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Abstract A series of experiments on the fluid-absent
melting of a quartz-rich aluminous metagreywacke has
been carried out. In this paper, we report the chemical
composition of the phases present in the experimental
charges as determined by electron microprobe. This
analytical work includes biotite, plagioclase, orthopy-
roxene, garnet, cordierite, hercynite, staurolite, gedrite,
oxide, and glass, over the range 100-1000 MPa, 780—
1025 °C. Biotites are Na- and Mg-rich, with Ti contents
increasing with temperature. The compositions of pla-
gioclase range from An;; to Anss, with a significant
orthoclase component, and are always different from the
starting minerals. At high temperature, plagioclase
crystals correspond to ternary feldspars with Or contents
in the range 11-20 mol%. Garnets are almandine pyrope
grossular spessartine solid solutions, with a regular and
significant increase of the grossular content with pres-
sure. All glasses are silicic (SiO, = 67.6-74.4 wt%),
peraluminous, and leucocratic (FeO + MgO = 0.9-2.9
wt%), with a bulk composition close to that of peralu-
minous leucogranites, even for degrees of melting as
high as 60 vol.%. With increasing pressure, SiO, con-
tents decrease while K,O increases. At any pressure, the
melt compositions are more potassic than the water-
saturated granitic minima. The H,O contents estimated
by mass balance are in the range 2.5-5.6 wt%. These
values are higher than those predicted by thermody-
namic models. Modal compositions were estimated by
mass balance calculations and by image processing of
the SEM photographs. The positions of the 20 to 70%
isotects (curves of equal proportion of melt) have been
located in the pressure-temperature space between
100 MPa and 1000 MPa. With increasing pressure, the
isotects shift toward lower temperature between 100 and
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200 MPa, then bend back toward higher temperature.
The melting interval increases with pressure; the differ-
ence in temperature between the 20% and the 70% is-
otects is 40 °C at 100 MPa, and 150 °C at 800 MPa. The
position of the isotects is interpreted in terms of both the
solubility of water in the melt and the nature of the
reactions involved in the melting process. A comparison
with other partial melting experiments suggests that
pelites are the most fertile source rocks above 800 MPa.
The difference in fertility between pelites and greywackes
decreases with decreasing pressure. A review of the glass
compositions obtained in experimental studies demon-
strates that partial melting of fertile rock types in the
crust (greywackes, pelites, or orthogneisses) produces
only peraluminous leucogranites. More mafic granitic
compositions such as the various types of calk-alkaline
rocks, or mafic S-type rocks, have never been obtained
during partial melting experiments. Thus, only peralu-
minous leucogranites may correspond to liquids directly
formed by partial melting of metasediments. Other types
of granites involve other components or processes, such
as restite unmixing from the source region, and/or in-
teraction with mafic mantle-derived materials.

Introduction

The generation and ascent of granitic magmas are among
the most important geodynamic processes as they rep-
resent efficient mechanisms for transporting heat and
low-density materials (granitic melt) toward the surface
of the Earth. They provide means to restore thermal and
mechanical equilibria in the lithosphere, after distur-
bances created by processes such as subduction or con-
tinental collision (Vielzeuf et al. 1990). Intra-crustal
granitic magmatism is possible only if appropriate source
rocks are present. Among a variety of different proto-
liths, metapelites and metagreywackes can be considered
as potential sources for granitic magmas as they contain
water and quartzo-feldspathic components necessary to
produce liquids of granitic composition.



Clemens and Vielzeuf (1987) presented a method for
estimating the volume of melt for fluid-absent melting
using a mass balance approach and models of water
solubility in alumino-silicate melts (Burnham 1979;
Burnham and Nekvasil 1986). This method is applicable
only when the amount of water in the hydrate is the
limiting factor for melting, and after total breakdown of
biotite or amphiboles. Since the pioneering experimental
work of Winkler (1957) and Wyart and Sabatier (1959),
it is accepted that partial melting of felsic metamorphic
rocks produces liquids with granitic compositions. In the
absence of satisfactory thermodynamic models, experi-
mental determination of the proportion and composi-
tion of melts formed through the anatexis of crustal
rocks still provides a fundamental contribution to un-
derstanding the granite genesis. As emphasized by Joh-
annes and Holtz (1990) and Joyce and Voigt (1994), the
question of the quantities of FeO, MgO and excess
alumina (normative corundum) that can be incorporated
in an anatectic melt is still matter of discussion.

This paper presents and discusses analyses of the
products of partial melting experiments from a quartz-
rich metagreywacke. It complements previously pub-
lished phase equilibrium data (Vielzeuf and Montel
1994a). The starting rock contains 41 wt% quartz, 32
wt% plagioclase (Any,-Orgy-Abg), and 25 wt% biotite
(Xge = 0.56, AlL,O3 = 19.51 wt%, TiO, = 2.80 wt%),
with accessory apatite, zircon, monazite, tourmaline,
and pyrite. Pressure and temperature conditions of
crystallisation of this rock have been estimated as 200—
300 MPa, 670-720 °C (Montel et al. 1992). To check for
thermodynamic equilibrium during the experiments, two
types of starting materials were used: a very fine rock
powder (grain size <5 pm) and a glass of the same bulk
composition (including water and FeO) obtained by
melting the powder at 300 MPa, 1300 °C for 30 minutes
in a sealed platinum capsule. Experiments carried out
with the rock powder will be referred to as “melting
experiments”, and those carried out with the glass
“crystallisation experiments”. Experimental techniques
and capsule configurations are outlined in detail in
Vielzeuf and Montel (1994a). In this study, pressure
ranges from 100 MPa to 2 GPa (1-20 kbar), while
temperature encompasses the entire range from the ap-
pearance of orthopyroxene to the disappearance of
biotite as determined by Vielzeuf and Montel (1994a).
No precise estimate of the oxygen fugacity (FO,) was
possible as runs were carried out under fluid-absent
conditions. However, the intrinsic oxygen fugacities,
determined experimentally by solid buffers, are close to
Ni-NiO buffer (NNO) for the externally heated pressure
vessels, and close to MnO-Mn;0,4 for the internally
heated pressure vessel. The intrinsic oxygen fugacity of
the piston cylinder is probably more reducing, but no
direct measurement was made.

All run products contained quartz and plagioclase.
The following phases were present in most experiments:
glass, biotite (Bt), orthopyroxene (Opx), and Fe-Ti ox-
ides, plus cordierite (Crd) at 100-300 MPa and garnet
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(Grt) at higher pressure. Gedrite, staurolite, and Al-
spinel (Spl) were also found in some runs. K-feldspar
(Kfs) is not present as a discrete phase, but orthoclase
(Or) solid solution with plagioclase is observed. The
compositions of each phase from each charge were de-
termined over the range 100-1000 MPa.

In part I of the study (Vielzeuf and Montel 1994a),
the phase assemblages were interpreted to result from
different model reactions. One of the most important is

(I)Bt 4+ P1 + Qtz <= Opx + Grt/Crd/Spl + Kfs + melt

(Bt biotite, Pl plagioclase, Qtz quartz, Opx orthopy-
roxene, Grt garnet, Crd cordierite, Sp/ Spinel, Kfs K-
feldspar) as predicted from different petrogenetic models
(Thompson 1982; Clemens 1984; Grant 1985; Vielzeuf
and Holloway 1988). Our experimental results clearly
indicate that this reaction, limited in the pressure-tem-
perature plane by the Opx-in and Bt-out curves, occurs
at a higher temperature than commonly considered
(Clemens 1984). In addition, the experiments indicated
the importance of another model reaction:

(II)Bt + Pl 4+ Qtz <= Grt + Kfs + melt

This reaction corresponds to a huge multivariant field
with a low dP/dT slope which explains the progressive
replacement of biotite by garnet with increasing pressure
at a given temperature.

Analytical and mass balance calculation procedures

Electron microprobe analysis

Analyses were carried out using a Cameca Camebax electron mi-
croprobe at Université Blaise Pascal, Clermont-Ferrand. Operating
conditions were 15 kV accelerating voltage, and a 10 nA sample
current. The counting times were 10 seconds on peak and 5 seconds
on the background. Three spectrometers were used simultaneously
with Na and K analysed first to minimise losses. The following
standards were used for calibration: natural albite (Na, Si), ort-
hoclase (K), olivine (Mg), and wollastonite (Ca), synthetic Fe,O;
(Fe), Al,O5; (Al), and MnTiO; (Mn, Ti). The ZAF correction
procedures were applied. The errors related to the counting sta-
tistics at the 95% confidence level (Ancey et al. 1978) have been
determined for each element for some typical compositions and are
reported in Table 1. An estimate of the excited volumes for Na
(maximum size) and Fe (minimum size) calculated according to
Castaing (1960) are given also. Because of the small size of the
phases, considerable difficulties were encountered. As distinction of
the phases by direct (optical) observation of the carbon-coated
surface was not possible, backscattered electron imaging was used.
Three main analytical difficulties were encountered:

1. Size of the phases: some of them are so small (typically less
than 5 pm) that special care was required to avoid contamination
by the surrounding phases. This is particularly problematic at low
pressures because the phases are noticeably smaller (Vielzeuf and
Montel 1994a). This is true for orthopyroxene because of its aci-
cular shape, for biotite (too thin), and for oxide minerals (very
small). The problem also exists for garnet, which is always riddled
with quartz inclusions. The following criteria were used to select
reliable analyses. For biotite: SiO, contents close to or lower than
40 wt%, no CaO, K,O higher than 8 wt%, and oxide totals close to
96 wt%. For orthopyroxene: SiO, lower than 50 wt%, low K,O
and Na,O contents, oxide total approaching 100%; oxygen close to
or lower than 6 on a 4-cation basis in the structural formula and
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Table 1 Typical analytical

errors. Absolute errors for glass Pl Opx Crd Bt Grt Hc
electron microprobe analyses, )

calculated from the statistical Si0, 0.73 0.67 0.58 0.65 0.56 0.54 0.22
model of Ancey et al. (1978). Al,O3 0.23 0.33 0.24 0.38 0.32 0.34 0.55
Vol. Na and Vol. Fe are the FeO 0.15 0.12 0.66 0.33 0.44 0.68 0.85
diameter, in pm, of the excited =~ MgO 0.05 0.04 0.35 0.24 0.28 0.23 0.25
volumes for sodium and iron MnO 0.09 0.16 0.14 0.11 0.10 0.22 0.13
respectively, calculated CaO 0.08 0.21 0.06 0.07 0.15 0.13 0.06
following Castaing (1960). Na,O 0.13 0.28 0.08 0.07 0.18 0.05 0.17
(Pl plagioclase, Opx K-0 0.17 0.10 0.05 0.06 0.26 0.05 0.06
orthopyroxene, Crd cordierite, TiO, 0.10 0.08 0.11 0.11 0.20 0.12 0.10
Bt biotite, Grt garnet, He Vol. Na 2.9 2.5 1.8 2.5 23 1.7 1.5
hercynite) Vol. Fe 22 1.9 14 2.0 18 13 12

charge balance close to 0. For garnet: SiO; close to 40 wt%, no
K,O or Na,O, oxide total close to 100%. For plagioclase: low
M¢gO or TiO,, oxide total close to 100%. In the exceptional cases
where only contaminated compositions were available, we applied
a correction procedure. The amount of contamination was deter-
mined on the basis of the elements that should be absent in the
contaminated phase and abundant in the contaminating phase (e.g.
Ca in biotite, K in orthopyroxene). After correction, the new values
were normalized to ideal totals, e.g. 100% for orthopyroxene or
96% for biotite. This procedure provided satisfactory results as
long as the amount of contamination was lower than 10%. No
objective criteria could be used for the glass compositions, but
contamination by plagioclase was indicated by anomalously high
Ca and Na contents. Glass contamination by quartz and cordierite
was more difficult to detect, except in case of anomalously high
SiO, values (quartz), or Al,O5 (cordierite). Such compositions were
rejected.

2. Phase identification: some phases are difficult to distinguish
from each other. This is mainly true for quartz, glass, plagioclase,
and cordierite. Where necessary, identification was carried out by
EDS (energy dispersive spectroscopy) analysis. However, this was
not possible for glasses as even short EDS analysis could induce
important alkali losses. Therefore, glass analyses were made di-
rectly, after careful examination of the backscattered electron im-
age.
3. Loss of alkalis: A particular problem for glass analysis con-
cerned Na and K migrations under the electron beam. Solutions
commonly used to circumvent this problem, such as beam
defocussing or displacement could rarely be used due to the small
size of the glass pools. As far as possible, 1.5 X 1.5 pm or 4 X 4 um
electron beams, instead of a fully focussed beam, were used.
However this was not sufficient to avoid alkali migration, and a
correction procedure was employed. A series of measurements were
performed on the starting glass CEVG (1.43 wt% H,0) and on a
water-saturated glass, free of crystals, made from CEVP at
270 MPa (7 wt% H,0). These showed that, for a given intensity of
beam current, only Na and K were affected by losses. The cor-
rection factor for Na and K depended on the water content of the
glass, and on the size of the analysed area. A formulation for the
correction factor was established with the additional assumption
that no correction was necessary for water-free glasses. However,
as the water contents in our experimental glasses are unknown, we
used an iterative procedure. First, a mass balance calculation (de-
termination of the modal proportions of the phases) was made
using the uncorrected values for Na,O and K,O. It provided a first
estimate of the water content of the glasses and of the correction
factors for Na and K. Then a new mass balance calculation was
performed, using the new values for Na,O and K,O. The procedure
was repeated until the system of equations converged.

Mineral compositions are given in Tables 2-6, and some rep-
resentative structural formulae are given in Table 7. The glass
compositions are given in Table 8. These allow the modal pro-
portions of the minerals and glass in each charge to be estimated by
mass balance.

Mass balance procedure

Mass balance calculations were carried out during the correction
procedures for Na and K in the glasses, using a global block-wise
inversion (Albaréde and Provost 1977; Provost 1989), with the
analytical errors given in Table 1 as 2c. Results are shown in Ta-
ble 9. When a phase composition was unavailable, the composition
of the same phase at the closest possible pressure-temperature
conditions was used. This is justified by the fact that within a small
P-T interval, most phases show progressive and limited composi-
tional variations.

Mass balance calculations yield reliable results only if the sys-
tem remains chemically closed during the experiment. With the
experimental techniques used here, some iron from the sample can
be lost to the Au container, and hydrogen can diffuse through the
capsule walls. Iron losses in precious metal are well documented in
platinum at high temperature, but are not important in gold, as
shown by Puziewicz and Johannes (1990). The amount of hydrogen
that diffused through the capsule walls can be estimated from the
amount of iron that has been oxidised during the experiments. In
the starting material, 90 mol% of iron is Fe** (Vielzeuf and
Montel 1994a). The structural formulae of the minerals indicate
that Fe* " is a major component only in oxide minerals. Therefore,
an estimate of the Fe’" content in the charge, after the run, can be
made from the oxide mineral content (2-3 wt%), assuming that it is
all magnetite. The Fe* " content of the melt is neglected because of
the low Fe contents of the glasses. This calculation indicates that a
maximum of 40 mol% of Fe is Fe®", which corresponds to a
maximum relative loss of 12% water contained in the sealed cap-
sule through hydrogen diffusion during the runs. Thus, water
contents of the glasses, may be overestimated by the same pro-
portion (12% relative). The effect of this uncertainty on the alkali-
loss correction factors can be neglected, as well as the effect on the
calculated proportions of glass and hydrous minerals, because
water is not considered in the mass balance calculation. Also, the
composition of the melt could be modified during the quench.
Quenching times depend on the technique used. This varies from a
few seconds in the piston cylinders, to 100 s in the externally heated
pressure vessels and two minutes in the internally heated pressure
vessels. However, textural and compositional evidence for
quenching effects was not observed.

In order to test the validity of the mass balance procedure, we
estimated the crystal/glass proportions directly from back scattered
electron images. Because of the textural homogeneity of the char-
ges, and the small size of the crgfstals, a single representative view at
2000 magnification (2200 um~) of most charges was used. Each
image was redrawn by hand to enhance the contrast between glass
and crystals. The final glass/crystals ratio was obtained by image
processing using Visilog software. Because of the heterogeneous
grain size in the crystallisation experiments (see Fig. 1D in Vielzeuf
and Montel 1994a), this was carried out only on the charges from
the melting experiments. The melt proportion obtained by image
processing is usually slightly lower than the proportion calculated



by mass-balance (Table 9). This discrepancy can be explained
partly by the presence of a thin layer of melt along grain bound-
aries (Laporte 1994, therein Figs. 8 and 9a, b). These thin films
cannot be seen in backscattered electron SEM views.

Attainment of equilibrium

The euhedral shape and the homogeneous size of the crystals in the
melting experiments, together with the regular distribution of melt,
indicate that textural equilibrium was approached during the ex-
periments. The fact that both biotite and plagioclase compositions
are different from those of the starting material (see below), indi-
cates that the material was reactive enough to reach new compo-
sitions within run durations of about 15 days. For biotite, garnet,
cordierite and glass, compositions in melting and crystallisation
experiments are very close, indicating that chemical equilibrium
was approached. Plagioclase compositions are more scattered due
to imperfect attainment of equilibrium, or analytical problems. We
favour the second hypothesis because the composition of the pla-
gioclase in the charges is always different from that of the starting
plagioclase, plagioclase crystals do not appear zoned, and they
display perfect euhedral equilibrium textures. In contrast, ortho-
pyroxene displays some characteristic disequilibrium features such
as grain to grain chemical variations and zoning in Al,O5. Natural
orthopyroxenes in granites never have such high Al,O; contents.
We think that kinetics favour the formation of Al-rich metastable
crystals in the early stages of the experiment and that the sluggish
diffusion of Al prevents subsequent re-equilibration. Similar diffi-
culties are documented for clinopyroxene in basaltic systems.

Analytical results
Mineral compositions

Biotite (Table 2) is one of the most common phases,
present at all run pressures, and disappearing at high
temperature. All are more magnesian and less aluminous
than the starting biotite. The Na,O contents are high
(0.5-1.2 wt%), and TiO, is variable. Such compositions
are similar to those obtained by Conrad et al. (1988),
with a starting material comparable in terms of Xg..
They are more magnesian than biotites analysed by
Patifio-Douce et al. (1993), and Holtz and Johannes
(1991) who used a starting material with higher Xz, The
biotite compositions reported by Patifio-Douce et al.
(1993) are also significantly richer in Al,O3;, probably
because Al-silicate is present in their experiments. Biotite
TiO, contents are positively correlated with temperature
(Fig. 1), a common feature documented experimentally
for phlogopite (Robert 1976). Two trends can be dis-
tinguished: a high-Ti trend for the experiments con-
taining a Fe-Ti oxide, and a low-Ti trend for the other
runs. The general features are compatible with data of
Conrad et al. (1988) and Patifio-Douce et al. (1993).
Orthopyroxene (Table 3) is present in many experi-
ments. Aluminium is incorporated as the AlAlO; fictive
component, as shown by the structural formulae in
Table 7. The Xy, is within the range 0.3 to 0.5, and
calcium, titanium, and manganese contents are always
low. The structural formulae calculated on the basis of 4
cations and 6 oxygens, indicate that no Fe®" is present
in the melting experiments, but small amounts can be
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found in crystallisation experiments (Table 7). The av-
erage Al,O;5 contents increase with pressure: 8.0 wt% at
100 MPa, 8.1 wt% at 200 MPa, 9.4 wt% at 300 MPa,
where it coexists with cordierite; 9.4 wt% at 500 MPa,
10.4 wt% at 800 MPa, 10.9 wt% at 1 GPa where it
coexists with garnet. Alumina is higher in the crystalli-
sation experiments than in the melting experiments. The
Xge decreases slightly with increasing temperature from
about 0.5 at 800 °C to less than 0.3 above 1000 °C.

Orthopyroxene is a common product of partial
melting of Al-silicate-free rocks such as greywackes,
dacites (Conrad et al. 1988), tonalitic gneisses (Skjerlie
and Johnston 1992), and S-type granites (Clemens and
Wall 1981). However, orthopyroxene compositions have
only been published by Conrad et al. (1988). In their
experiments with a greywacke, orthopyroxene compo-
sitions were similar to those that we obtained, with a
high and variable Al,O3 content (7-8 wt%). In their
experiments with a metaluminous dacite composition,
Al,O3 contents in orthopyroxene are significantly lower.

Plagioclase (Table 4 and Table 7), a major constitu-
ent of the starting material, is present in all the run
products, except for two at very high temperatures
(A104, 1030-1040 °C). Variations in compositions are of
particular interest as it is well known that plagioclase
does not reach chemical equilibrium easily (Johannes
1978, 1980).

The MnO (0-0.39 wt%, average 0.09) and TiO, (0-
0.40 wt%, average 0.11) contents are commonly lower
than, or close to, the errors given in Table 1. On the
other hand, there are significant amounts of MgO (0.01—
0.59 wt%, average 0.16 wt%) and FeO (0.16-1.24 wt%,
average 0.45 wt%). For 35 compositions out of 42 the
Al/(K+ Na+2Ca) ratio is close to 1, within the limit of
the analytical error (6% relative for this ratio, calculated
by propagating errors from Table 1). This indicates that
the compositions can be interpreted simply in term of
albite, orthoclase, and anorthite components. The seven
compositions for which there is a marked excess of Al
are suspect and will not be considered further. For all
compositions, the structural formula calculated on an 8-
oxygen basis displays a variable excess of silica, from
0.10 to 0.50 atoms per formula unit, relative to the end-
members albite, orthoclase, and anorthite (Table 7). We
were unable to find any satisfactory explanation in terms
of stoichiometric substitutions to explain this high Si
content. We think that it is due to analytical difficulties,
the composition of plagioclase being “contaminated’ by
the surrounding quartz or liquid. Because there is no
relationship between the amount of “‘excess silica’ and
any other element, it is likely that quartz is the main
contaminant. The uncertainty on Si precludes any dis-
cussion of the mechanism of incorporation of Fe and
Mg because no reliable structural formula can be con-
structed. For this reason, the plagioclase compositions
are given in Table 4 only as albite-orthoclase-anorthite
proportions.

Plagioclase compositions from both crystallisation
and melting experiments are similar, except for the
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Fig. 1 TiO, contents of biotites as a function of temperature. (Solid

circles: biotite from charges containing an Fe-Ti oxide, empty circle
biotite from charges without Fe-Ti oxide). R, CNW, and PDJ are
labels for the trends obtained by Robert (1976), Conrad et al. (1988)
and Patifio-Douce et al. (1993) respectively

orthoclase contents (Or) which are higher in the crys-
tallisation experiments. The Ca/(Ca+ Na) is relatively
constant between 0.25 and 0.33 (except A114C-G). The
orthoclase contents (Or) range from 3.6 mol% to 19.5
mol%, increasing with temperature. At high tempera-
tures, plagioclases are ternary feldspars with Or above
10 mol%. This is consistent with the solvi defined by
Seck (1971) and Nekvasil (1992), as shown on Fig. 2.

Vielzeuf and Holloway (1988) found a similar An
content (Anp;) with a high Or content (5 mol%), at
875 °C, 1 GPa. Holtz and Johannes (1991) found more
calcic compositions, but under fluid-present conditions
with higher degrees of melting (Or content was not
given). Skjerlie and Johnston (1992) did not provide
complete chemical analyses. However, they indicated
that the Or contents in plagioclase increased with in-
creasing temperature.

The increasing proportion of Or in plagioclase as a
function of temperature is interpreted by Vielzeuf and
Montel (1994a) as indicating the production of orthoc-
lase by the melting reaction. It partly explains the ab-
sence of alkali feldspar as a discrete phase in the run
products, the presence of which has been predicted
theoretically (Thompson 1982; Grant 1985; Vielzeuf and
Holloway 1988).

Garnet (Table 5) is present at, and above, 500 MPa.
The compositions correspond to almandine-pyrope-
grossular-spessartine solid solutions, with a small
amount of Ti**. No Fe*" is present following calcula-
tions of the structural formula based on 24 oxygens and
16 cations (Table 7). Garnet compositions display sig-
nificant variations as a function of pressure and tem-
perature. In particular, maximum grossular contents
increase with increasing pressure from 4.5 mol% (1.42—
1.64 wt% CaQ) at 500 MPa, to 6.7 mol% (2.42 wt%
CaO) at 800 MPa, and 7.7 mol% (2.77 wt% CaO) at
1 GPa. The increasing proportion of the grossular con-
tent can be attributed to the development of the multi-
variant reaction (II) with increasing pressure. This
reaction is characterised by a low dP/dT, and can be
used as a geobarometer (Vielzeuf et al. 1991).
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Garnet is a common run product in partial melting
experiments carried out at medium to high pressures.
The compositions obtained by various authors are re-
ported in Fig. 3 for comparison. The main differences
with the compositions obtained by other authors are
attributed to different bulk compositions (pelites, grey-
wackes, tonalites), and differences in the mineral as-
semblage coexisting with garnet (Opx-Pl-Qtz in
greywackes, PI-Sillimanite-Qtz in pelites, Cpx-P1-Qtz in
tonalites).

Al-rich spinel (hercynite) was present in the runs only
at high temperatures and moderate pressures (300 and
500 MPa). Structural formulae show that it is mainly a
FeAl,04-MgAl1,04-Fe;Oy4 solid solution. The composi-
tions reported in Table 6 are only indicative as spinel
occurs as very small crystals, and qualitative analyses
showed that it contains significant amounts of chromium.

Vielzeuf and Holloway (1988), and Patifio-Douce and
Johnston (1991) report the presence of Al-rich spinel in
their experiments on pelites at high temperature and at
pressures of 700 and 1000 MPa. Compared to the
compositions reported by Vielzeuf and Holloway (1988),
hercynites from CEV are less aluminous which reflects
both a lower Al activity (no Al-silicate) and a higher
Fe’* content in our run products. In the pelite experi-
ments, spinel formed according to a reaction involving
the breakdown of the aluminium-silicate (Vielzeuf and
Holloway 1988). This is not the case in our experiments.
Puziewicz and Johannes (1988) obtained hercynite
chemically comparable to ours, under water-saturated
conditions at NNO oxygen fugacity, and in equilibrium
with biotite and cordierite, at 200 and 500 MPa.

Cordierite (Table 6) was found between 100 and
300 MPa. It is magnesium rich (X, = 0.20-0.26), and
alkali rich (Na,O = 0.20-0.39 wt%, K-O = 0.20-0.43
wt%). When the structural formula is calculated on a 18-
oxygen basis (Table 7), Si is always higher than 5. This is
in contradiction with the mechanism of substitution
proposed by Schreyer et al. (1990) Si+- = Al+(Na, K).
This suggests that cordierite analyses are contaminated
by the surrounding glass or by quartz inclusions (See
Fig. 1A in Vielzeuf and Montel, 1994).

Holtz and Johannes (1991) obtained more iron-rich
cordierite (Xg, = 0.43-0.33), presumably due to the
higher Xg. of their starting material, and lower fO, in
their experiments (buffered at NNO). Since Fe* " cannot
readily be incorporated into cordierite (Deer et al. 1992),
high Fe* /Fe?" increases the Mg/(Mg + Fe?™) ratio in
the starting material and favours a high Mg content in
cordierite. Puziewicz and Johannes (1988) obtained
biotite + cordierite together in equilibrium with pera-
luminous granitic melts at 200 and 500 MPa over the
temperature range 710-850°C. As in this study, the
cordierites are Na rich (0.35-0.71 wt% Na»O). However
they are generally more iron rich (Xg. around 0.5). Pu-
ziewicz and Johannes (1988) showed that Xg. decreases
with increasing temperature, and can be as low as 0.21
for 850 °C. This value is very close to that obtained here.
Peireira and Bea (1994, Fig. 3), suggested that magmatic
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Fig. 2 Projection of plagioclase compositions on the Ab-Or-An
plane. The projections of the feldspar solvus at 800, 850 °C, 900 °C,
1000 °C are from Nekvasil (1992) and Seck (1971)

and metamorphic cordierites could be discriminated on
the basis of their compositions. In this diagram, our
cordierites plot in the magmatic field.

Staurolite (Table 6) was found in only one run
(A113C-P), carried-out at 855 °C and 1000 MPa. It has a
rather unusual composition with (Fe** + Fe’* + Mn)/
(Fe*" + Fe*™ + Mg + Mn) = 0.61. This is lower than
the normal range (0.69-0.96, Deer et al. 1992).

Gedrite (Table 6) is present in two runs at 800 MPa.
However analyses are only available from one (A109-C-
P). Conrad et al. (1988) obtained gedrite in greywackes
(but not in dacite), close to the solidus, and at low water
activities, conditions similar to our experiments. Gedrite
compositions here are more aluminous, probably be-
cause the A’ + Fe’* = Mg>" + Si*" substitution
is favoured under oxidizing conditions.

Fe-Ti oxides are not present in the starting material.
However, they are produced in almost all our runs.
Three types of Fe-Ti oxide were recognised: Fe-rich
oxides, Fe-Ti oxides, and in some cases, ilmenite.
Chemical compositions obtained by the electron probe
alone do not allow distinction between ilmenite-hematite
and magnetite-ulvospinel solid solutions, except in a few
cases where compositions show that the Fe-Ti oxide is
undoubtedly ilmenite. The shape of the crystals (small
cubes) suggests that the Fe-rich oxides are magnetite.

Glass compositions

Glass compositions are given in Table 8, both uncor-
rected and corrected (for Na and K). They are silica rich
(67-75 wt% SiO,, average 71.4 wt%), potassic
(1.10 < K,0O/Na,O < 1.58 wt%, average 1.33 wt%), and

Table 5 Garnet compositions [Alm Fe/(Fe + Mg + Mn + Ca), Pyr Mg/(Fe + Mg + Mn + Ca), Spe Mn/(Fe + Mg + Mn + Ca), Grs Ca/(Fe + Mg + Mn + Ca), molar].

Other abbreviations as in Table 2

AlL,O3 FeO MgO MnO CaO Na,O K,0 TiO, Total Alm Pyr Spe Grs

Si0,

n

Run no.

1.42 0.03 0.05 0.68 100.95  0.59 0.30 0.068 0.040
1.64 0.12 0.10 1.09 101.33  0.52 40 0.037 0.045

3.04
1.71
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0.63
0.60
0.58
0.51
0.57
0.47
0.49

98.72

102.05
98.78
99.26

101.06
99.46

98.17
100.47

0.62
1.58

39
0.86

0.52
1.04
0.50

45
0.

1.93 0.09 0.04
0.48 0.15 0.68
2.09 0.04 0.04
2.42 0.08 0.05
0.75 0.04 0.09
1.19 0.04 0.02
1.16 0.01 0.04

3.61
0.71
1.15
0.92
0.60
1.32
1.40

5.78

9.13
8.47
10.36
10.42
12.27
11.32

27.07
26.66

22.38
22.40

27.59
21.96

21.39

22.52
21.65
21.46
22.40

22.48
21.95
21.75

29.33

37.67

39.73
39.60

39.31
39.50
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879
875
913
919
942
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0.47

1.27 2.69 0.08 0.09
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S 40.67

P
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0.035
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0.37 0.033
0.47 0.012 0.028
43 0.017 0.032
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0.53
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1.21
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0.79
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8.53
9.4
12.42
11.37
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Fig. 3 Garnet compositions in a grossular (in mol%)-XFe [Fe/
(Fe+Mg) molar] diagram. (Stars 500 MPa, diamonds 800 MPa,
downward pointing triangles 1000 MPa; solid symbols melting exper-
iments, empty symbols crystallisation experiments). Ranges in com-
position from other experimental studies are reported for a
comparison [PDJ Patifio-Douce and Johnston (1991), VH Vielzeuf
and Holloway (1988), CNW Conrad et al. (1988), CW Caroll and
Whyllie (1990)]

peraluminous (1.12<A.S.1.<1.40, average 1.23). The
CIPW normative compositions are approximately bal-
anced in quartz, albite, and orthoclase components
(Fig. 4). The FeO, MgO, and CaO contents are constant
and always low (except above 1000 °C) with less than
2 wt% FeO, and less than 1 wt% MgO or CaO.
Therefore, all the liquids obtained by partial melting of
CEV are close to minimum-temperature granitic melt
compositions.

The major chemical variations involve the propor-
tions of normative quartz and feldspar and the estimated
H,O contents:

. In the Q-Ab-Or triangle, the area covered by our
compositions is different from the range of water-satu-
rated minimum melt compositions (Tuttle and Bowen
1958; Luth et al. 1964). In all cases, the liquids produced
by CEV, have higher normative quartz and orthoclase
contents than the water-saturated minimum of the same
pressure. They have a higher quartz content than the
water-undersaturated minimum at the same pressure
(Holtz et al. 1992a). Increasing pressure shifts the com-
positions away from the quartz apex toward the albite-
orthoclase side. This fact cannot be interpreted in terms
of pressure alone. Temperature, degree of melting, and
the water content of the melt are all involved. The re-
spective effects of pressure and water activity, which are
well established experimentally, are probably sufficient
to explain the main trend. In the haplogranitic system,
increasing pressure shifts the minimum toward the al-
bite-orthoclase side (Tuttle and Bowen 1958; Luth et al.
1964; Holtz et al. 1992a), and water undersaturation
displaces the minimum toward lower albite/orthoclase
(Holtz et al. 1992a).

2. Along the biotite-out curve, the H,O content of the
melt, estimated using phase assemblage mass balance,
increases with pressure from 2.5 wt% at 100 MPa to
4 wt% at 1 GPa (Table 8). In our first paper (Vielzeuf

Table 6 Other mineral compositions. [XAl,04] mole fraction of aluminous spinel; XFe= Fe/(Fe + Mg) molar]. Other abbreviations as in Table 2

ALO;  FeO MgO MnO CaO Na,O K,0 TiO, Total

Si0,

n

Run no

XAl O,

Spinel

0.07 0.15 0.23
0.10 0.00 0.00
0.06 0.00 0.03
0.03 0.00 0.07
0.04 0.00 0.14
0.15 0.34 0.12
0.11 0.00 0.14
0.06 0.00 0.01

0.51
0.42
0.21
0.65
0.29
0.31
0.33
0.27

8.63
7.70
8.61
6.38
7.17
9.19
9.41
6.80

36.17
37.45
30.98
42.30
42.16
39.86
34.12
41.42

50.22

59.15
46.39

50.35
45.46

49.20

46.95
47.33

5.19
0.89
0.71
0.46
1.78
3.58
5.66
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0.15 0.08 0.20 0.20 0.02

0.20 0.15 0.30 0.21 0.04 98.30
9.41 0.10 0.15 0.23 0.27 0.06

9.07
9.90
10.07
10.10

CE92-2C
CE90-2D
CEg89-1B
CES89-1C
CEg89-1D

— <t AN N
SR ARES Al
00 00 00 O O
() [

(=) (=3

—

Gedrite
800

0.93 0.49 1.56 0.08 0.53 93.30 0.53

10.93

42.11 17.57 22.11

4

P

A109C

855

Staurolite
1000

185

53.91 11.43 4.19 0.35 0.04 0.00 0.03 0.89 97.92 0.52

27.09

4

P

Al13C

809




$00°0 0000 1000 L000 TE0  LLO €500 9100 LTO 99T €966 <CLO ¥I'0 000 +00 620 LI'L 9I'Th €€Ly 8L d-4L11V
0000 000°0 €000 1100  #€0 1.0 LTOO 0100 TCO 9L 1TL6 €70 000 000 OI'0 THO OLL SPFLE TTOS 680 D-Dr-0640
I BN ) UN SN A 1S L .od v [outds
0900 0£0°0 0100 0200  #S'T %0 6'€ €0 0£8 #00 1T0 00 S0 0TO OI'0I TTS  69CE 6€6vy  OI-68dD
BN M IL uUnN SN oq v 1S ILIAIPIOD
800 SLT 96'1 690 810 €I'LI V0 €SL €6L6 680 €00 000 00 SE0 6I'v E€FII 16€S 60LT  dOELIIV
UN SN, ed Leod L AV IN\% 1S ayjoinels
1€°0 SI'0 800 TIO SLT  SKFT 900 OF1 69T 1€9 1€96 €50 800 9T 6V0 €60 €601 11'CC LSLL 11'Ch  d-D601V
eN BN BD U od SN 1L AV alV 1S AIPaD
8000 T10°0 S¥0 110 86T  ¥E'€ 010 16€ 209 T900I #80 H00 HO0 LLT L8O 998 STIT SLIT OF6E  dOFIIV
L100  TI00 TIo 800 9¢T  9g€ 900 86'€ 66'S 90710 050 600 00 SLO 090 <THOI 999T 0vCT 0966  d-VSIIV
M EBN ) UN SN A 1L v 1S euIen
8000 €000 610°0 8200 10 0910 SS°0 8I'T 08T 6666 STO 08T 8€9 TH¥y 600 8TO +LO 9¥TT LST9  dVSIIV
2000 0000 S00°0 600°0 970 $S00 S9°0 STT  SLT 8€66 900 960 9%’L I¥'S 000 LOO +TO  IS€T LET9  dOSIIV
€000 0000 T10°0 8100 STO $900 190 €T 9LT $E€00I 800 SI'T  OI'L 1€S 100 910 050 S9€C 8€TY D-66V
€000 2000 $000 100 970 0L00 SO 61'T 18T 0T00I 800 +CTT 99 1SS 900 LOO LEO #8CTT LSE9  d-$-06dD
1000 0000 9000 €100 STO 0v00 990 €CT  LLT 7966  v00  IL0 09°L SIS 100 600 9€0  9FET 0TTY d-VE-06dD
1000 0000 9000 +10°0 8T0 €400 651 €TT  LLT SP66 €00  SLO 8.9 06 000 600 6£0 ISE€C 00T d-A1-684D
L uAN SN ed e} M BN v IS 9SE[O0IT |
8000 1000 L000 LOOO 6100 880 0000 LLO 8TO €00 LLT 0666 8C0 TO0 600 LI'O 190 T9SI 99vC Il 10Ly  D-ApIIV
TI00 TO0'0 €000 0T0°0 8100 OI'T 0000 €90 TTO TTO0  8LT TO66  THO  ¥00  ¥00  $TO 950 0961 1T0T FTOI L9Ly O-VSIIV
2100 S00°0 #0000 <CTI00 STO0  L60 0000 TLO €T0 610 18T #0001 #70 O0I'0 900 6T0 9v0 I¥Ll €TET ¥r6 198y  d-OSIIV
¥10°0 TO00 1000 9000 SIOO0 TO'T 1000 TLO TTO vC0  9LT LL66  6F0 SO0 TO0 910 LbO 9IS LI'€C €€01 TOE9Y D-L6V
9100 TO0'0 0000 <TI00 €100 L60 0000 6,0 LIO IO 981 1€66 SSO SO0 000 6T0 THO 8OLI 98vT 00L 9067 d-AI-689D
L M BN eD) UAN SN d L od IV alY 1S ouoxoIkdoyiQ
6000 SI'0  ¥9'1 SP0 LO00  8TT TET HLO VT 9LS TT96  €I'F 9L'8  ¥S0 900 900 9€0I TLST LTLL TE6E  D-A¥IIV
9000 0T0 891 €5°0 $000  €LT  PLT 9¥0 LET  €9C TS96 L8P €06 IL0  ¥00 €00 8T €€HI 9¥91 LS8E VIV
€000 TCO T 6€0 6000 8T €€T 980 T 8SS €LS6  LSE 0€6  8L0 TO0  LOO OISl SOII ST6I 658  d-AEIIV
LI00  9T0  ¥S'I 90 9000  TST PLT 690 9TT LS $S96  6I'F  €€8 TEO 110 SO0 0911 vPPl 8TLI €968  d-d60IV
6000 9T0 191 I#'0 000 T8CT IST 690 LTT ELS 9Y96  08°€ €L8  TEO 900 #00 90°€l 19Tl €FLI 1866  d-OSIIV
v100  8T0  LS'I 870 TIOO0 19T 65T +9°0 60C 16 8LS6 LEF SF'8 860 600 010 L6TI €€l 96'ST €L0F  D-ALIIV
€000 0T0 €97 P90 9100 66T 19T #50 PPT 9SS 9€S6  10F 898 IL0  TO0 €10 8SEl TIEl  LTLI 8L D66V
0200 970 LS'T €€°0 LIOO 96T SI'T 680 60C 165 1€96 80€ O0L'8 960 €10 $I'0 +6El TL6  68LT SLIF d-dI-68dD
amorg

) BN | L UN SN o IV AV IS [e0L SOl O O°®N O0BD OUN O3S 0°d fOUV OIS

Ay} Sul([y Aq payewInss SI 9)1[0INeIs ul
9J110IN8)S 10J 7 ‘Joules 10J 4 “9Se[o0

186

81 01 S 11~ 1V

I 9] Jourds ur ¢ ‘ouaxoIAd ur SUONED § puL dUE[Eq AFILYD FUIINSSE P)B[NO[EI ST JUSIUOD | 0] S, ‘[oulds 10§ “0)1IdIPI0O 10] Q[ IIPAT 10§ €T
Mwﬁa 10 § ‘ouoxo01£d 10J 9 ‘9J1)01q 10J 7T ST 9B[NULIOJ [BINJONIIS JOJ USSAXO JO SIOqUINU Y ], "SISA[BUE P)O3[as SWIOS J0J SB[NULIOJ [BINIONNS £ JqB,



187

LEY st'0  (19°9) L9S (082 1T°¢ 19°0 65°0 Y00  ¥0'T LY'ST ¥9°69 8 D 02-260d 0001

€6'¢ LE0  (€SP) 0TS (6£0) 4913 9L°0 LY0 €00 T8l STSI €9°L9 8 d 02-260d 0001

€Le 920  (L8°¢) vS'y (tze) 6C€ 690 96°0 010  6I'1 0€°SI 189 14 D VEITV vL8

9¢'8 01ro  (ISt) 19t 050 9T'¢ €L°0 6€°0 SI'0 660 LEST 78°69 14 D a1V 868

0g'€ 810 (Te©) 6L'€ (861 81°¢ 86°0 €0 700 ¥8°0 eI 9%°99 S d qerv 868 0001
YLl LEo  (S1°€) 91°¢ (s¢¢) 993 651 88°0 v1'0  8TT 6LY1 1€°69 3 D YOIV 0t01

9L°1 0S0  (8S°¢) 19°¢ (L80) 0S¢ 43! 06°0 010 9T 16'¢1 08°69 S d 18 9201

09t €0 (99°%) 68 (s81) I¥'¢ 0L°0 L9°0 €00 LE1 01 LTOL I D VSIIV e

$9°¢ sTo  (S1°%) SIS (61°¢) 61°¢ §9°0 ¥$°0 €00  SPI €9°'p1 S8°0L 9 D qs11v 616

€Le 870  (9st) 6CS (900 Ly'€ 89°0 1970 S00 651 LSH1 00 1L 6 d ISIIV GL8 008
€T¢ o (0st) ¥S'y (960 8T'¢ $9°0 €0 S0°0 L1 0L €T SO 1L 6 d VLIV 868

L€ 9¢0  (SSH) €9 (e 9T'¢ §9°0 16°0 S00 061 IL°€1 96°69 1 D L6V €88

SH'C 9¢0  (gL€) 8L'¢ (Ts o 6C°¢ 86°0 €5°0 Y00 SL'I 9L°¢1 TeeL 8 d L6V €88

€I €0 (19'%) L9V (s17¢) 09°¢ 95°0 1$°0 200  09'1 v6°€l SSTIL 6 D qL11V L98

06'¢ wo  (88°¢) €Sy (98°1) 61°¢ 96°0 LEO €00  SPI 43R4 WL L d qLITv L98

9Ty 10 (88°¢) 8SH (100 86°¢ 65°0 85°0 Iro 9’1 0TI ¥9°0L S D 66V IS8

€9°6 910 (01'%) Iy (1,0 e 990 60 €10 LET ¥S€l AN L D JLITV 608 00S
6L°C Leo  (08°€) ST s €8°'C 790 68°0 800  6L'1 ¥SEl €reL € D §-064D L8

¥8°CT LE0  (€1'P) 6% (6£0) €T 68°0 LEO €00  S91 €6°€l LUTL 1 d §-0640 GL8

8v'y €0 (0v) ISt (s120) ve'e 15°0 €5°0 Y00 €51 9T€l TLoL 6 D Dt-064D €58

a4 8T0 (o) Sey (1.2 €re SH0 940 S00 6T €8°CI TLoL 14 D 4€-064D €8

18°¢ 800  (s¢¢) 06'¢ (800 ¥S'¢ $8°0 12°0 S00  0L0 09°¢I LY'TL 4 d V064D S08 00€
(49 €0 (ss€) ¥6'¢ (¥To) 6C°¢ 16°0 €€°0 €00  €€1 69Tl YLEL €1 d ai-684D 658

8¢ oo (Is¢) €6'¢ (s6'1) 96'C 50 wo LOO 880 Sord 00CL €l d D1-684D T8

L6C gz0  (L19) LS€ 061 ¥6'C 69°0 8T°0 £0°0 1870 seel SI'vL 01 d 41-684D 718 002
1€°¢C ceo (re we (€81 19°C LSO wo 00 201 69°CI 9¢ YL 8 d ac-0640 S8

SLT o (0T©) 86°¢ oL1) 96T ¥$°0 LEO 900 880 66'11 Y6°TL I d DT-064D 128 001
O‘H OIL o O°eN oed O3IN OUN 0 fOuv 01S u ou uny z d

7 9IqBL UI SB SUOHBIAGIQQE JOUJO SON[BA PIJOALIOOUN dY) Ik QY Pue OfeN 10j seseyjuared ur s1oqunN ‘OQ.] Se PAIOPISuUod uoldl [[y ‘suonisodwoo pmbry § dqe],



188

AVA AVA AVA

10 20 30 40 50 60 70
Ab Or

Fig. 4 Central portion of the Q-Ab-Or triangle with the projection of
the glass compositions calculated from the CIPW norm. The small
empty hexagons indicate the position of the water-saturated minima in
the haplogranitic system according to Tuttle and Bowen (1958) and
Luth et al. (1964) at 100, 200, 500 and 1000 MPa. The solid hexagons
indicate the positions of the water-undersaturated minima according
to Holtz et al. (1992a). CEVG and CEVP are the projections of the
starting materials. (Circles 100 MPa, squares 200 MPa, upward
triangles 300 MPa, stars 500 MPa, diamonds 800 MPa, downward
triangles 1000 MPa. Solid symbols melting experiments, empty
symbols crystallisation experiments)

and Montel 1994a, Fig. 13), we predicted that the water
content of the melt, along the biotite-out curve should lie
between 1.7 and 2.2 wt%, using the water solubility
model of Nekvasil (Nekvasil and Burnham 1987; Ne-
kvasil 1988). Similar estimates are obtained using the
experimental determination of water solubilities in
haplogranitic melts published by Holtz and Johannes
(1994, Fig. 2). Thus, both models provide estimates
lower than the calculated water content of the glasses,
that lie commonly above 3 wt%. A possible explanation
for this important discrepancy is that minor components
(FeO, MgO, CaO) increase the solubility of water in
granitic melts, relative to the haplogranitic system. Stern
and Wyllie (1981, Fig. 5) suggested that the melt water
content at 800 MPa, 930 °C could be as high as 3 wt%
based on experimental results from an I-type granite.

Interpretation and discussion
Melt proportions

Melt proportions (® in vol.%), as a function of pressure
and temperature, are given in Table 9 and Fig. 5. These
curves permit a variety of observations:

1. At a given temperature, melt proportion decreases
significantly with increasing pressure (e.g. at 850 °C, @
decreases from 60 to 25 from 100 MPa to 1000 MPa).
An important consequence is that the temperature
needed to get a large proportion of melt (~40%) in-
creases with pressure. For instance, at 1000 MPa and
1000 °C, @ is lower than 40.

2. At low pressure (< 500 MPa), the T-® curves show
an abrupt increase in melt proportion over a limited

temperature range (e.g. at 100 MPa, @ increases from 0
wt% to 73 wt% within a 50 °C interval). With increasing
pressure, the 7-® curves flatten, and the melting inter-
vals increase dramatically (e.g. at 1000 MPa, ® increases
from 20 to 40 within a temperature interval of about
200 °C).

3. At low pressure the onset of melting coincides with
the appearance of orthopyroxene. This is no longer true
at high pressure where melting begins at a much lower
temperature than the Opx-in curve.

This can be interpreted in terms of the solubility of
water in the melt and the nature of the reactions in-
volved in the melting process of complex solid solutions
such as biotite and plagioclase.

The solubility of water in the silicate melt in the
haplogranite system increases with increasing pressure
(Tuttle and Bowen 1958; Luth et al. 1964; Holtz and
Johannes 1994). Since the amount of water is constant in
the system, less melt can be produced at high pressure
(Clemens and Vielzeuf 1987). In addition, the fact that
higher temperatures are needed to produce a significant
proportion of melt at high pressure is in part linked to
the fact that the dP/dT slope of the reaction

(D) Bt + Pl + Qtz <= Opx + Crd/Grt + Kfs + melt

is positive.

Observations (2) and (3) concern the d®/dT rela-
tionships and the beginning of melting as a function of
pressure. These features result from the fact that reac-
tions other than (I) participate to the breakdown of the
assemblage Bt + Pl + Qtz. These are

(II) Bt + Pl + Qtz <= Grt (alm-pyr-grs) + Kfs + melt
and

(III) Bt + P1 <= Grt (alm-pyr-grs) + Ms
(Ms = muscovite)

Both reactions have a negative AV, a very small dP/dT
slope and correspond to huge multivariant fields in
pressure-temperature space. Complex phase relation-
ships involving these reactions are discussed in detail in
part I of this study (Vielzeuf and Montel 1994a, Fig. 9).
The existence of such reactions, predicted by thermody-
namic modelling and demonstrated experimentally, has
important implications for the first appearance of melt.
Even in experiments carried out with a single composi-
tion (here a natural greywacke), the reaction involved in
the first appearance of melt may vary with pressure.

For an assemblage of Bt + Pl + Qtz, originally
equilibrated at 300 MPa (case 1), as our starting mate-
rial CEV, the solidus coincides with reaction (I) Bt + Pl
+ Qtz <= Crd/Grt + Opx + Kfs + melt only at
P < 300 MPa. In order to understand what happens at
higher pressures (e.g. 1000 MPa, 1000 °C), it is neces-
sary to consider a two-step process. During the first
isothermal step (e.g. 700 °C), pressure increases from
300 to 1000 MPa. During this stage, biotite and the
anorthite component in plagioclase react according to
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100 . T (Als = Aluminium silicate) at about 800 °C. Biotite
- 1000 MPa | ! fluid-absent melting will take place at a higher temper-
€50 : ! ature (ca 890-990°C) according to reaction (I) Bt + PI
B : + Qtz < Grt + Opx + Kfs + melt. Thus, at high
/}—-é—?'/?,_ pressures, the beginning of melting does not coincide
0 with the appearance of orthopyroxene but rather with
700 the breakdown of muscovite. This conclusion is valid, at
100 least up to 2000 MPa, for the fluid-absent melting of
- 800 MPa most pelites and aluminous greywackes since muscovite
£ 50 is a common phase in both rock types in the subsolidus
8 at high pressure.
Interestingly, at 1000 MPa, a rock strictly composed
0 of an assemblage of Bt + Pl + Qtz (no muscovite) in
700 thermodynamic equilibrium in the subsolidus at 700 °C
100 T T (case 2) would start melting through reaction (I), thus at
= 500 MPa : : a higher temperature than in case 1.
850 : ""+ From the experimental data collected at each pres-
=S \ \ sure, the positions of the ‘“‘isotects” (curves that join
; -, . identical degree of melting) can be determined. This al-
0 L - . "S 1 lows the construction of a P-T-® diagram (Fig. 6). At
700 800 900 1000 low pressures, the negative slope of the isotects is most
100 probably due to the negative slope of reaction (I) over
300 MPa this pressure interval (Vielzeuf and Montel 1994a,
ESO Fig. 2). Between 200 to 700 MPa, all the isotects have
< positive dP/dT slopes. Above 700 MPa, the slopes of
. some isotects change. For instance the ® = 20 curve
0 ) _ TS | moves toward lower temperatures probably because re-
700 800 900 1000 actions (III) and (IV) now play increasing roles as
100 T T pressure increases. In contrast, the other isotects are
200 MPa | ! displaced toward higher temperatures related to the
S5 | . slope of reaction (I).
& ! |
0 I. E .  T°C
700 800 900 1000
100 P MPa melt vol. %
100 MPa
= 1000 | | l 10% 20% 30% 4oty§ %
ES0 v 60%
S 900 | +
TeC Lo
0 o L . 800 | !
700 800 900 1000 \ !
700 } |\
Fig. 5 Proportion of melt as a function of temperature at different oo
pressures. (Circles melting experiments, squares crystallisation exper- 600 L | \
iments). The lines correspond to visual fits el
500 | "\ p ‘\‘ -
\ 'S— \
reaction (III) to give garnet and muscovite (Ms). This 400 o
results in the development of the assemblage Bt;; + - 300 L 5 \\
Ply; + Qtz + Grt(alm-pyr-grs) + Ms. There is no ob- Z
ligation for biotite or plagioclase to disappear entirely 200 |+ ;\\( s
during the pressure increase because reaction (III) cor- AN
responds to a very wide multivariant field. The second 100 | N .
step is an increase in temperature (e.g. from 700 to ) T -r_—_r_C
1000 °C) at constant pressure (1000 MPa). Because of 700 800 900 1000

the presence of newly formed muscovite, the first melt
will be produced by reaction

(IV) Ms + Pl + Qtz <= Bt + Als + Kfs + melt

Fig. 6 Pressure-temperature projections of some isotects as estimated

from Fig. 5. The Q-Ab-Or-H,O and Q-Ab-H,O solidi are reported for
reference



In summary, the funnel shape of the isotects can be
explained by the dP/dT slopes of the melting reactions
and the interferences between complex reactions (I), (II),
(I1D), (IV).

The melt proportions that we measured are lower
than what we predicted from water solubility models
(Vielzeuf and Montel 1994a). For example at 800 MPa,
930 °C, along the biotite-out curve, the predicted water
content was 2-2.2 wt%, which should correspond to 65—
72 wt% melt (72-78 vol.%). This is not compatible with
the 45 vol.% estimated by mass balance and image
processing in the four charges that bracket the biotite-
out curve at this pressure. A possible explanation is that
the available solubility models based on data in the
haplogranitic system may not adequately predict the
water contents of the melts in a more complex system.

Proportions of crystals

At low pressure, the modal proportions of quartz and
biotite show a rapid decrease with increasing tempera-
ture, whereas the plagioclase content decreases slowly
(Table 9). At the same time orthopyroxene and cordie-
rite contents increase. At higher pressure, biotite, quartz
and plagioclase abundances decrease slowly with in-
creasing temperature. The orthopyroxene contents in-
crease with temperature. However the results from runs
at 800 MPa, 1026 and 1040 °C suggest that orthopy-
roxene started dissolving into the melt. The modal
proportion of garnet plotted against temperature always
displays a bell-shaped curve at all pressures.

The runs that correspond to the multivariant field
defined by the assemblage Opx + Bt + Pl + Grt
+ Qtz + melt confirm the predictions made by Vielzeuf
and Montel (1994a, Table 4) on the basis of geometrical
phase relationships. However the new data provide ad-
ditional information. With increasing pressure at a given
temperature, reaction (IT) should consume biotite, pla-
gioclase and quartz. However, at the same time, these
minerals should be produced by reaction (I) because of
its positive slope. The observed modal abundances in-
dicate that up to 1 GPa, reaction (I) dominates. Thus the
overall effect of increasing pressure at a fixed tempera-
ture and within the previously defined P-T interval, is to
increase the modal content of biotite, plagioclase, and
quartz. The involvement of reaction (IT) can be detected
through increasing grossular content in garnet, and the
backbending of the 20% isotect. Variations in plagio-
clase modal proportions are more difficult to predict,
because the orthoclase, albite, and anorthite compo-
nents behave independently from one another. From the
observed modal proportions in the runs, it seems that
the various feldspar-consuming and feldspar-producing
reactions balance each other. Thus the overall plagio-
clase content remains close to the initial mode within the
previously defined P-T surface. Although plagioclase is
involved in all the important reactions in the system, its
modal proportion is a complex function of the variations
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of the three main components. This applies for most
other solid solutions and emphasises the importance of
resolving the solid solutions into their respective end-
members for petrological discussion.

Melt productivity of some crustal rock types

Compared to other lithologies, the greywacke investi-
gated in this study has an intermediate fertility. Al-
though the beginning of melting coincides for pelites and
greywackes as both involve the breakdown of muscovite
(Vielzeuf and Montel 1994b), extensive melting of pelites
occurs at a significantly lower temperature than grey-
wackes. According to the experiments of Patino-Douce
and Johnston (1991), the 20 vol.% isotect for pelites is
about 40 °C lower than that of greywackes at 700 MPa.
The composition of the pelite investigated by Vielzeuf
and Holloway (1988) was found to be more fertile: at
875 °C, 1 GPa, 50 vol.% melt was produced, whereas
Patifio-Douce and Johnston (1991) obtained only 35
vol.%. Under the same pressure-temperature conditions,
the partial melting of our greywacke produces 25 vol.%.
The difference in melting behaviour between the two
pelites can be explained in terms of their chemical
composition: the pelite used by Patino-Douce and
Johnston (1991) is poor in Na,O, and SiO,, thus poor in
quartz and albite components. In terms of stoic-
hiometric coefficients for the peritectic reaction, the
relative proportion of phases within the starting material
used by Vielzeuf and Holloway (1988) was found to be
closer to the ideal mixture required to get the maximum
amount of melt.

The difference in fertility between pelites and grey-
wackes can be attributed to the nature of the melting
reaction involved and their stoichiometric coefficients.
The biotite breakdown reaction for pelites involves al-
uminiums-silicate:

(V) Bt + Pl + Als + Qtz <= Grt + Kfs + IIm + melt

This reaction occurs at a temperature lower than that
of reaction (I) (Vielzeuf and Holloway 1988; Le Breton
and Thompson 1988, Patino-Douce and Johnston 1991).
This is in agreement with the fact that excess Al,O;
(normative corundum) in granitic melts lowers the
temperature of the minima in synthetic granitic systems
(Holtz et al. 1992b; Joyce and Vogt 1994). The difference
in fertility between pelites and greywackes is greater at
high pressure, because reaction (I) has a significant d P/
dT slope, whereas reaction (V) is almost isothermal in
the 600-1200 MPa range (Vielzeuf and Holloway 1988).
Thus, greywackes are less fertile than pelites at high
pressure (above 700 MPa). However, at moderate pres-
sure (300-700 MPa) both rock types are more or less
equally fertile because the difference in temperature be-
tween the Al-silicate-free and Al-silicate-present biotite
breakdown reactions is smaller. Furthermore, the melt-
ing reactions for pelites and greywackes converge to-
ward 600 MPa and 850 °C. Here, partial melting of both



192

lithologies almost coincides making this pressure-tem-
perature domain particularly important for granitoid
magma genesis (Vielzeuf and Montel 1994b).

Other rock types make less fertile sources for granitic
magmas. For instance, tonalites produce only 10 vol.%
melt at 1000 MPa, 875 °C (Rutter and Wyllie 1988) or
950 °C (Skjerlie and Johnston 1992). The low fertility of
tonalites can be explained by the high calcium content of
the plagioclase. Since calcium is preferentially incorpo-
rated into the plagioclase rather than the melt, it can be
predicted that Bt-PI-Qtz rocks with calcic plagioclase
will be less fertile than CEV. Amphibolites are not very
fertile either. Rapp et al. (1991) located the 10 vol.%
isotect at 950 °C and 1 GPa. For the most fertile com-
position they investigated, Beard and Lofgren (1991)
found the 10 vol.% isotect at 875 °C, and the 20 vol.%
isotect at 950 °C (690 MPa in each case). The low fer-
tility of amphibolites can be explained by the facts that
they are rich in calcium, that amphibole melting reac-
tions occur at higher temperatures than those involving
biotite, and that they are poor in quartzo-feldspathic
components.

Experimental partial melts and the origin
of crustal granites

The compositions of the melts obtained experimentally
by several authors have been projected onto the Q-Ab-
Or triangle in Fig. 7. Most of the melts have normative

Q

10 20 30 40 50 60 70 80 90
Ab Or

Fig. 7 Compositions of experimental glasses from available experi-
mental studies projected on the Q-Ab-Or plane (CIPW norm). [HJ
Holtz and Johannes (1991), PDJ Patino-Douce and Johnston (1991),
VH Vielzeuf and Holloway (1988), CNWgrw and CNWdac Conrad
et al. (1988) from greywackes and dacite respectively, CW Caroll and
Wyllie (1990), CEV this study]. The positions of the water-saturated
minima (hexagons) are also shown

quartz contents of 30 to 50 wt%. This corresponds to
the approximate quartz/feldspar (alkali feldspar + pla-
gioclase) ratio in the haplogranite minima. Also the K/
Na ratio in the liquid can be directly related to the K/Na
ratio in the starting material. Patifio-Douce and John-
ston (1991) obtained the most potassic melts with a K-
rich, Na-poor pelite (K,O/Na,O = 7.6); Conrad et al.
(1988) obtained sodic melts with an immature, sodic
greywacke (K,O/Na,O = 0.5), and a dacite (K,O/
Na,O = 0.5). Vielzeuf and Holloway (1988), Holtz and
Johannes (1991) and Montel and Vielzeuf (this work),
starting from balanced compositions (K,O/Na,O =
1.5, 1.3, 0.8 respectively) obtained liquids with interme-
diate K/Na ratios. Partial melting of amphibolites
(Rapp et al. 1991; Beard and Lofgren 1991; Rushmer
1991), produces sodic liquids (tonalite, trondhjemite),
which are definitely not granitic in composition. Thus, as
far as the Q-Ab-Or proportions are concerned, it is clear
that not all crustal sources are able to produce melts of
granitic composition. Only those with K/Na ratio close
to unity will produce truly granitic compositions in
significant amounts.

The compositions of some typical granitic suites are
compared to the experimental glasses obtained in this
study (Table 10). Melts formed at 500 MPa, or above,
have compositions similar to those of peraluminous
leucogranites. Felsic end-members of S-type granite se-
ries are similar to the melts formed at low pressure
(300 MPa or less).

The compositions of published experimental melt
compositions together with those of some representative
granitic suites are reported in Fig. 8. In this diagram,
excess alumina (A) is plotted against Fe + Mg + Ti
(B) following a method proposed by Debon and Le Fort
(1982). Feldspars and quartz plot at the origin, and thus
it is the quartzo-feldspathic part of the composition that
is emphasized. All the partial melts produced by our
starting material (CEV) plot in the field of leucogranite
suites (CARN, HH, GG in Fig. 8) with a vertical trend
similar to the one defined by the High Himalayas leu-
cogranites (Debon and Le Fort 1982). Melt composi-
tions obtained from pelites (Patifio-Douce and Johnston
1991) and from greywackes (Conrad et al. 1988) are also
peraluminous and felsic (Fig. 8). However, they have
different K,0O/Na,O ratios (Fig. 7). Partial melting of
peraluminous granitoids (Holtz and Johannes 1991;
Clemens and Wall 1981) produced strongly peralumi-
nous and felsic melts also. Metaluminous source rocks
such as dacite or tonalite (Conrad et al. 1988; Caroll and
Wyllie 1990) produced metaluminous or weakly pera-
luminous melts.

Interestingly, some common granite compositions
have not yet been produced by direct experimental
anatexis of any source rock, despite the wide range of
starting materials investigated so far. For instance, no
partial melt that would replicate the mafic end-members
present in most granitic suites (FeO = 3-6 wt%,
MgO = 1.5-3.5 wt%, CaO = 1.9-6 wt%), either
peraluminous or metaluminous, has ever been obtained.
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Fig. 8 Compositions of experimentally derived melts in the A-B
diagram of Debon and Lefort (1982) [HJ Holtz and Johannes (1991),
PDJ Patino-Douce and Johnston (1991), VH Vielzeuf and Holloway
(1988), CNWgrw and CNWdac Conrad et al. (1988) from greywackes
and dacite respectively, CW Caroll and Wyllie 1990, CEV (thick line)
this study]. Various reference natural series are reported for
comparison [HH High Hymalayas (Vidal et al. 1982), GG Gangotri
(Scaillet et al. 1990), CARN Carnmenellis pluton, Cornubian
batholith (Charoy 1986), CO Ile-Rousse, Corsica (Laporte et al.
1991), PAG post-anatectic peraluminous series, French Massif Central
(Montel and Abdelghaffar 1993), MO Moruya (Chappell and
Stephens 1988), PRB Peninsular Ranges Batholith (Silver and
Chappell 1988), BU and ST Bullenbalong and Strathbogie (White
and Chappell 1988)]

This suggests that such natural compositions do not
represent pure anatectic crustal melts but involve other
components such as restite or cumulative minerals or
mafic mantle-derived liquids.

Conclusion: metagreywackes as a source for granites

Metagreywackes similar to CEV are fertile at moderate
pressure (300700 MPa) and produce 30 to 60 vol.%
melt at about 900 °C by fluid-absent melting of biotite.
Above 800 MPa, they are less fertile than pelites as the
main melting reaction producing orthopyroxene has a
positive dP/dT slope. However, they are always more
fertile than amphibolites or tonalites. At high pressure,
the beginning of melting of greywackes does not coin-
cide with the appearance of orthopyroxene. This is be-
cause there are other reactions that may produce up to
20 vol.% melt, 100 °C lower than the Opx-in boundary.

The liquids produced from partial melting of meta-
greywackes are leucocratic and peraluminous over the
whole pressure-temperature range investigated, even for
degrees of melting as high as 60 vol.%. These melt
compositions are similar to leucogranites, such as those
from the High Himalayas, the Massif Central or the
Cornubian Batholith. Since other protoliths (pelites,
orthogneisses) also produce leucogranitic melts by par-
tial melting, we can infer that the generation of more
mafic granitoids requires a combination of processes
coeval or subsequent to simple crustal anatexis. In the

case of mafic peraluminous granites such as Australian
S-types, restite unmixing is one of such mechanisms. For
the generation of widespread metaluminous calc-alka-
line or sub-alkaline batholiths such as the Coastal
Batholith in Peru, the Corsican Batholith, the Massif
Central granodiorites, or the Sierra Nevada Batholith,
interactions between mafic mantle-derived melts and
anatectic melts are likely. The interaction processes may
involve simple mixing, assimilation and fractional crys-
tallisation, or more complex interactions involving si-
multaneous melting and crystallisation (Huppert and
Sparks 1988). The abundance of this type of granite
throughout the world, relative to the small volume of
peraluminous leucogranites, indicates that such complex
interactions between different chemical reservoirs cou-
pled with a wide variety of processes represent the most
common way of generating granites. It must be stressed
that experimental petrology only provides constraints on
the nature of the liquids produced during partial melt-
ing. However most granites are not simple partial melts.
Rather they are complex solid-liquid suspensions that
have been subjected to a variety of physical and chemical
processes and interactions during their ascent through
the crust, from their source region to their final level of
emplacement.
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