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Abstract A common type of statistical challenge, wide-

spread across many areas of research, involves the selec-

tion of a preferred model to describe the main features and

trends in a particular data set. The objective of model

selection is to balance the quality of fit to data against the

complexity and predictive ability of the model achieving

that fit. Several model selection techniques, including two

information criteria, which aim to determine which set of

model parameters the data best support, are reviewed here.

The techniques rely on computing the probabilities of the

different models, given the data, rather than considering the

allowed values of the fitted parameters. Such information

criteria have only been applied to the field of radiation

epidemiology recently, even though they have longer tra-

ditions of application in other areas of research. The pur-

pose of this review is to make two information criteria

more accessible by fully detailing how to calculate them in

a practical way and how to interpret the resulting values.

This aim is supported with the aid of some examples

involving the computation of risk models for radiation-

induced solid cancer mortality fitted to the epidemiological

data from the Japanese A-bomb survivors. These examples

illustrate that the Bayesian information criterion is partic-

ularly useful in concluding that the weight of evidence is in

favour of excess relative risk models that depend on age-at-

exposure and excess relative risk models that depend on

age-attained.

Introduction

Poisson regression, involving a multivariate analysis of

numbers of uncommon events (e.g., the incidence of cancer

or the mortality from cancer) in cohort studies, is often

applied to the field of radiation epidemiology. With this

method it is possible to determine several theoretical

models given relevant epidemiological data, for example,

for the relative risk of dying from lung cancer for smokers

who live in areas associated with high radon levels. The

decision concerning which of these models is the most

plausible, without necessarily considering the preferred

values of the model parameters, can be made with model

selection techniques. Within each model, the parameters

indicate the importance of particular effects, for example,

the age dependence of the spontaneous death rate in the

absence of radon and smoking, or the change in the death

rate with radon exposure levels and/or smoking levels.

Such parameters are not usually predicted by prior

knowledge, but need to be estimated from the data in order

to determine which combination of (explanatory) covari-

ables, if any, is capable of adequately describing the total

detrimental health risks. Current data may not be statisti-

cally powerful enough to constrain the parameters of the

model at the required level. Alternatively, although less

common in epidemiology than in other fields, the presence

of good data may lead to the very different problem of

determining when to stop adding extra useful parameters,

or when to stop re-parameterisation procedures. In this

case, it is possible then to arrive at several competing

models that seem to fit the data approximately equally well.

Occam’s razor (also known as the principle of parsimony)

provides a solution to model selection here—the simpler

model should be preferred. A complicated model that ex-

plains the data slightly better than a simpler model needs to
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be penalised for the extra parameters which tend to de-

crease the overall power of a model in making predictions.

In contrast, a model that is too simple and unable to fit the

data well needs to be discarded. Such considerations and

problems associated with preferred model selection are

widespread across many areas of research and form a

common type of statistical challenge.

The standard approach to model fitting usually involves

choosing one initial set of parameters to be varied and then

using a likelihood method to determine the best-fit model

and associated parameter confidence intervals. Eventually,

the initial parameter set may be replaced by another set

chosen ad hoc and the whole process repeated an ad hoc

number of times. Typically, the introduction of extra

parameters will often improve the fit to the data set,

regardless of the relevance of these new parameters, and so

a simple comparison of maximum likelihoods will gener-

ally tend to favour the model with the most parameters1. A

less commonly adopted approach, which compensates for

this effect by penalising models which have more param-

eters, and therefore counterbalances the improvement in

maximum likelihood that the extra parameters may allow,

is that of model selection.

A considerable wealth of the statistical literature is de-

voted to model selection (excellent text book accounts have

recently been given [1–3]) and its use is widespread in

many branches of science. In model selection, the data are

involved in allowing the determination of which combi-

nation of parameters gives the preferred fit. Here, the

emphasis is placed on the application of information cri-

teria to aid in the elimination of parameters that do not play

a sufficient role in improving the fit to the available data.

These information criteria have led to considerable ad-

vances in the understanding of how statistical inference is

related to information theory.

The model selection techniques reviewed here aim to

determine which set of parameters the data support by

computing the probabilities of the different models, given

the data, rather than considering the allowed values of the

fit parameters. Choice of the technique depends on the

nesting properties of the competing models. Nested models

are those where the more complicated model has additional

parameters to those in the simpler model and where the

latter may be interpreted as a particular case of the former

with the additional parameters kept fixed at some fiducial

values. Several techniques are reviewed that apply to linear

and non-linear models including: ‘‘Likelihood ratio’’ tests,

which require the models to be nested and were originally

proposed by Neyman and Pearson [4] (see, however, [5] for

a modern textbook explanation); and two likelihood based

information criteria [1–3] which do not require the models

to be nested. These information criteria due to Akaike [6,

7] and Schwarz [8] arise from extending the likelihood-

based methods by information theoretical and Bayesian

considerations, respectively. These criteria have only re-

cently been applied to the field of radiation epidemiology

[9, 10], even though they have longer traditions of appli-

cation in other areas of research (e.g. [11, 12]). Although

the underlying theoretical considerations associated with

information criteria are very involved (and are not covered

in detail here—but just described and cited), the actual

criteria have very simple expressions and are easy to derive

from the standard output of most optimisation software.

The purpose of this review is to promote the application of

these techniques in the field of radiation epidemiology by

aiming to increase their accessibility and by fully

describing how to calculate them and how to interpret the

resulting values. This is done with the aid of some practical

examples involving the epidemiological data from the

Japanese A-bomb survivors.

Model selection statistics

In Poisson regression, it is possible to specifically model

rate functions for grouped survival data. Let di, Pi and xi

denote the number of deaths (or cases), the total number of

person–years at risk and covariates (e.g., age and dose) for

the ith data cell, respectively. Then the model for the ex-

pected number of deaths E(di) in the cell can be written as:

EðdiÞ ¼ Pikðb; xiÞ;

where k(b, x) is the rate function model and b is the chosen

set of fit parameters.

If b̂ represents the computed optimised values of the fit

parameter set, then the contribution of the ith data cell to

the log likelihood is

Li ¼ di lnðPikðb̂; xiÞÞ � Pikðb̂; xiÞ

and the log likelihood is simply the sum of Li over the i

data cells, SLi.

The overall quality of a model fit to the data in Poisson

regression is often quantified by the deviance, dev. The

deviance contribution from the ith data cell is computed as

twice the difference between the likelihood contribution,

when di is used as the estimate of the cell mean, and the

value of Li for the current model. Thus, the total deviance is

minus twice the natural logarithm of the maximum likeli-

hood, M = max(SLi).

1 However, this should not give the impression that the standard

model selection approach involving maximum likelihoods pays no

attention to the number of fit parameters, which, in fact, determines

the number of degrees of freedom, as explained below.
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As indicated above, the general problem of choice of the

procedure to use for selection of a preferred model in

Poisson regression usually depends on whether the com-

peting models are ‘‘nested’’. Model A is nested within

model B, if model A is a special case of model B, i.e., if

both contain the same model parameters and model B has

at least one additional parameter.

Nested models

When two models are nested, it is known that the difference

between their deviances, dev(B) – dev(A) is chi-square (v2)

distributed [4, 5]. In this case, the degrees of freedom for the

difference is equal to the difference in degrees of freedom

for the two original test statistics, df(B) – df(A). This sug-

gests the most commonly used method for comparing the fit

of two nested models to see if a particular parameter can be

dropped from a model without substantially reducing the

explanatory power of the model: one tests whether the

resulting difference in deviance, dev(B) – dev(A) is sig-

nificant or not, for the given degrees of freedom and a

chosen level of statistical significance. If the difference is

significant, then the extra parameters associated with model

B are retained. This method is also known variously as

partitioning the deviance and applying likelihood ratio tests

[4, 5] and is not strictly applicable to non-nested models.

Correspondingly, model B with one additional fit parameter

than model A is considered to be an improvement over

model A with 95% probability, if the deviance is reduced by

more than 3.84 points. This is because the v2-probability

distribution with one degree of freedom leaves 5% of the

total probability excluded, and consigned to the tail of the

total distribution, at v2 = 3.84. This and a few other

examples are given in Table 1.

Non-nested models

It is sometimes possible, with a little ingenuity, to create

nested models from non-nested models in order to test

whether a particular parameter can be dropped from a

model without substantially reducing the explanatory

power of the model. However, in the situation of fitting

different types of models to the same data set, for example,

when fitting biologically based mechanistic models,

empirical excess relative risk models and excess absolute

risk models all to the same A-bomb data set, this is often

not possible. The AIC and BIC information criteria (as

explained below) allow many more inter-comparisons be-

tween totally different model types and provide guidance,

for example, on whether biologically based models fit the

data more economically, i.e., with fewer parameters, than

the empirical models, or whether the ERR model fits better

than the EAR model.

In general, if the models are not nested and cannot be

reformulated as nested models, there is a tendency, in the

field of radiation epidemiology, to just quote the change in

deviance without interpretation (e.g. [13, p. 390]). This

approach can be improved on by the application of infor-

mation criteria.

The more general problem of choosing among non-

nested models, with different numbers of parameters, can

be approached with an information theoretic extension of

the maximum likelihood principle, as originally suggested

by Akaike [6, 7] and fully described in a dedicated text-

book to Akaike information criterion statistics [14] and in

[1]. Another information criterion involves evaluating the

leading term in the asymptotic expansion of the Bayes

solution as suggested by Schwarz [8]. An informative

description of both methods has recently been given [15].

Akaike’s [6, 7] suggestion amounts to maximising the

likelihood function separately for each model j, obtaining

the likelihood Mj and then choosing the model that mini-

mises the Akaike information criterion (AIC),

AIC ¼ �2 lnðMjÞ þ 2kj; ð1Þ

where kj is the number of fit parameters in the model (i.e.,

the number of values that are estimated from the data) and

the first term on the right-hand side of Eq. 1 is just the

familiar deviance.

The AIC is derived by an approximate minimisation of

the Kullback–Leibler information entropy, which measures

the difference between the true data distribution and the

model distribution. The full statistical justification is given

in the original Akaike papers [6, 7] and in [1].

Adopting this formulation of AIC, the probability P for

a model improvement can then be computed by the fol-

lowing equation [16]:

P ¼ 1� expð�0:5 DAICÞ=ð1þ expð�0:5 DAICÞÞ ð2Þ

where DAIC is the change in AIC between two competing

models.

Thus, an arbitrary model A is considered to be an

improvement of another model B with 95% probability, if

the AIC for model A is smaller than the AIC for model B

by 5.9 points, i.e. DAIC = –5.9 (see Table 2 for this and

other examples).

Table 1 Probability and

evidence ratio (ER) values

connected with various model-

to-model changes in deviance

(i.e. DDeviance)

DDeviance

(P = 0.05)

Dnumber

of parameters

3.84 1

5.99 2

7.81 3

9.49 4
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When comparing two models A and B, the probability

that model A fits the data better than model B can be di-

vided by the probability that model B fits better than model

A (by invoking complementary probabilities) to obtain the

evidence ratio, ER as given in Table 2, where

ER ¼ 1= expð�0:5 DAICÞ: ð3Þ

The other criterion for model selection, mentioned

above, is a later product of early work on a Bayesian ap-

proach for comparing predictions made by two competing

scientific theories [17, 18] and involves Bayes factors. If

the prior probabilities of two competing models are equal,

then the Bayes factor is just the posterior probability of one

of these models. It is possible to avoid the introduction of

the prior probabilities, and the associated numerical inte-

grations associated with the full Bayesian method (as in

[19] for example), by using a rough asymptotic approxi-

mation to the Bayes factors developed by Schwarz [8].

Then the relevant procedure for model selection involves

choosing the model that minimises the Bayes Information

Criterion (BIC), where the BIC is often defined to be minus

twice the Schwarz criterion [8]:

BIC ¼ �2 lnðMjÞ þ kj lnðnÞ; ð4Þ

where n is either the number of data points (for individual

data) or the number of data groups or cells (for binned data).

In contrast to the AIC, the BIC involves an asymptotic

approximation and does not have an information-theoretic

justification—despite the name. The factor of two, just

mentioned, has the function of putting the BIC on the same

scale as the familiar deviance and likelihood ratio test

statistic [4, 5] and so here again, the first term on the right-

hand side of Eq. 4 is just the deviance. The evidence for

model improvement is positive, strong or very strong, if the

difference in the BIC values, between two competing

models, lies in the ranges of 2–6, 6–10, and 10 and above,

respectively [20] (Table 3).

Although approximate minimum t values for the dif-

ferent grades of evidence and sample size have been given

in Table 2 of [20], the basic idea presented here is to rely

on the BIC ranges for grades of Bayesian evidence for

model selection among non-nested models, rather than on

P or t values.

The presence of different information criteria in the lit-

erature naturally leads to the question of which one is best.

Monte Carlo tests have indicated that the AIC has a tendency

to favour models which have more parameters than the true

model [20]. A formal proof [21] has shown the AIC to be

‘‘dimensionally inconsistent’’. This means that the proba-

bility of AIC favouring an over-parameterised model does

not tend to zero even as the data set size tends to infinity.

Nevertheless, the AIC has been considered here in addition

to the dimensionally consistent BIC, which penalises over-

parameterised models more harshly than AIC, as the data set

size increases (due to the second term in its definition, Eq. 4).

Other statistics for model selection that are of general

interest, but not applied to the examples of the next section,

include: Mallows Cp [22]; the shortest length description

principle [23, 24]; stochastic complexity (of a data string

relative to a class of probabilistic models) [25]; the shortest

data description [26]; and the deviance information criterion

[27].

An example of applications of model selection:

the A-bomb survivors

Data on cancer mortality

The cohort of the atomic bomb survivors from Hiroshima

and Nagasaki is unique due to the large number of cohort

members; the long follow-up period of more than 50 years;

a composition that includes males and females, children and

adults; whole-body exposures (which are more typical for

radiation protection situations than the partial-body expo-

sures associated with many medically exposed cohorts); a

large dose range from natural to lethal levels; and an

internal control group with negligible doses, i.e. those who

survived at large distances (>3 km) from the hypocentres.

The most recent data set on cancer mortality for the follow-

up time periods from 1950 to 2000 with the new dosimetry

system DS02 [28, 29] (data file: DS02CAN.DAT from

http://www.rerf.or.jp) has been selected for the analysis

here. DS02 was developed by a large international team of

Table 2 Probability and evi-

dence ratio (ER) values con-

nected with various model-to-

model changes in AIC (i.e.

DAIC)

The bold values are for the

95% probability of model

improvement

DAIC Probability Evidence

ratio

–1.0 0.622 1.65

–2.0 0.731 2.72

–3.0 0.818 4.48

–4.0 0.881 7.39

–5.0 0.924 12.18

–5.9 0.950 19.11

–6.0 0.953 20.09

–7.0 0.971 33.12

–8.0 0.982 54.60

Table 3 Probability and evi-

dence ratio (ER) values con-

nected with various model-to-

model changes in BIC (i.e.

DBIC)

Source [20]

|DBIC| Evidence

0–2 Weak

2–6 Positive

6–10 Strong

>10 Very strong
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scientists and included the calculation of the neutron and

gamma radiation transport from the point of A-bomb

explosion through the atmosphere, accounting for shielding

due to buildings and the human body. Validation of these

calculations involved neutron activation measurements

performed on environmental samples from Hiroshima (e.g.

[28–33]). The mortality data are in a grouped form and are

categorised by sex, city, age-at-exposure, age-attained, the

calendar time period during which the health checks were

made and weighted survivor colon dose. This data set

provides an opportunity for conducting analyses of the data

with various risk models, e.g., for radiation induced all-

solid-cancer mortality, as applied in the next section.

Weighted doses

Weighted organ doses are defined by

d ¼ dc þ RBE dn; ð5Þ

where dc and dn are organ absorbed doses from c-rays and

neutrons, respectively. For RBE, the relative biological

effectiveness of neutrons, the value 10 has been used.

Only the data groups with mean weighted colon dose

categories corresponding to < 2 Sv were used. The two data

subsets chosen for the modelling, the associated number of

cancer deaths and the number n of data cells, are given in

Table 4.

Since this analysis involves all types of solid cancers

grouped together, weighted organ-averaged doses [34] are

used in a place of the weighted colon dose. The organ-

averaged doses are calculated with weighting factors

accounting for the risk contribution of individual tumour

sites. The weighted organ-averaged doses are larger than

the colon doses (which are used in the radiation effects

research foundation analyses) by factors of 1.085 and 2 for

the gamma and neutron contributions, respectively [34].

The risk models

The risk models applied here, for radiation-induced solid

cancer mortality, are very similar to those already considered

and explained in detail [9, 13]. In the present work, all

analyses are sex-specific in order to facilitate the model-to-

model comparisons here and to explore different functional

forms for the age-related parameters, which may be different

for males and females (an aspect to be included in a future

paper). This approach deviates slightly from that in [13],

where the analysis pertains to both sexes together but where

the baseline model contains fit parameter values that are all

sex-specific, with the only fit parameters that are really

treated as common to both males and females, relating to the

explanatory covariables of age-attained and age-at-expo-

sure. Use is made of a general rate (hazard) model of the form

kðd; a; eÞ ¼ k0ða; eÞ½1þ ERRðd; a; eÞ�; ð6Þ

for the excess relative risk (ERR) and

kðd; a; eÞ ¼ k0ða; eÞ þ EARðd; a; eÞ ð7Þ

for the excess absolute risk (EAR), where k0(a, e) is the

baseline cancer death rate, a is age-attained and e is age-at-

exposure.

The ERR is factorised into a linear function of dose and

a modifying function that depends either in terms of the

age-attained model, ERR(d, a), [35, 36] or in terms of the

traditionally applied age-at-exposure model, ERR(d, e),

(which postulates an ERR that does not decrease in time).

A more complicated mixed model which includes both age

variables, ERR(d, a, e), can also be considered as a third

alternative. The functional form is exponential for age-at-

exposure in ERR(d, e) or a power function for age-attained

in ERR(d, a) and the modifying factors (see, Eq. 6) have

been modelled as

ERRðd; a; eÞ ¼ kdd expð�geðe� 30Þ þ ga lnða=70ÞÞ; ð8Þ

where kd is the ERR per unit dose for an age-at-exposure of

30 years and an age-attained of 70 years, and ge, ga are fit

parameters.

The model centering at age-at-exposure of 30 years and

an age-attained of 70 years was chosen to match that

adopted in previous analyses, e.g. [13]. Note that here

ERR(d, e) and ERR(d, a) are nested within ERR(d, a, e);

however, ERR(d, e) and ERR(d, a) are not nested models.

Similarly, the EAR is also factorised into a linear

function of dose and a modifying function that depends

either exponentially on age-at-exposure or on the natural

logarithm of age-attained or on both age variables:

EARðd; a; eÞ ¼ kdd exp½�geðe� 30Þ þ galnða=70Þ� ð9Þ

where kd, ge and ga are fit parameters. However kd is now

the EAR in units of number of excess cases per 10,000

person years per Sv, for an age-at-exposure of 30 years and

an age-attained of 70 years.

Table 4 Some characteristics of the data sets of atomic bomb sur-

vivors with mean weighted colon doses <2 Sv: number of cancer

deaths from all types of solid cancer and number of data cells (n,

required in the calculation of BIC using Eq. 4) in the grouped mor-

tality data which covers the time from 1950 to 2000

Data set Number

of deaths

Number of data

cells (n)

Male, all solid, DS02 4,779 14,803

Female, all solid, DS02 5,234 15,139
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The nesting properties of the EAR models are also

analogous to those of the ERR models.

Although the baseline rates can be dealt with by strati-

fication, the main calculations in the next section adopt a

fully parametric model:

k0ða; eÞ ¼ expfb0 þ b1 lnða=70Þ þ b2 ln2ða=70Þ

þ b3max2ð0; lnða=40ÞÞ þ b4 max2ð0; lnða=70ÞÞ

þ b5ðe� 30Þ þ b6ðe� 30Þ2g; ð10Þ

where b0,…,b6 are fit parameters.

This is a simplified version of the model of Preston et al.

[13]. Some terms, including a city parameter relating to

differences in baseline cancer rates between Hiroshima and

Nagasaki, were dropped from the full model of Preston

et al. [13] in arriving at Eq. 10. This was because an

application of the likelihood ratio test for nested models [4,

5], as described above, indicated that the extra terms did

not significantly improve the fit in the current analysis.

Estimation of fit parameters and statistical analysis

The maximum likelihood technique is used to fit the models,

as described in [37, 38]. Best estimates uncertainty ranges

and correlations of the fit parameters were determined by

minimising the deviance using the MIGRAD minimisation

subroutine from the CERN LIBRARY MINUIT software for

optimisation. MIGRAD implements a stable version of the

Davidon–Fletcher–Powell variable-metric (a quasi-Newton

method) [37]. The models were also computed in EPICURE/

AMFIT [38] as a double check on the numerical methods,

associated convergence properties, resulting parameter val-

ues and uncertainty ranges. No inconsistencies were found.

The number of parameters in the age-at-exposure model,

for example, was assumed to be equal to the number of

parameters actually optimised (9 parameters) plus the two

spline joins in the b3 and b4 parameters at 40 and 70 years,

respectively, in the baseline model (Eq. 10), thus a total of

11 parameters.

The quality of model fits and associated information

criterion values

Full details of the properties of interest in radiation

epidemiology, i.e., ERR dose response curves with age

effect-modifications and central estimates for the ERR/Sv,

have already been given for these types of models [9, 13]

and are not discussed here. However, for completeness, the

parameter sets for four preferred models are given in Ta-

ble 6, in the Appendix. Since the purpose here is to illus-

trate model selection techniques, the main results of

relevance are given in Table 5. All inferences made in this

section come from an evaluation of model-to-model

changes in the quantities given in Table 5 with the aid of

Tables 1, 2, 3 for interpretation. Table 5 gives the values of

Deviance, BIC and AIC associated with the two classes

(ERR, EAR) of models considered here. The borderlines

necessary for interpreting the model-to-model changes in

these values can be seen from Tables 1, 2, 3. Among these

models, comparisons can be made between two nested

models in the same class (where the nesting properties have

been explicitly given above) using the change in deviance,

and between any two models using the model-to-model

changes in AIC and BIC.

The full process of model selection would normally start

with adding the explanatory variables one-by-one to the

model i.e., add dose, then add one age related variable and

then the other age related variable. However, the full pro-

cess has not been described here since the aim is one of

illustrations of model selection techniques rather than of

detailing the complete model selection process. There are

also intrinsic difficulties involving the evaluation of time-

related effect-modification factors which are caused by

collinearity (i.e. correlations) in the variables [39], but

these are not considered here.

Considering the ERR age-at-exposure model, it can be

seen from Table 5 that when the age-attained parameter is

added to the model the deviance is reduced by 3 and 2

points for the male and female data sets, respectively. Here,

the likelihood ratio test would indicate that inclusion of

age-attained does not lead to a significant improvement in

model fit. However, if one happened to start with the ERR

age-attained model and then added the age-at-exposure

parameter, the deviance is reduced by 4 and 9 points for the

Table 5 Preferred models

Data set Model Number of

parameters

Deviance BIC AIC

Male ERR(d, e) 11 6,419 6,525 6,441

ERR(d, a) 11 6,420 6,526 6,442

ERR(d, a, e) 12 6,416 6,531 6,440

EAR(d, e) 11 6,447 6,553 6,469

EAR(d, a) 11 6,422 6,528 6,444

EAR(d, a, e) 12 6,417 6,532 6,441

Female ERR(d, e) 11 6,697 6,803 6,719

ERR(d, a) 11 6,704 6,810 6,726

ERR(d, a, e) 12 6,695 6,811 6,719

EAR(d, e) 11 6,742 6,848 6,764

EAR(d, a) 11 6,695 6,801 6,717

EAR(d, a, e) 12 6,693 6,809 6,717

The bold text indicates the preferred models (i.e., minimum BIC

value for each of the data sets). The models and numbers that are

italicised indicate the models that are a particularly bad choice in

terms of model-to-model changes in deviance or AIC or BIC
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male and female data sets, respectively, which does lead to

a significant improvement in an overall model fit. This

indicates the main problem in this type of model fit-

ting—which age covariable describes the data best? Is it

the age-at-exposure or the age-attained? This clearly can-

not be answered with the conventional method of just

looking for the change in deviance (because non-nested

models are involved) and it is exactly here where the

information criteria are of greatest value. It is also impor-

tant to reiterate here that the inability to distinguish be-

tween two models could also arise because the data are not

intrinsically powerful enough to fulfil this purpose.

There are several cases of model-to-model comparisons

in Table 5 where the changes in deviance and AIC are very

small (and therefore do not indicate model preferences) but

where the changes in BIC indicate strong Bayesian evi-

dence in favour of one model. For example, the compari-

sons between the ERR(d, e) and ERR(d, a, e) models for

the female data set yield DDeviance = 2, DAIC = 0 and

DBIC = 8. Given the theoretical considerations of the

dimensional consistency of BIC mentioned above, this

seems to be the more credible measure here and indicates

strong Bayesian evidence in favour of ERR(d, e).

Comparisons between the three ERR models or between

the three EAR models, for the male data generally yielded

changes in AIC of 4 or less—except in the case of the

EAR(d, e) model which stands out as a particularly poor

choice. This is also true for the female data set with the

additional qualification that ERR(d, a) is also a poor choice

because AIC, in this case, is seven points more than the

other two models in this class.

The preferred models in terms of BIC for both sets of

data are ERR(d, e) and EAR(d, a). The female data supports

the ERR(d, e) (DBIC = 7 and 8) and EAR(d, a) (DBIC = 8

and 47) models with strong to very strong Bayesian evi-

dence (Table 3). However, the male data support the

ERR(d, e) and EAR(d, a) models with Bayesian evidence

that encompasses all four categories (in Table 3) for the

various model-to-model comparisons that are possible in

Table 5. The Bayesian evidence does not provide support

for the mixed age models, ERR(d, a, e), EAR(d, a, e) in

either data set, since the addition of a second age-related fit

parameter was penalised with positive and strong evidence

for the male and female data, respectively.

It is also possible to determine the relative quality of fit

between the two model types ERR and EAR using AIC and

BIC. Considering the changes in AIC and BIC between the

preferred models in each class, i.e. ERR(d, e) and EAR(d, a),

it can be seen from Table 5 that for males, DAIC = 3, indi-

cating that ERR(d, e) is an improvement over EAR(d, a) with

82% probability (according to Table 2), and DBIC = 3,

indicating positive Bayesian evidence in favour of ERR(d, e)

(Table 3). For females, DAIC = 2 indicating that EAR(d, e)

is an improvement over ERR(d, a) with 73% probability

(Table 2) and DBIC = 2, indicating weak Bayesian evidence

in favour of EAR(d, e) for the female data set (Table 3).

Conclusion

An effort here has concentrated on explaining, applying and

interpreting the outcomes of several techniques in the area

of ‘‘goodness of fit evaluations’’ so that main conclusions

drawn from model selection do not depend on just one type

of statistical test, which could be associated with stringent

assumptions (e.g. nested models). The usual comparison of

deviance values and number of model parameters has been

applied along with two other measures: two information

criteria (AIC and BIC), not usually applied to radioepi-

demiology. The BIC appears to be the best method from

theoretical considerations of dimensional consistency.

As examples, to illustrate the application of theses

techniques, several types of radiation risk models have

been fitted to the most recent mortality data for all solid

cancers occurring in the Japanese A-bomb survivors.

Model-to-model changes in the BIC have been seen, from

these examples, to display more decisive properties in

model selection than changes in AIC or changes in devi-

ance considerations. Considering the results from all

techniques together, the weight of evidence was in favour

of excess relative risk models that depend on age-at-

exposure and excess absolute risk models that depend on

age-attained. There was positive Bayesian evidence that

the excess relative risk models that depend on age-at-

exposure fitted the male data better than the excess absolute

risk models that depend on age-attained. However, the

reverse trend was found with weak evidence for the female

data. It has been demonstrated here that application of the

two information criteria allows interpretable comparisons

between non-nested models and indeed between different

model types, which are not allowed by standard methods of

likelihood ratio testing for nested models. This feature

renders the information criteria to be particularly useful in

the field of radiation epidemiology. Finally, it is probably

of some importance to follow Box [40] in believing that

‘‘all models are wrong, but some are useful’’; actually,

some are more useful than others.
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