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Abstract About a century ago, Conrad Röentgen dis-

covered X-rays, and Henri Becquerel discovered a new

phenomenon, which Marie and Pierre Curie later coined as

radio-activity. Since their seminal work, we have learned

much about the physical properties of radiation and its

effects on living matter. Alas, the more we discover, the

more we appreciate the complexity of the biological pro-

cesses that are triggered by radiation exposure and

eventually lead (or do not lead) to disease. Equipped with

modern biological methods of high-throughput experi-

mentation, imaging, and vastly increased computational

prowess, we are now entering an era where we can piece

some of the multifold aspects of radiation exposure and its

sequelae together, and develop a more systemic under-

standing of radiogenic effects such as radio-carcinogenesis

than has been possible in the past. It is evident from the

complexity of even the known processes that such an

understanding can only be gained if it is supported by

mathematical models. At this point, the construction of

comprehensive models is hampered both by technical

inadequacies and a paucity of appropriate data. Nonethe-

less, some initial steps have been taken already and the

generally increased interest in systems biology may be

expected to speed up future progress. In this context, we

discuss in this article examples of relatively small, yet very

useful models that elucidate selected aspects of the effects

of exposure to ionizing radiation and may shine a light on

the path before us.

Introduction

In late 1895, Wilhelm Conrad Röntgen of the University of

Würzburg in Germany demonstrated an ‘‘unknown source

of rays’’ by placing his wife’s hand between a cathode tube

and a fluorescent screen [1]. The unknown electromagnetic

‘‘X-rays’’ penetrated her hand, clearly showing her bones

and her wedding band, and Röntgen received for the dis-

covery of these invisible rays, the first Nobel Prize in

physics in 1901. Fascinated by Röntgen’s discovery the

French physicist Antoine Henri Becquerel investigated the

similarities and differences between X-rays, fluorescence,

and phosphorescence and discovered that the energy in all

three cases had to come from an emanating source object

and penetrated through interspersed matter [2]. While this
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insight was important, it was his famous student couple,

Pierre and Marie Curie, who realized that the observed

phenomenon is an atomic property of matter. They coined

the term ‘‘radio-activity’’ and ultimately figured out how to

measure emanations from various elements, such as ura-

nium, polonium, and radium to cause electrical charges in

an appropriate metal, i.e., altered conductivity. A deeper

understanding of atoms and nuclei came with Ernest

Rutherford’s famous experiments of 1911, in which he

used radioactive material that emitted alpha particles to

bombard a piece of gold foil. The fact that only relatively

small numbers of the particles were stopped by the foil or

bounced back led him to conclude that matter consisted

primarily of empty space surrounding atomic nuclei.

Almost 20 years passed before the Drosophila geneticist

Hermann Müller demonstrated that ionizing radiation not

just passes through matter but that it is able to cause

mutations in living organisms [3, 4]. His work and that of

Timofejew-Ressowski, Zimmer, and Delbrück may be

considered the foundation for research on DNA damage

and repair, which began in the 1930s [5] and continues to

the present day [6].

By now we have come to realize that radiation may

affect living tissue in multifold ways. We understand in

some detail how high doses of ionizing radiation may cause

physical damage to chromosomes in the form of single or

double strand breaks, which may be sometimes followed

by faulty rejoining or even translocations. It is clear that

radiation, even in smaller doses, can lead to mutations,

which in stem cells may or may not be direct precursors to

carcinogenesis. We also know now that much subtler

modifications may result in the form of altered gene

expression, that signal transduction systems and transcrip-

tion factor networks may be activated in unique ways, that

the intracellular oxidative state may be affected, and that

metabolic pathways may directly or indirectly respond to

radiation exposure (see Fig. 1). We appreciate that inter-

individual variations in the body’s defenses may cause one

person to fall ill from radiation, while another person may

remain apparently unharmed. Indeed, Zimmer, a pioneer in

radiation research, wrote, ‘‘one cannot use radiations for

elucidating the normal state of affairs without considering

the mechanisms of their actions, nor can one find out much

about radiation-induced changes without being interested

in the normal state of the material under investigation’’ [7].

The discoveries of the diverse biological effects of

ionizing radiation were followed, with some delay, by

specific mathematical modeling efforts that aimed at

quantification, prediction, and, importantly, cancer risk

estimation. Consistent with the tradition of reductionism in

biology, each of these models focused on one particular

effect, and there is no doubt that we have learned quite a bit

from these types of studies. Some of the investigations

focused on mechanistic details, others on the generic pro-

cess of carcinogenesis, and yet others on inferences from

large datasets, including those collated from the atomic

bomb survivors in Hiroshima and Nagasaki.

To appreciate the diversity of these approaches, it is

useful to look at some of the recent literature. At the bio-

physical end, for instance, Friedland et al. [8] characterized

some of the details of DNA damage and fragmentation, and

Ballarini and Ottolenghi [9] described how chromosome

aberrations may be induced even by low doses of radiation.

Moolgavkar et al. [10, 11] studied how biological insights

into DNA damage may be formalized, and proposed the

concept of several hits needed to transform a normal cell

into a cancer cell. This translation of mechanistic ideas into

mathematical models of staged carcinogenesis has been

widely used to assess radiation and environmental exposure

risks. In yet another set of approaches, mechanistic mod-

eling was applied to epidemiological data in an attempt to

determine risks of disease more specifically than is possible

with statistics alone [12].

While biophysical and mathematical models of radiation

exposure and effects have been very important for our

understanding of the responses of living organisms, each of

them usually focuses on one or two aspects only, thereby

ignoring the tightly connected and integrative nature of

biological systems. Thus, while strand breaks may clearly

lead to aberrant gene organization, which in itself is

important to study, they also alter gene expression directly

or through structural or regulatory effects on transcription

factor networks. These combine with direct metabolic

effects, such as changes in reactive oxygen or nitrogen

species, ultimately resulting in altered physiological

Fig. 1 Radiation exposure triggers a variety of responses at numer-

ous levels of biological organization. These responses form a complex

system that requires new approaches of computational systems

biology
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responses that are still very difficult to predict. Moreover, it

is well possible that ionizing radiation shows a variety of

epigenetic effects, which may persist for a long time. In

this context one should also keep in mind that exposure to

ubiquitous primordial natural radiation leads to a life-long

dose rate of about 0.1 mSv/h, which, in our body, results in

about 100 radioactive decays per kg body weight per sec-

ond. All these responses not only involve a large number of

components and processes, but these processes are com-

plex and usually nonlinear. The nonlinearity prevents us

from using simple cause-and-effect argumentation or even

the principle of superposition that allows us to study sys-

tem components in isolation. In fact, many of these

processes involve threshold-like phenomena, where

responses to small and large inputs are qualitatively and not

only quantitatively different. A premier example for the

non-trivial nature of combined effects is the study of low

doses of radiation, which reveals that extrapolation from

high doses is not necessarily valid, because the high and

low exposures involve vastly different response patterns,

including repair and an array of defense and protective

mechanisms commonly known as stress responses (see

later sections).

The availability of molecular high-throughput experi-

ments that are increasing in quality while decreasing in

price and complication, combined with greatly improved

access and power of computation, suggests that the time is

ripe to begin assessing responses to radiation in a more

comprehensive, integrative fashion that draws from the

principles of the new field of systems biology. It is evident

that we are still far away from being able to accomplish

global analyses of radiation effects, but it is nevertheless

feasible to take the first steps toward a fully integrative

analysis on the various systems levels of a whole organism.

These steps could consist of simultaneous analyses of many

diverse data in some relatively coarse, global manner, but

they might also merge two, three, or more formerly isolated

modeling approaches into models that have more latitude.

In this article we provide a flavor of emerging, integra-

tive approaches to radiation systems biology in the form of

three vignettes. The first presents a concrete example of

merging two traditionally isolated modeling ventures,

namely the mathematical formulation of the molecular-

level events of initiation, promotion, and transformation,

which are considered key events in carcinogenesis, with the

physical limitations that control the growth of tumors and

critically affect cell–cell interactions. In this way, it is

appreciated that the driving forces of cancer extend beyond

the tumor cell. On the other hand, models of this type

presume that cancer risks increase more or less monotoni-

cally with the extent of radiation exposure. This is not

necessarily true. Thus, the second vignette describes some

of the enormous complications that any extrapolation

efforts between high- to low-dose radiation assessments

face. This discussion leaves no doubt that the simultaneous

accounting for metabolic and signaling pathways, genetic

alterations, epigenetic effects, and defense and repair

mechanisms at several physiological levels requires for-

mulations of radiation phenomena as dynamic systems that

quickly overwhelm any purely intuitive approaches and

mandate the development of mathematical and computa-

tional modeling approaches that address the general and

specific nature of networks and systems. The third vignette

discusses several strategies of network analysis to handle

this complexity. In the simplest case, this is accomplished

by simply abstracting systems components and processes

into nodes and edges of a graph. Such a graph is then

translated into linear or nonlinear models. Depending on

how this translation is implemented, different insights into

biological systems may be gained. Not surprisingly, if one

increases the complexity of the chosen model, the model

becomes more realistic and predictive, but the technical

challenges of its design and analysis grow commensurately.

Combining organizational levels to estimate cancer risk

A comprehensive, biologically based model of radiogenic

cancer risk should ideally involve all levels of biological

organization, from damaged DNA to clinical manifesta-

tions of cancer. If such a model could be constructed, it

would certainly be superior to the phenomenological

alternatives currently employed, because it could, on one

hand, rely on mechanistic rules to draw upon a broad range

of data, and, on the other hand, explain a large portion of

the details along the path from radiation exposure to can-

cer. The model would integrate all types of supporting data,

including biophysical measurements on cell cultures, data

obtained from experimental animals, clinical observations

in specifically exposed human populations, such as ura-

nium miners, or data from initially diverse populations

such as the atomic bomb survivors. If the key biology tying

these data together could be successfully incorporated in a

model, this model could be expected to exhibit high pre-

dictive value. Alas, we are far from being able to collect

and integrate all data types and to construct sufficiently

flexible and efficient mathematical models to cover the

entire process of carcinogenesis. As an intermediate goal, it

is therefore useful to combine models on one or two levels

at a time, in the hope of constructing sets of modules that

will eventually be merged into a comprehensive model of

radiogenic carcinogenesis. In this section, we connect, in a

rudimentary fashion and as a proof of concept, the levels of

molecular-level events of initiation and promotion with the

higher-level scale of cell–cell interactions and the limita-

tion of growth in maturing tumors.
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Biologically based carcinogenesis modeling

Progress on mathematical cancer prediction has for the

most part been through the modeling of the molecular steps

leading up to the first cancer cell. Most of these models

presume that cancer evolves through a series of mutations

and clonal expansions, the end result being the creation of

the first tumor cell. The simplest of these is the ‘‘initiation–

promotion–transformation’’ timeline paradigm for radio-

genic cancer development. By this mechanism, normal

cells are randomly initiated (i.e., acquire a single growth-

facilitating mutation) at some dose-dependent rate x. As

these clones expand during the promotion phase, cells in

these populations proliferate at a rate k and randomly

undergo a second transforming event at a rate l, where

l \\ k, to become tumor cells. The rate of tumor cell

generation is identified by comparison of model predictions

with epidemiologic data on carcinogenesis risk, after an

adjustment (usually in the form of a lag time) is made to

account for the time delay between tumor cell creation and

clinical detection.

In recent years, however, it has become clear that many

factors can change the course of carcinogenesis even after a

tumor cell has been created. Because many of these factors

are either unpredictable or conditional in their influence, the

current practice of bridging theoretical predictions of tumor

cell creation to final clinical incidence through a simple lag

time appears over-simplistic in that it overlooks important

progression-level biology controlling damage propagation

in complex systems including carcinogenesis. Black and

Welch [13] support this possibility in a study that was orig-

inally intended to explore how advances in diagnostic

imaging have been able to reduce the size at which internal

abnormalities can be detected. These authors examined

histological sections of tissues taken at autopsy from middle-

aged people who died of non-cancer causes. The findings

were startling––for a wide range of cancers, actual incidence

far exceeded lifetime clinical (epidemiologic) incidence.

They found that 35% of women aged 40–50 had in situ

cancers of the breast, even though only 12% of women are

ever diagnosed with the disease [14]. Similar disparities were

found for prostate cancer in men. For thyroid cancer,

observed differentials were even more extreme: While less

than 1% of the population will ever be diagnosed with thy-

roid cancer, 99.9% of individuals autopsied were found to

have thyroid cancer lesions. In the laboratory, demonstra-

tions that stroma may play a permissive role in cancer

development augment our expanding understanding of the

angiogenesis dependence of tumor growth. This and other

evidence suggests that carcinogenesis is actually a multi-

scale process, and that a systems-level treatment of the

problem that links molecular, cell–cell, and inter-tissue

contributions will be required to explain cancer occurrence.

The two-stage logistic (TSL) model [15] takes a step in

this direction by adapting the molecular-level initiation–

promotion–transformation timeline paradigm for tumor

cell creation to include the natural Gompertz-like growth

limitation (Fig. 2) expected for all cell populations,

including the initiated cell population being modeled here.

The TSL model is otherwise a deterministic variant of the

stochastic two-stage clonal expansion (TSCE) model

commonly used today [16–18]. The TSL model is able to

explain the essential features of important data sets for

cancer incidence, e.g., for atomic bomb survivors [15]. By

interfacing molecular-level limitations exhibited by pre-

initiated cells and initiated cells with the population-level

limitation of proliferation slowdown, the TSL model may

be capturing important multi-scale effects pertinent to early

tumor formation.

The TSL model actually describes how the process of

carcinogenesis advances to cancer cell creation once the

sizes of the normal and initiated cell populations are

known. In this sense, it is describing baseline carcinogen-

esis. Irradiation is handled as a local perturbation to this

baseline. In addition to initiating new cells, radiation kills

cells, the consequence of which, is a short-lived deviation

from the quasi equilibrium that forms between the normal

and initiated cell compartments. Depending on how the

initiated population m(t) and the normal population N(t) re-

grow to re-establish their original quasi-equilibrium during

the short recovery period Dt following irradiation, the value

of m(t + Dt) will be altered over what it otherwise would

have been. The amount of this alteration could depend on

the differential effects of radiation on the two cell popu-

lations as follows [19]: (a) the difference between the

probabilities that an initiated cell and a normal cell will

survive the dose, D1; (b) the factor increase in initiated

cells expected due to radiation action on normal cells, D2;

Fig. 2 The general shape of the Gompertz (dV/dt = -V log(V/K))

and related Logistic (dV/dt = b(V(1 - (V/K)a) functions. These

capture a pervasive property of cell populations––the tendency for

them to grow more slowly as their size increases

8 Radiat Environ Biophys (2008) 47:5–23
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and (c) the extent to which the initiated population will

proportionally increase in size within the normal tissue

during the rebound period due to any re-growth advantage

it has over the normal population while the two populations

are out of equilibrium, D3. If an acute radiation dose is

delivered at time t0, then m(t0 + Dt) will be increased due

to the radiation by a factor (1 + D1 + D2 + D3).

The TSL model, then, describes the baseline, equilib-

rium-phase advancement in m(t) over time, as adjusted by

any prior radiation insults. In brief, it is assumed that the

large normal cell population of constant equilibrium size N

produces initiated cells at a slow, constant rate of m = xN

cells per unit time, and that initiated cells transform

(become cancerous) at a slow rate of l per cell per unit

time. Initiated cells proliferate at a rate k per unit time. The

incorporation of cell–cell effects into this otherwise

molecular model is through the imposition of a Gompertz-

like growth slowdown that approaches a theoretical limit-

ing population size K. This is accomplished by a reduction

in proliferation by the factor (1 - m/K). The equation

governing m(t), then, becomes

dm=dt ¼ v� lmð Þ þ km 1� m=Kð Þ: ð1Þ

The hazard function (risk), H(t), for occurrence of a cancer

cell is just the rate of exit of cells from the initiated cell

compartment due to transformation. This is lm(t). The

equation obeyed by H(t), then, is:

dH=dt ¼ lvþ k� lð ÞH � kH2=lK: ð2Þ

As mentioned, the TSL model, like the TSCE model, can

explain excess relative risk data for the atomic bomb

survivors. The excess relative risk, ERR(t), due to a

radiation dose delivered at time t = 0 is defined as the

fractional increase in the baseline hazard at time t resulting

from that dose. Because H(t) is a monotonically increasing

function of time, the post-radiation hazard at time t = 0

equates to the pre-irradiation hazard evaluated at some time

t0 [ 0. Further, because Eq. 2 does not depend explicitly

on t, knowing H at a particular time determines the value of

H for all later times. The excess relative risk due to any

prior dose experience (assumed to be complete by t = s)

may thus be written as

ERR tð Þ ¼ H t0 þ tð Þ=H tð Þ � 1 for some t0 [ 0;

for all t [ s; where s[ 0; H 0ð Þ ¼ 0
ð3Þ

Because d/dt[H0(t)/H(t)] \ 0, it can be shown that ERR(t)

is a decreasing function of t. Its generally downward

sloping behavior accords with the data obtained on the

atomic bomb survivors. This turns out to be true whether or

not the major effect of radiation is to kill fewer initiated

than normal cells or initiate new cells [a factor D1 or D2

contribution to m(t)] or to promote existing initiated cells [a

factor D3 contribution to m(t)]. In the TSCE model, the

effect of radiation is more complicated. If radiation acts

more to initiate new cells, it can be shown that the shape of

the ERR curve generated would not accord with the data.

As yet, the effect of radiation in the timeline paradigm is

uncertain. As more is known, however, such comparisons

among alternative theories should prove invaluable for

sorting out the basic mechanistic processes underlying

carcinogenesis.

Inter-tissue effects in carcinogenesis

As the nascent tumor cell begins to expand in the pro-

gression phase, new levels of effect on carcinogenesis

come into play. At the inter-tissue scale, these include

tumor/stromal interactions and tumor/endothelial interac-

tions. Either can determine whether a cancer will rise to

clinical detection. It has been shown, for example, that

fibroblasts in the adjacent stroma can directly modulate

tumor evolution [20–22], and that the acquisition of

angiogenic capacity is essential for the nourishment of

tumors too large to be accommodated by simple diffusion

of nutrients into its interior. Until the tumor overcomes

issues of insufficient blood supply and substrate diffusion,

its growth will again be asymptotically limited. The dor-

mant tumors observed in the Black and Welch study [13]

may fall into this category. Once the tumor acquires

invasive properties and becomes angiogenic, it can escape

this bottleneck to expand once again.

Interestingly, it has been shown that a tumor can pro-

duce both stimulators and inhibitors of angiogenesis,

suggesting that tumor growth control may be a vestige of a

broader tissue mass control process, and that vessel for-

mation may be the key to this control. The finding that the

inhibitor half-lives tend to be long while the stimulator

half-lives tend to be short bolstered this hypothesis,

because it assures that an inhibitor would always overtake a

stimulator as the tumor grows. This in turn assures, as

would be expected in controlled tissue growth, that a the-

oretical limit to tumor size always exists, but is adjustable

by micro-environmental conditions.

We explored this possibility by modeling tumor growth

V(t) in terms of a Gompertz [23] formulation where growth

slowdown to a plateau value is expected according to

V 0 ¼ �bV log
V

Vmax

� �
ð4Þ

with b being the rate of incremental diminution in tumor

growth, and where the plateau value Vmax may be variable

and reflect the induction of supporting microvasculature by

the tumor [24]. To calculate what the contributions due to

angiogenesis stimulation and inhibition should look like,

solutions to the diffusion–consumption equation, Eq. 5,

Radiat Environ Biophys (2008) 47:5–23 9
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were considered in the limiting cases where stimulator

clearance is instantaneous while inhibitor clearance is zero:

D2r2n� cnþ s ¼ 0; ð5Þ

where n is the concentration of stimulator/inhibitor, D is

the diffusion rate, c is the clearance rate, and s is the source

term (s0 inside tumor, 0 outside tumor).

Assuming radial symmetry, the equation was solved for

the two limiting cases. For stimulator concentrations inside

and outside the tumor (Fig. 3), one obtains

nstimulator; insideðrÞ �
s0

c
; nstimulator; outsideðrÞ � 0; ð6aÞ

and for inhibitor concentrations inside and outside the

tumor (r0 is the tumor radius),

ninhibitor; insideðrÞ �
s0

6D2
3r2

0 � r2
� �

;

ninhibitor; outsideðrÞ �
s0r3

0

3D2r
:

ð6bÞ

The concentration of stimulator at the tumor periphery thus

has a zero-power dependence on r0 (i.e., is constant

irrespective of r0) whereas the concentration of inhibitor at

the tumor periphery has a squared-order dependence on r0.

Translating these results dimensionally into terms of V or

Vmax and observing the predicted curves, the following

general form for Vmax can be deduced:

ðoVmax=otÞ=Vmax ¼ aV=Vmax � bV2=3 ð7Þ

By including an extra term -e*g(t) (where gðtÞ ¼R t
0

rðt0Þ expð�cðt � t0ÞÞdt0 and r(t) is the rate of inhibitor

injection per unit time) on the right hand side of Eq. 7 to

account for exogenous administration of inhibitors, it is

possible to test this deduction in tumor-bearing animals that

were administered the angiogenesis inhibitors angiostatin,

endostatin, and TNP-470 [24]. The results confirmed this

general form and supported the central principle that tumors,

and perhaps organs, have a theoretical set point to growth

that can be adjusted according to the angiogenic state of the

micro-environment. This, in turn, lends mechanistic support

to the notion that dormant tumors may be commonplace,

awaiting a pro-angiogenic stimulus, perhaps such as ionizing

radiation, to trigger their advance towards clinical presen-

tation. This is a vital augment to existing theories, which

have equated tumor cell creation with clinical disease.

Radiation damage propagation in complex and adaptive

biological systems

Many carcinogenesis models implicitly assume a smooth,

monotonic relationship between carcinogen exposure and

the risk of the ultimate formation of tumors. However, this

assumption is not necessarily true in radiation biology,

especially for very low doses, which some studies actually

determined as protective. More generally, research on cells

and animals over the past few decades has increasingly been

providing evidence that low doses of ionizing radiation

initiate biological responses that were totally unpredictable

from responses per unit dose at higher exposure levels [25–

27]. In fact, entirely new phenomena have been uncovered

such as low-dose induced, delayed appearing and mostly

temporarily lasting cellular signaling changes affecting

intracellular enzyme activities, reactions to reactive oxygen

species, DNA synthesis and repair, apoptosis, cell differ-

entiation, and immune competence [28]. These adaptive

responses occur in conjunction with altered gene expression

by up- and down-regulation of such genes that respond only

to low doses. Many of these genes also respond to metabolic

stress such as from elevated levels of reactive oxygen

species (ROS). The low-dose specific cell responses are to

be seen in the context of other newly recognized phenom-

ena which, however, may also arise after high dose

irradiation to individual cells and become observable again

with a delay of hours and may have long lasting effects in

the affected cells. The category of such responses comprises

both the so-called bystander effects [29], as well as genomic

instability [30] and epigenetic effects, which may befall

cellular progeny over many cell generations [31].

Perturbations of homeostasis by ionizing radiation

and protective barriers

Low-level ionizing radiation nearly always affects multiple

sites of biological systems at the molecular level, by

interacting with atoms and causing energy deposition along

Fig. 3 Concentration of stimulator and inhibitor across the tumor

volume. The concentrations within and outside the tumor obey

Eqs. 6a (upper panel) and 6b (lower panel)
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particle tracks [32]. These events are more or less sto-

chastically distributed throughout the irradiated tissue and

may affect genetic, structural, functional, and signaling

components of the cell. They may damage molecules

directly on site or secondarily, e.g., by means of ROS from

radiogenic hydrolysis [33]. Severe damage to signaling

components may become especially disastrous, as they are

usually involved in amplification cascades and control cell

communication, thereby bridging between cells, tissues,

organs, and the functioning of the entire organism. The

indirect damages to non-irradiated cells are referred to as

bystander effects [29]. These and other types of effects may

ultimately cause homeostatic perturbations anywhere in the

system and, if strong enough or amplified to affect larger

cell communities, as is common with higher values of

absorbed dose, may become observable at higher organi-

zational levels such as tissues and organs [34]. The

probability of higher-level effects depends on the type,

quality, and extent of initial homeostatic perturbation at the

molecular level and on the tolerance by the body’s various

homeostatic control mechanisms [35].

Healthy organisms command an array of physiological

barriers, such as the skin, that protect against immediate

and late consequences of potentially life threatening exo-

genic impacts. Operating at different levels of organization,

the barriers actually form a sequence of protections that

prevent the propagation of damage into clinical disease.

They may be classified as: (a) defenses by scavenging

mechanisms at the atomic-molecular level; (b) molecular

repair, especially of DNA, with reconstitution of essential

cell constituents and functions; and (c) removal of dam-

aged cells from tissue either by signal induced cell death,

i.e., apoptosis, by cell differentiation, or by a stimulated

immune response that is often associated with a replace-

ment of lost cells [28, 36–39].

Immediate responses to low and high doses of ionizing

radiation are quite well understood with respect to primary

DNA damage [33]. Within minutes after irradiation, DNA

double strand breaks can be observed with immuno-histo-

chemical methods [40]. These are broadly distributed in

their numbers per cell, reflecting again the stochasticity of

the process. Usually well within 24 h, the fluorescent foci

indicative of double strand breaks can be reduced to a low

number that is close to that of a ‘‘spontaneous’’, i.e., non-

radiogenic, incidence, and homeostasis is restored in the

affected cell if the initial structural damage is non-lethal. It

is known that DNA repair is species specific and in

mammals involves more than 150 genes (Winters, T.A.,

personal communication).

One should note that the various barriers may be phys-

ical, preventing a potentially damaging, yet relatively mild

impact from disrupting a biological structure with a con-

comitant disturbance of homeostasis, or biochemical–

cellular, responding to a sudden disturbance of homeostasis

with rapid signaling for reconstitution of structure and

function. Both types of protections are known to operate

non-linearly with the degree of impact and, thus, individ-

ually exhibit a threshold-like behavior on the cellular level

[41]. Since increasing doses of ionizing radiation eventu-

ally paralyze barriers at all levels, higher doses may allow

damage at basic levels of organization to propagate with

minimal or no inhibition to evolve into clinical disease. As

a very important consequence, dose–response functions

then expectedly tend to be linear at higher doses, but not so

at low doses. Because all physiological barriers are under

some type of genetic control, certain defects in the

involved genes, which control these physiological barriers,

may change individual radiation sensitivity drastically [42].

The physiological barriers also operate against the

development of some clinical cancer. An illustrative

example is the relationship between the extent of DNA

damage caused in hemopoietic stem cells by radiation and

the probability of leukemia induction in the exposed indi-

vidual. Experimental and epidemiological observations

suggest that, at high doses, the ratio of radiation-induced

DNA double strand breaks, including those of the multi-

damage site-type and lethal leukemia, has been estimated

to be close to 1012 [36]. The claim that even a single DNA

double strand break, however grave, in a potentially car-

cinogenic stem cell may cause cancer thus must be

considered scientifically unjustified. In addition, extrapo-

lation to low doses and low dose rates implicitly assumes

that the biological targets respond at proportionally less but

in qualitatively the same way. Today, we know definitely

that this is not the case (see [43] and later discussion).

In addition to the immediate physiological barriers, the

body exhibits various adaptive protections especially in

instances when homeostatic perturbations are below the

level of barrier destruction, i.e., in stress situations.

Adaptive responses are well known, for instance, against

oxidative stress [44, 45]. Similarly, low-level exposure to

ionizing radiation does change cellular signaling through

temporary modifications in enzyme and hormone activities

that are involved in protecting against ROS and in DNA

synthesis [46, 47], DNA repair [48, 49], and damage

removal by various routes [28, 36–39, 50–52]. These

responses are currently understood to be the consequences

of delayed and temporary up-regulation of existing physi-

ological barriers at increasingly higher levels of biological

organization and generally begin to operate within a few

hours after exposure and may last from hours to months or

even longer. In the context of radiation, delayed up- or

down-regulation of the physiological barriers may be

observed at very low doses in the range of mGy and on

average show a maximum effectiveness at a dose of about

100 mGy. They disappear as doses increase beyond
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200 mGy and are hardly or not seen anymore beyond about

500 mGy [28, 53, 54]. By contrast, the probability of

apoptosis induction apparently increases linearly beyond

500 mGy over a certain dose region. Figure 4 presents a

schematic summary presentation of average dose response

values from all available observations of low-dose induced

up-regulations of various barriers (for reviews see [26, 28,

36–39]).

A number of genes respond to both low- and high-level

irradiation. However, low-level radiation exposure also

modulates a set of genes, mostly involved in stress

responses that do not respond to high-level exposure, and

vice versa [43, 55]. Out of 10,500 genes analyzed in human

keratinocytes, 853 genes were modulated between 3 and

74 h after irradiation, and of these, only 214 (mainly stress

response genes) appeared to change in expression after

10 mGy irradiation. A high dose of 2 Gy modulated 639

genes specifically; both doses changed expression in 269

genes.

It is worthwhile to put low-level radiation damage into

perspective of normal cell metabolism. For instance, in a

normal cell, about 109 ROS per second arise in the cyto-

plasm by leakage from mitochondria, and from metabolic

reactions; ROS bursts may occur from various responses to

external cell signaling [56, 57]. When an average electron,

for instance produced by 100 kV X-rays, hits a cell, about

150 ROS occur in that cell within a fraction of a milli-

second. In addition to metabolically produced ROS bursts,

once to several times a year, supra-basal bursts of ROS

occur within that cell from normal background radiation

and may trigger reactions commonly addressed as cellular

oxidative stress responses that invoke cell signaling of

many kinds with potential consequences of cellular damage

as well as benefit, in terms of the up-regulation of defense

mechanisms, repair of DNA and cell structures, as well as

changes of cell cycle times, induction of apoptosis and

immunogenic alterations leading, for instance, to immune

stimulation [45, 58].

Low-level radiation exposure and cancer risk

assessment

To assess cancer risk from low-level exposure in a coherent

quantitative fashion, a model is needed; various options are

available [36–39, 59–63]. We will focus here on an

approach that was introduced in 1995 [36] but has become

more sophisticated over the years. The basis of the

approach is a distinction between the risk R1 of introducing

damage at the DNA level and the risk R2 of propagating a

primary damage to successive higher levels of biological

organization against protective barriers. R1 is a stochastic

quantity and addresses both biophysical and primary bio-

chemical mechanisms at intracellular target sites, such as

the DNA–histone complexes. The incidence of a relevant

radiogenic damage rises proportionally to dose over a

certain dose range. With no or constant-level protective

mechanisms, the extent of initial damage could possibly

linearly determine the degree or extent of a final clinical

outcome. This is, indeed, a prevailing assumption among

many cancer risk assessors and, in particular, among epi-

demiologists. R2 is less direct and more complicated to

assess, because it comprises the sum of effects of physio-

logical barriers as they are up-regulated mainly by low

doses in terms of adaptive responses involving cells and

signaling systems at all organizational levels, as outlined

above. R2, thus, includes predominantly non-linear reac-

tions, which are largely controlled by complex schemes of

gene expression. Whereas animal and cell experimental

data conform to this model, there is a lack of unequivocal

epidemiological data for model validation.

R1 is expressed here by the risk coefficient Pind, the

probability of radiation-induced DNA damage per unit

dose D of radiation, which would develop later to clinical

cancer assuming no or some constant rate of protection

irrespective of the value of D. Pind is assumed to be con-

stant over a certain range of D and thus conforms to the

conventional proportionality constant a in the well known

expression of the linear non-threshold dose-risk function:

R = aD. Hence, R1 = PindD.

R2 is expressed here by the product Pprot 9 f(D, tp),

which represents the fractional cumulative probability of

adaptive protection; it describes the inhibition of damage

propagation, as a function of the variable D and of the

parameter ‘‘duration of protection effectiveness tp’’. R2 is

an empirically obtained probability that does not unravel

Fig. 4 Schematic presentation of adaptive responses to radiation

exposure as a function of dose. These may be observed at very low

doses in the range of mGy and show, on average, a maximum

effectiveness at a dose of about 0.1 Gy. They tend to disappear as

doses increase beyond 0.2 Gy and are hardly seen anymore beyond

about 0.5 Gy. However, the probability of apoptosis apparently

increases linearly beyond 0.5 Gy over a certain dose region
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individual quantitative contributions of mechanistic com-

ponents responsible for the protective phenomena in the

whole system, as they are observed experimentally. The

dose response function for Pprot 9 f(D, tp) is illustrated in

Fig. 4. A value of 0 means no adaptive protection, and a

value of 1 means full protection of damage propagation by

sufficient adaptive responses in the system. Protection in

this model operates against both the probability Pspo of the

appearance of spontaneous cancer, derived, for example,

from non-radiogenic DNA damage at the times of obser-

vation, as well as against the radiation-induced cancer

expressed by the term Pind 9 D to indicate that Pprot 9

f(D, tp) also affects PindD. Thus, the value of Pprot 9 f(D,

tp) 9 (Pspo + PindD) summarily encompasses the proba-

bilities of total low-dose induced adaptive protection

against propagation of any DNA damage to cause cancer

(Fig. 5). The net risk of radiation induced cancer Rn, in this

model, thus, amounts to Rn = PindD - Pprot 9 f(D, tp) 9

(Pspo + PindD). This simplifies an approach published

elsewhere [36, 38, 39, 64]. Note that, with increasing D, the

term Pprot 9 f(D, tp) 9 (Pspo + PindD) tends towards zero,

notwithstanding the protective contribution by apoptosis

(Fig. 4). Moreover, the term also reaches zero with tp
becoming too short for Pprot to operate, for instance, when

adaptive protection is not allowed to develop. The differ-

ence between the two dose–risk functions, R1 - R2, yields

the net dose–risk function R (Fig. 5, solid line in between),

which conforms, at least qualitatively, to a large set of

experimental and epidemiological data ([26, 27, 65–68];

for a review see [68]).

The discussion of risks would be incomplete without

considering repeated or chronic low dose rate exposures.

Dose rates may be described in terms of mean time

intervals tx between consecutive energy deposition events

in the exposed micro-mass, for a given radiation quality

[69–71]. An example is the chronic exposure of mice to

tritiated water throughout life [72]. Thymic lymphoma

induction and life shortening only appeared at dose rates

above 1 mGy per day. This corresponds to about one event

of 1 mGy occurring per micro-mass within less than 1 day,

i.e., at a tx shorter than 1 day [28]. There was no thymic

lymphoma induced and no life shortening observed when tx
was longer than 1 day. This assessment is in line with other

observations after chronic low dose rate exposures [56, 61,

68]. Occupational exposures in humans usually deliver

much lower dose rates than discussed above and thus

provide for relatively long tx. For long tx, immediate and

adaptive protections are expected to operate within the

cell’s capacities [68] and are likely the reason for repeated

epidemiological observations of reduced cancer incidence

below the background incidence at chronic low dose rate

exposures [25–27]. The analysis of the mortality of 45,468

Canadian nuclear power industry workers after chronic

low-dose exposure to ionizing radiation [73] quotes: ‘‘For

all solid cancers combined, the categorical analysis shows a

significant reduction in risk in the 1–49 mSv category

compared to the lowest category (\1 mSv) with a relative

risk of 0.699 (95% CI: 0.548, 0.892). Above 100 mSv the

risk appeared to increase.’’

Network approaches to radiation biology

The previous section has made it clear that many factors

govern the processes that begin with radiation exposure

and ultimately lead or do not lead to the development of

cancer. They include ‘‘external’’ aspects, such as the

quality, dose, and timing of radiation, as well as ‘‘internal’’

aspects like the efficacy of various protective barriers and

adaptive responses. While it is possible to rationalize

intuitively the behaviors of linear chains of causes and

effects, intuition often fails us when we try to predict the

response of more complex or even adaptive systems. For

instance, if counteracting processes are present, with one

tending to cause disease and the other one triggering pro-

tective responses, as is the case with the process of

radiation exposure, our unaided mind is no longer able to

integrate all individual responses quantitatively and to

predict the ultimate outcome at the systems level with a

sufficient degree of reliability. The same difficulties

emerge in the ubiquitous situation where defined diverging

and converging branches dominate a multi-faceted system

and where individual different system components simul-

taneously contribute to the dynamics of the system with

different magnitudes and possibly different signs. It is

therefore necessary to work toward mathematical

Fig. 5 Schematic representation of effects of low-dose radiation.

Straight line linear dependency of radiation-induced DNA damage R1

on dose D: R1 = PindD. Lower curved line dose–risk function

R2 = Pprotf(D, tp) (Pspo + PindD), describing inhibition of damage

propagation by adaptive protection. Solid line in between difference,

R1 - R2, corresponds to the net dose–risk function R
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descriptions that permit rigorous quantification as well as

the scaling to large networks and systems. This section

alludes to some current issues related to network analysis

in biology. It is exemplified with a discussion of how we

have moved in recent years from simple gene–disease

associations to the recognition that complex traits, such as

diabetes or cancer, can only be explained through consid-

erations of genomic networks and beyond.

Genomic systems analysis of complex traits

With several maturing technologies that enable low-cost,

high-throughput characterization of DNA variations that

are either naturally occurring or induced by exposure to

radiation or other exogenous agents, we are entering a new

era in which DNA variations that lead to phenotypic var-

iation will be identified on unprecedented scales. In fact, a

number of genome-wide association studies have already

leveraged the availability of high-throughput genotyping

technologies to identify polymorphisms in genes that

associate with diseases like age-related macular degener-

ation [74–76], diabetes [77, 78], obesity [79], and cancer

[80], to name just a few. However, while variations in

DNA that associate with complex phenotypes like disease

provide a peek into pathways that underlie these pheno-

types, such associations are usually devoid of biological

context, so that elucidating the functional role such genes

play in disease can linger for years, or even decades, as has

been the case for ApoE, an Alzheimer’s susceptibility gene

identified nearly 15 years ago [81].

The information that defines how variations in DNA

induced, say, by radiation exposure influence complex

physiological processes, flows through transcriptional and

other molecular, cellular, tissue, and organismic networks.

In the past it was not possible to comprehensively monitor

these types of intermediate phenotypes that comprise the

hierarchy of networks that drive complex phenotypes like

disease. However, today’s DNA microarrays have radically

changed the way we study genes, enabling a more com-

prehensive look at the role they play in everything from the

regulation of normal cellular processes to complex diseases

like obesity, diabetes, and cancer. In their typical use,

microarrays allow researchers to screen thousands of genes

for differences in expression or differences in how genes

are connected in molecular networks [82] under altered

experimental conditions of interest. The data produced in

this fashion are often used to discover genes and, more

generally, characteristics of networks that differ between

normal and disease-associated tissues, to model and predict

continuous or binary measures, to predict patient survival,

and to classify disease or tumor sub-types. Because gene

expression levels in any given sample are measured

simultaneously, researchers are able to identify genes

whose expression levels at the time of measurement are

correlated, implying possibly coordinated regulation under

specific conditions.

Integrating DNA variation and functional genomic data

can provide a path to inferring causal associations between

genes, their properties, and disease. In the past, causal

associations between genes and traits have been investi-

gated using time series experiments, gene knockouts or

transgenics, and RNAi-based knockdown, viral-mediated

over-expression, or chemical activation/inhibition of genes

of interest. A more systematic and arguably relevant source

of perturbation to make such inferences regarding genes

and disease are naturally occurring or environmentally-

induced DNA polymorphisms, where gene expression and

other molecular phenotypes in a number of species have

been shown to be significantly heritable and at least par-

tially under the control of specific genetic loci [83–92]. By

examining the effects that naturally occurring or artificially

induced variations in DNA have on variations in gene

expression traits in human or experimental populations,

higher-order phenotypes (including diseases) can be

examined with respect to these same DNA variations and

ultimately ordered with respect to genes to infer causal

control [93–96]. The power of this integrative genomics

strategy rests in the molecular processes that transcribe

DNA into RNA and then RNA into protein, so that infor-

mation on how variations in DNA impact complex

physiological processes often flow directly through tran-

scriptional networks. As a result, integrating DNA

variation, transcription, and phenotypic data has the

potential to enhance identification of the associations

between DNA variation and complex phenotypes like

disease, as well as characterize those parts of the molecular

networks that drive disease.

Gene transcripts have been identified that are associated

with complex disease phenotypes [91, 97], are alternatively

spliced [98], elucidate novel gene structures [99–101], can

serve as biomarkers of disease or drug response [102], lead

to the identification of disease subtypes [91, 103, 104], and

elucidate mechanisms of drug toxicity [105]. Changes in

gene expression often reflect changes in a gene’s activity

and the impact a gene has on different phenotypes. Because

gene expression is a quantitative trait, association methods

can be directly applied to such traits to identify genetic loci

that control them, or in the case of radiation-induced DNA

changes, the transcriptional responses associated with such

changes can be assessed. In turn, variations in DNA that

control for expression traits may also associate with higher-

order phenotypes affected by expression changes in cor-

responding genes of interest, providing a path to directly

identify genes controlling for phenotypes of interest. In the

context of naturally occurring DNA variations in a
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population of interest, identifying the heritable traits and

the extent of their genetic variability might provide insight

about the evolutionary forces contributing to the changes in

expression that associate with biological processes that

underlie diseases like cancer and diabetes, beyond what can

be gained by looking at the transcript abundance data

alone.

It is now well established that gene expression is a

significantly heritable trait [83, 88, 89, 91, 96, 106–111]. If

a gene expression trait is highly correlated with a disease

trait of interest, and if the corresponding gene physically

resides in a region of the genome that is associated with a

complex phenotype, then knowing that the expression trait

is also genetically linked to a region coincident with its

physical location provides an objective and direct path

toward identifying candidate causal genes for the complex

phenotype [83, 88, 89, 91, 96, 106–111]. The DNA vari-

ation information therefore enables the dissection of the

covariance structure for two traits of interest into genetic

and non-genetic components, where the genetic component

can then be leveraged to support whether an expression and

disease trait are related in a causal, reactive, or independent

manner (with respect to the expression trait). Elucidating

causal relationships in this way is possible given the flow

of information from changes in DNA to changes in RNA

and protein function. That is, given that two traits are

controlled by the same DNA locus, there are just three

basic ways in which these two traits can be related with

respect to a given locus: (1) the two traits are independently

impacted by the common DNA locus, (2) the first trait is

more immediately impacted by the DNA locus and in turn

affects the second trait, or (3) the second trait is more

immediately impacted by the DNA locus and in turn affects

the first trait [96, 112, 113].

Expression traits detected as significantly correlated with

a higher-order complex phenotype (e.g., disease) may reflect

a causal relationship between the expression trait and phe-

notype, either because the expression trait contributes to, or

is causal for, the complex phenotype, or because the

expression trait is reactive to, or a marker of, the clinical

phenotype. However, correlation may also exist in cases

when the two traits are not causally associated. Two traits

may appear correlated due to confounding factors such as

tight linkage of causal mutations in DNA [96] or may arise

independently from a common genetic source. The Ay mouse

provides an example of correlations between eumelanin

RNA levels and obesity phenotypes induced by an allele that

acts independently on these different traits, causing both

decreased levels of eumelanin RNA and an obesity pheno-

type. More generally, a clinical and expression trait for a

particular gene may depend on the activity of a second gene,

in such a manner that conditional on the second gene, the

clinical and expression traits are independent.

Correlation data alone cannot indicate which of the

possible relationships between gene expression traits and a

complex phenotype are true. For example, given two

expression traits and a complex phenotype detected as

correlated in a population of interest, there are 112 ways to

order the traits with respect to one another. To see this,

consider traits as nodes in a network, in which case there

are five possible ways that the two nodes can be connected:

(1) connected by an undirected edge, (2) connected by

a directed edge moving left-to-right, (3) connected by a

directed edge moving right-to-left, (4) connected by a

directed edge moving right-to-left and a directed edge

moving left-to-right, (5) not connected by an edge. Since

there are three pairs of nodes, there are 5 9 5 9 5 = 125

possible graphs. However, since we start with the

assumption that the traits are all correlated with one

another, we exclude 12 of the 125 possible graphs in which

one node is not connected to either of the other two nodes,

in addition to excluding the graph in which none of the

nodes are connected, leaving us with 112 possible graphs.

This stands in contrast to the case indicated above where

variations in DNA affecting two phenotypes of interest are

leveraged as a causal anchor, reducing the number of

graphs to consider to three.

Large-scale networks

The reductionist view of traditional biology has motivated

the identification of single genes associated with disease as

a means of initial exploration into disease pathways.

However, even in cases where genes are involved in path-

ways that are well known, it is unclear whether the gene

causes disease via the known pathway or whether the gene

is involved in other pathways or more complex networks

that lead to disease. This is the case with TGFBR2, a

recently identified and validated obesity susceptibility gene

[96]. While TGFBR2 plays a central role in the well-studied

TGF-b signaling pathway, TGFBR2 and other genes in this

signaling pathway are correlated with hundreds of other

genes [96, 114], so that it is possible that perturbations in

one or more of these other genes, or in TGFBR2 itself, may

drive diseases like obesity by influencing other parts of the

network beyond the TGF-b signaling pathway. Because this

type of complexity appears to be the rule rather than the

exception, it is beneficial––if not mandatory––to consider

single genes in the context of larger gene regulatory net-

works. Indeed, for complex phenomena like radiation

damage, such a network view may be a necessary pre-

requisite for establishing the context within which to

interpret the role of a candidate gene.

Mathematical network models provide a convenient

framework for characterizing the multiple roles of genes
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and proteins, and an enormous effort has been devoted in

recent times to generate biological data elucidating net-

works and providing parameters for network modeling.

Examples include molecular interaction networks, gene

transcription and regulation networks, as well as stoichi-

ometric and fully regulated metabolic pathway systems. In

the simplest case, networks are represented as graphs

comprised of nodes and edges. For gene regulatory net-

works, the nodes typically represent genes and the edges

(links) represent some relationship between the two asso-

ciated genes. For example, an edge may indicate that the

corresponding expression traits are correlated in a given

population of interest [115], that the corresponding proteins

interact [116], or that changes in the activity of one gene

lead to changes in the activity of the other gene [96].

Three issues have to be kept in mind when setting up

biological network experiments and choosing mathemati-

cal network representations: the potential uses of network

data toward understanding complex biological systems

and the insights they may convey; the statistical and

bioinformatics techniques that are available––or still need

to be developed––for dealing with such data; and the

limitations of data and representations, along with the

scope for extending and refining them in the future. As an

example, it has been suggested that it is the importance of

interactions among genes that is crucial for understanding

most complex phenotypes, given that these are emergent

properties of complex networks. Ignoring the details of

connectivity of interactions may make it difficult, if not

impossible, to quantify the functional relevance of genes

identified for disease in case–control association studies.

However, characterizing the significance of such interac-

tions is associated with an enormous multiple-testing

problem, and it will be necessary to develop efficient

statistical techniques for this purpose. These techniques

should assess the importance of potential interactions

within a gene network and will help with the development

of more realistic models for the link between genotype

and phenotype.

One should also recognize that as of yet, most functional

analyses of phenotypes in the context of biological net-

works (mostly metabolic, transcriptional and protein-

interaction networks) have focused primarily on simple

model organisms (such as E. coli or Saccharomyces cere-

visiae) rather than mammalian systems that are better

models for radiation damage and its consequences. More-

over, interventions and perturbations have predominantly

relied on relatively coarse actions, such as the knock-out or

knock-down (using RNAi) of individual genes or pairs of

genes. Nevertheless, these rudimentary methods have

taught us a lot and will without doubt be expanded and

refined to a degree that they can be applied to higher

organisms and more complex traits.

Another significant issue concerning biological net-

works is the implicit assumption that network data are

essentially correct. However, it must be acknowledged that,

at present, network datasets are often incomplete and noisy.

In particular, the use of protein–protein interaction data,

with false-positive and false-negative rates estimated to be

in the range of 30–70% and 50–90%, respectively, may be

a limiting factor of what we can reliably infer for the

underlying system, if we focus only on this single dimen-

sion. In other words, most of the inferred interactions we

see are probably not there in actuality, while most inter-

actions that are known to exist are not picked up by high-

throughput assays, such as yeast 2-hybrid or TAP-tagging

approaches. While this is a severe problem, methodologies

are quickly improving and may soon lead to crisper and

more reliable information. As important as noise and

uncertainties is the incompleteness of network datasets.

Missing interactions can lead to wrong interpretations,

because a subnet drawn from some larger network can have

very different properties than the true network (see Fig. 6).

In order to make meaningful inferences from network data

about the biological system, it is therefore important to

include the effects of noise and incompleteness into sta-

tistical analyses from the outset.

Finally, one must acknowledge that different networks

may be functionally coupled. Specifically, proteins as well

as genes form their own networks, but transcriptional net-

works, influence the expression of proteins, which as

enzymes, in turn, affect metabolite concentrations or act as

transcription factors that regulate gene expression. Thus,

bioinformatics tools will be needed to assess several levels

simultaneously and to account for the fact that proteins or

genes are embedded in interacting networks and that we

may strictly not be able to study the effects of genes on

their own, because the network induces dependencies

among interacting biomolecules that are disrupted in iso-

lation experiments. Extending the complications caused by

these interdependencies, we often implicitly assume that

we can understand biological interactions in terms of net-

works that are describable with static, mathematical

graphs. In reality, about all biological networks change

over time and their topology and regulatory structure

depend dynamically on their internal and external condi-

tions. Including time-dependence and conditionality in the

description of biological networks will presumably be one

of the most challenging problems of statistical bioinfor-

matics and computational systems biology.

In spite of challenges with respect to computational

techniques as well as to the generation and curation of data,

many disciplines, especially engineering, have approached

systems with mathematical means, and some of these

techniques are now being adapted for the analysis of bio-

logical phenomena. One of the earliest approaches goes
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back to Boltzmann, who addressed large assemblies of

molecules with methods of statistical mechanics. However,

this approach is better suited for unorganized systems, such

as ideal gases, than highly organized biological systems, in

which each component has a specific role.

Linear network models

For organizationally complex systems, efficacious analyses

are still in their infancy. The great divide comes with the

question of whether the system is linear or nonlinear. Linear

models have very nice mathematical properties that allow

sophisticated analyses even for very large systems. For

instance, it has become a straightforward task (e.g., in the

electrical power industry) to optimize some objective in a

system of thousands of variables. In biology, linear systems

models come in different varieties that call for different

methodologies. Within the realm of deterministic systems

models, stoichiometric network models are without doubt

the most important. In these models, each component

(typically a metabolite) is represented as a variable Si,

which is an element in a vector S, the connectivity between

these variables is coded as a ‘‘stoichiometric matrix’’ N, and

each flux rate entering or leaving a metabolite pool is coded

as a vector v. The formulation of a dynamic model with

these components is easy, namely

dS

dt
¼ Nv: ð9Þ

At steady state, the left-hand side becomes 0, because by

definition no metabolite concentration changes, and the

resulting equation becomes algebraic and can be analyzed

with a variety of methods of linear algebra and operations

research [117].

A different linear approach is based on stochastic ideas

and, for instance, uses Markov chains, in which each

transition between states (or nodes) is governed by a

random process [118]. Stochastic Petri net models gener-

alize on these concepts [119]. Yet another statistical

approach addresses the reconstruction (or identification) of

networks with Bayesian methods [120, 121]. Bayesian

networks are directed acyclic graphs that while limited

with respect to representing temporal information or

feedback loops, allow for the explicit representation of

causal associations among nodes in the network. With

Bayesian network reconstruction methods taking gene

expression data as the only source of input, many rela-

tionships between genes in such a setting will be Markov

equivalent (symmetric), so that inferring networks that are

actually predictive have not met with much success. To

break this symmetry, Zhu et al. [121] incorporated

expression quantitative trait (eQTL) data as prior infor-

mation to more reliably establish the correct direction

among expression traits.

Bayesian network methods have been applied previ-

ously to reconstruct networks comprised only of expression

traits, as well as to networks comprised of both expression

and disease traits, where the aim has been to identify those

portions of the network that are driving a given disease

trait. Forming candidate relationships among genes was

carried out using an extension of standard Bayesian net-

work reconstruction methods [122]. In the first approach to

extend this method using genetic data, DNA variations

found to associate with transcript abundances of each gene

considered in the network were incorporated into the

reconstruction process. It is well known that searching for

the best possible network linking a moderately sized set of

genes is an NP-hard problem (i.e., there is no known

algorithm able to identify the best possible network in

polynomial time). Exhaustively searching for the optimal

network with hundreds of genes is presently a computa-

tionally intractable problem. Therefore, various

simplifications are typically applied to reduce the size of

the search space and to reduce the number of parameters

that need to be estimated from the data. Two simplifying

Fig. 6 A subnet (dark gray nodes in lower part) will generally have

very different properties than the true network (top): interactions

involving those nodes which were not included in the subnet (light
gray) cannot be observed, and the incomplete nature of network data

may introduce severe bias into the network analysis. In some cases, it

is possible to make statistical predictions about properties of the true

network from incomplete network data
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assumptions to achieve such reductions are commonly

employed. First, while any gene in a biological system

could potentially control many other genes, a given gene

can be restricted so that it is allowed to be controlled by a

reduced set of other genes. Second, the set of genes that can

be considered as possible causal drivers (parent nodes) for

a given gene can be restricted using the type of causality

arguments discussed in previous sections, as opposed to

allowing for the possibility of any gene in the complete

gene set to serve as a parent node. The expression data

linked to specific genetic loci in this case can be leveraged

as prior information to restrict the types of relationships

that can be established among genes. As already indicated,

correlation measures are symmetric and so can indicate

association but not causality. However, incorporating DNA

variation information and its association with gene

expression traits can be used to help sort out causal rela-

tionships. The different tests described above on making

causal inferences between pairs of traits provide a way to

sort out such relationships explicitly. Zhu et al. [115] lev-

eraged the DNA variation data in a related way by

incorporating it as a structure prior in their network

reconstruction algorithm (described below), enhancing the

ability to infer causal relationships among the nodes in the

network [121].

With the various constraints and measures defined

above, the goal in reconstructing whole gene networks is to

find a graphical model M (a gene network) that best rep-

resents the relationship between genes, given a gene

expression data set, D, of interest. That is, given data D, we

seek to find the model M with the highest posterior prob-

ability P(M|D). The prior probability p(M) of model M is

pðMÞ ¼
Y
X!Y

pðX ! YÞ; ð10Þ

where the product is taken over all paths in the network

(M) under consideration.

The algorithm employed by Zhu et al. [115] to search

through all possible models to find the network that best fits

the data is similar to the local maximum search algorithm

implemented by Friedman et al. [123]. Zhu et al. [121]

recently demonstrated, via simulation of biologically real-

istic networks, that the integration of genetic and

expression data in this fashion to reconstruct gene networks

leads to networks that are more predictive than networks

reconstructed from expression data alone. This approach

was more recently applied to genetic and expression data

generated from a segregating population of yeast. Again

networks constructed by integrating genetic and expression

data were shown to have superior predictive power com-

pared to networks constructed from expression data alone,

where, in this case, the predictions were prospectively

validated experimentally.

Nonlinear network models

In contrast to the one and only linear structure, infinitely

many nonlinear model structures are available. This creates

challenging issues not only with their analysis, but also

immediately at the very beginning of the modeling process,

when the most suitable model structure is to be chosen. The

choices fall into two categories. One may select an ad hoc

model, in which each process is described with some

function that seems to be most appropriate. The closer the

biological phenomenon is to a process whose physics is

well understood, the better the chances of success are with

this method. The alternative is a canonical nonlinear

model. In this case, the model structure is prescribed, and

the model design phase consists of adapting parameter

settings within this structure to the phenomenon under

investigation. While this approach may seem limiting, it

has proven to be very successful for a variety of analyses of

biological systems. Two prominent canonical forms are

Lotka–Volterra systems [124], which are particularly well

suited for ecological systems, and models with the frame-

work of biochemical systems theory [125, 126], which was

developed for the analysis of metabolic and genetic sys-

tems. Interestingly, while both approaches have fixed

mathematical structures, they are very flexible in their

repertoires of responses and capable of modeling essen-

tially any smooth nonlinearities, including stable limit

cycle oscillations and chaos [124, 127].

It is beyond the scope of this article to review the many

interesting features of nonlinear canonical forms, but there

is rich literature on very many aspects (for reviews, see

[128–132]). Suffice it to say that a biological network

diagram, showing which components affect each other, can

be translated almost automatically into a dynamic mathe-

matical model [133]. Once formulated in mathematical

terms, many computational methods that were tailored

specifically for these types of systems can be applied to

diagnose and refine the model, to interrogate the model

with respect to experiments not yet executed, and to

manipulate the model in a rational fashion.

The main bottleneck of all nonlinear analyses is the

determination of suitable parameter values. These have

traditionally been obtained from the bottom up. In other

words, each step within a model is studied before in iso-

lation and parameters are computed from focused

biological experiments. In the second phase of model

design, the representations of all steps are merged and the

resulting dynamics of the integrated model is compared to

observations and leads to suggestions for refinements.

Because the model in most cases does not produce

responses as observed in the biological system, a string of

refinements and re-estimations has to be executed before a

reasonable model is obtained. More recently, this approach
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has been complemented with parameter estimation

attempts from global in vivo data, especially in the form of

time series [134]. These estimations are computationally

more challenging, but have the potential of capturing bio-

logical reality in a shorter turn-around time. Essentially, all

methods of parameter estimation, however, do not scale

well and run into problems for biological systems of even

moderate size. In other words, one may expect that

parameter estimation will continue to be the primary hold-

up of systems biology.

Conclusion

It is clear that any predictive model describing the details

of radiogenic carcinogenesis at the different levels of

organization will have to be nonlinear. It is also evident

that we are far from being able to construct such models

with current biological and computational means. On the

biological side, we are still missing many detail measure-

ments that will be needed to compose comprehensive

models. On the computational side, models of the neces-

sary size and complexity would challenge our current

diagnostic and analytical tools. Nonetheless, while a true

understanding of radiation exposure and carcinogenesis is

not yet within reach, this article has attempted to point out

some of the issues that need to be addressed. It is evident

that true understanding will be based on quantitative sys-

tems models, because the human mind is simply not able to

process systems of such complexity unaided. This recog-

nition of the complexity of radiation biology is the first step

toward such models. The next steps will consist of the

development of partial models and accompanying tech-

niques, as we demonstrated them here, and these must

eventually be merged into larger structures that will deepen

our understanding of radiogenic carcinogenesis.

Acknowledgments The authors are indebted to Dr. Herwig

Paretzke and Dr. Ronald D. Neumann for valuable contributions to

the section of low-dose radiation effects and to anonymous

reviewers and editors for constructive suggestions. This work was

supported by NASA NSCOR Grant NNJ04HJ12G and NIH Grant

CA-78496–07 (P.H., PI) and an NSF Molecular and Cellular

Biosciences Grant (E.O.V., PI). Any opinions, findings, and con-

clusions or recommendations expressed in this material are those of

the authors and do not necessarily reflect the views of the spon-

soring institutions.

References

1. http://www.accessexcellence.org/AE/AEC/CC/historical_back

ground.html

2. http://www.accessexcellence.org/AE/AEC/CC/radioactivity.html

3. Müller HJ (1927) Artificial transmutation of the gene. Science

66:84–87

4. Timoféeff-Ressovsky NW, Zimmer KG, Delbrück M (1935)
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