of mixed radiation exposure, the iterative method 
is widely used for biodosimetry. In the present study, two 
alternative statistical methods of estimating neutron and 
gamma absorbed doses in a mixed radiation field from meas-
ured chromosomal aberration frequencies were investigated. 
Both the analytical and the Q-B method proposed here have 
their own advantages and disadvantages. The first-proposed 
method is based on the classical iterative approach and is 
nothing more than its analytical description; for this reason 
the results obtained are the same, as shown in Table 1. Thus, 
the iterative method can be replaced by the analytical one 
which is more convenient in use because it does not need 
to perform a series of iterations; instead it only requires to 
insert the appropriate data into the given formulas. This clas-
sical method is a very simple and fast calculation method, 
but requires knowledge of the neutron/gamma dose ratio. In 
the Q-B method, this parameter is described by the probabil-
ity distribution (prior function), similarly to Bayesian meth-
ods. Therefore, it can be used when the exact dose ratio is 
unknown without requiring complicated Bayesian statistics.

The statistical methods proposed in the present work were 
programmed as computational algorithms which can easily 
be used in cytogenetic analyses. Additionally, the methods 
are presented here in easy-to-use forms, which can be coded 
even as Excel spreadsheet formulas. The required computer 
codes are provided as an electronic supplement material.
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