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Abstract Zircon-bearing veins in a harzburgite xenolith
from kimberlite have imposed Ca-metasomatism on the
harzburgite wall rock, in addition to adding K, Fe, Ti
and OH. The zircon, previously dated to have an age
similar to that of the xenolith-hosting kimberlite, shows
higher Y, Nb, Ba, REE, Th and U contents than other
mantle-derived zircons. Peripheral alteration of the zir-
con to baddeleyite and zirconolite, and alteration of vein
ilmenite to perovskite suggest reaction with an evolving
carbonatitic kimberlite melt. The high Cr,O3 content
(0.77 wt%) of the zirconolite extends the compositional
range of terrestrial zirconolite.

Introduction

It is now widely accepted that melts and fluids migrating
from depth within the upper mantle can have widely
differing compositions and impose different types of
chemical change (metasomatism) on the dominantly
peridotitic wall rocks with which they come into contact
(e.g., Bailey and Lloyd 1975; Bailey 1982; Kramers et al.
1983; Navon and Stolper 1987; references in Menzies and
Hawkesworth 1987). These metasomatic variations are
particularly true on a global scale (Dawson 1984) and,
even in relatively small geographical areas such as
northern Tanzania, xenoliths from different eruptive sites
exhibit a range of metasomatic effects (Dawson 1999).
The resulting mineralogy reflects hybridisation between
the composition of the original mantle rocks (palaeo-
some) and the types and abundances of the elements
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introduced during metasomatism. In many xenoliths,
because of their small size, there is no obvious metaso-
matic source, but in a number of xenoliths the metaso-
matism can be directly linked to planar features (dykes,
veins or zones) infilled with phases differing from those in
the palacosome (e.g., Wilshire et al. 1980; Dawson 1987;
Harte et al. 1987; Dawson and Smith 1988).

In the specific case of xenoliths from kimberlite,
specimens from Kimberley, South Africa have formed
the basis of several metasomatism studies (Carswell
1975; Jones et al. 1982; Kramers et al. 1983; Haggerty
et al. 1983, 1989; Erlank et al. 1987). Metasomatic
phases developed in the peridotites are clinopyroxene,
phlogopite, amphibole, serpentine, ilmenite and rutile.
These are chemically similar to phases commonly pre-
cipitated in visible veins, except that the phases in the
peridotites are more magnesian and also contain more
Cr, having developed at the expense of former Cr-py-
rope and Cr-diopside. More exotic phases are priderite
and Ba-Sr-K titanates (lindsleyite, mathiasite and haw-
thorneite). From these studies, it is apparent that the
dominant metasomatic major-element additions are K,
Na, Fe and Ti, whilst Ca enhancement is relatively mi-
nor. The present paper reports the mineral chemistry of
a veined and metasomatised harzburgite xenolith from
Kimberley which provides evidence for further metaso-
matic complexity in that Ca addition is a major feature.
Also reported are inferred chemical changes in the vein
fluids reflected in the replacement of zircon by baddel-
eyeite and zirconolite, and of ilmenite by perovskite.

Sample description

The specimen, BD3024, was collected from the kimberlite
waste dump at Boshof Road, Kimberley. It is an angular
block measuring approximately 8 X 6 x 5 cm (Fig. 1), its
longest sides being planar, mica-coated surfaces. The
xenolith is a composite, consisting of a peridotite palae-
osome injected by mineralogically (and hence chemically)
contrasting veins. The palacosome consists mainly



Fig. 1 Thin section of veined harzburgite BD3024, illuminated
from the rear. The darker, thin, sub-parallel areas are the veins.
Scale bar is 20 mm

(~85vol%) of granular, partially serpentinised olivine up
to 8 mm, and subordinate (~4%) enstatite up to 6 mm.
Vermicular (fingerprint) spinel (~1%), similar to that
reported from other mantle peridotites (Dawson and
Smith 1975), is intergrown with some enstatite grains. The
block is cut by a series of subparallel planar veins up to 3-
mm wide. Most are continuous but others are impersis-
tent, being interrupted by areas of fine-grained (0.1 mm)
recrystallised olivine. Where interrupted, there is no offset
across the veins, suggesting that the veins are not micro-
shear zones in which the olivine recrystallisation might
have been attributed to directed strain.

The veins (Fig. 2) consist of abundant grains of eu-
hedral diopside (400 um) and phlogopite (1 mm) to-
gether with less common ilmenite (up to 500 um), zircon
(200 pum), perovskite (30 um), apatite (25 um), and rare
globular grains (up to 20 um) of pyrrhotite and heazle-

Fig. 2 Photomicrograph of
vein in harzburgite (plane-po-
larised light). The vein/palaeo-
some contact has been inked in
for clarity. Note absence of
visible olivine(OL)/vein interac-
tion, contrasting with a well
developed reaction rim on en-
statite (OPX). Small enstatite
grain in harzburgite palaeo-
some also has thin reaction
corona. Zr-Ilm Zircon-ilmenite
cluster
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woodite (a Ni-sulphide), all set in an intergranular ma-
trix of amorphous serpentine and subordinate calcite
grains (up to 50 um). Except for an absence of euhedral
olivine, this combination of minerals is similar to that
found in kimberlite. The zircon grains are euhedral and
up to 200 um. Some occur as inclusions in mica but most
are surrounded by the serpentine/calcite matrix. They
have not been seen included in diopside. An earlier
geochronological study on the zircons gave a U-Pb age
of 84+2 Ma (Kinny and Dawson 1992), which is very
close to the 82 +2-Ma age for the kimberlite magmatism
at Kimberley (Allsopp and Barrett 1975). When exam-
ined by backscattered electron (BSE) imaging and ca-
thodoluminescence, only one grain of the fifteen
examined was found to have any internal structure,
comprising a euhedral core mantled with a single over-
growth (Fig. 3). Externally, some zircons are unaltered
but most have been peripherally altered to a phase of
composition ZrO, which could be either monoclinic
baddeleyite or tetragonal ZrO,. The fine grain size
(typically <50 pm) has prevented separation and X-ray
diffraction but, for convenience, the phase will be re-
ferred to as baddeleyite. Other partial pseudomorphs
consist of a core of zircon mantled by coronas of
baddeleyite which, in turn, are partly replaced by zir-
conolite in aggregates up 200 um (Fig. 4). In some cases,
the baddeleyite corona is absent and the zirconolite
mantle is directly in contact with zircon (Figs. 3, 4), and
in others baddeleyite aggregates (? former zircon) are
partly replaced by zirconolite. The zirconolite is not
homogeneous, as indicated by slightly different inter-
grain and intragrain brightness in BSE images which
itself reflects chemical variation (see below). The zircon
and zirconolite have similar BSE coefficients (Z=25.3
for zircon, and 24.2 for zirconolite), and textural rela-
tionships are best revealed by X-ray imaging, particu-
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Fig. 3 BSE image of an atypi-
cal zoned zircon (most show no
internal structure). A homoge-
neous euhedral core is mantled
by a single overgrowth zone.
The grain has a thin peripheral
rind of replacing zirconolite,
not readily discernible in BSEI
(however, see Figs. 4 and 95).
The very bright phase is badde-
leyite. Points A-C correspond
to analyses 2—4 in Table 3

larly for Ca and Ti (Figs. 4, 5). Some zirconolite-mantled
grains are partly embedded in ilmenite grains, although
separated from the ilmenite by thin films of serpentine
and calcite (Fig. 5). A feature of these ilmenite/zircon
“intergrowths” is that zirconolite is also present on zir-
con surfaces which are not embedded in ilmenite (Fig. 5).
The ilmenite grains, up to 2 mm, vary in shape from
rounded to elongate or cuspate. Like the zircons, many
ilmenite grains are unaltered but a small number have
suffered peripheral alteration, in these cases to coronas
of perovskite and Mg-Cr-Ti spinel (Fig. 6).

Wall-rock alteration

At the contact between the vein and the wall-rock
harzburgite, there has been some interaction. Optically,
the olivine immediately adjacent to the vein appears to
be unaffected, though electron-probe microanalyses (see
below) show that it contains more Fe, Mn and Ca than
olivine further away from the vein. In contrast, the wall-
rock orthopyroxene is visibly altered and has reaction
fringes adjacent to the veins. The fringes are inter-
growths of fine-grained (<0.01 mm) acicular diopside
and richterite oriented normal to the wall rock/vein
contact, with intergranular phlogopite, serpentine and
tiny (50 pm) grains of apatite and pyrrhotite. Similar
reaction fringes occur on enstatite grains within the
palacosome but close to the veins (Fig. 2).

Whole-rock chemistry

The whole-rock analysis of this rock, reported earlier by
Dawson (1987), is given here as a background to the
phase chemistry: SiO, 42.51, TiO, 0.94, Al,O5 1.10,

Fe,05 2.18, FeO 5.20, MnO 0.12, MgO 39.48, CaO 3.08,
Na,0 0.19, K,0 0.60, H,O " 3.23, CO, 0.24, P,05 0.11,
SO; 0.04, sum 99.00 wt%:; trace elements (ppm): V 76,
Cr 2084, Ni 1924, Cu 42, Zn 49, Rb 27, Sr 95, Y 2, Zr
340, Nb 31, Ba 93, and Pb 5.

Compared with other kimberlite-hosted harzburgites,
the rock’s enhancement in total Fe, Ti, Ca, Na, K, Rb, Sr,
Zr, Ba and Cu reflects their presence in the vein minerals.

Analytical methods

The minerals were analysed by wavelength-dispersive spectroscopy
(WDS) on a Camebax Microbeam electron microprobe at the
University of Edinburgh. The analytical conditions and standards
for most of the phases are given in Dawson and Hill (1998), and
additional standards used in the present investigation were Hf and
Ta metal and synthetic thorite (substituted for Th metal).

In the case of the high-zirconium phases (zircon, baddeleyite
and zirconolite), a slightly different routine was adopted. Because
preliminary analyses indicated them to be below detection, Mg and
Al were dropped from the programme. Counting times for other
elements were 30 s on peaks except for Nb (60 s) and yttrium (90 s).
Background counts were made for half the peak times, except for
Y, Hf and Th when counts were the same as for peaks. In the
presence of high amounts of Zr, and because of peak overlaps,
there are problems in the determination of Nb. We measured Nb
on its La peak which is close to the Zr L6 peak. However, because
of the trivial amounts of Nb detected in both zircon and badde-
leyite (the phases with the highest Zr contents), enhancement of the
Nb Lo counts by slight overlap with the Zr L6 peak appears to be
minimal. Hence, we believe the relatively high Nb contents in the
zirconolite to be real.

Trace elements in zircon and ilmenite were analysed by sec-
ondary ion mass spectrometry on the Cameca ims-4f ion microp-
robe at the University of Edinburgh. The analytical routine used an
10~ primary beam of 15 kV energy and analysed the positive
secondary ions. The energy filtering techniques are those of Zinner
and Crozaz (1986). The standard used was glass SRM160. Ion
yields were normalised to Si for the zircon analyses, and to Ti for
the ilmenite. Absolute contents are within 20%.



Fig. 4 BSE and X-ray images
of partly altered zircon.
Whereas the bright baddeleyite
is readily seen on the BSE
image, zircon and zirconolite
are almost indistinguishable but
they are readily resolved on the
Si, Ca, and Ti X-ray images

Mineral chemistry — phases in the harzburgite
palaeosome

Olivine

The olivineis alow-Ca forsterite (Fogs; Table 1, analysis 1)
which falls towards the more magnesian end of the range
for mantle olivines (Fogg o4; Herviget al. 1986). However,
the grain margins immediately adjacent to the veins con-
tain more Fe (Fog;), Mn, and particularly Ca (Table 1,
analysis 2). The Ca contents in the grain margins are about
five times that of olivine more distant from the veins.
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Orthopyroxene

Unaltered orthopyroxene (Table 1, analysis 3) is an en-
statite (Eng3) which, in view of its relatively high Al,O3,
Cr,03 and CaO contents (2.77, 0.76 and 0.80 wt%,
respectively), resembles the orthopyroxene in fertile,
rather than barren harzburgites (compare with analyses
4 and 5, Table 1). Adjacent to the veins, the enstatite is
converted to a fringe of fine-grained intergrown
chromiferous diopside, chromiferous richterite (Table 1,
analyses 7, 8) and phlogopite. Compared with the
replaced enstatite, the replacing diopside/richterite/
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Fig. 5 BSE and X-ray images
of an euhedral zircon/badde-
leyite/zirconolite composite
grain partly embedded in il-
menite. Note the thin band of
serpentine separating this grain
from the ilmenite, and the oc-
currence of a partial zirconolite
mantle on the end of the zircon
not embedded in ilmenite.
Bright spots on the Ca X-ray
image are calcite or apatite

phlogopite combination is much higher in Fe, Ti, Al, Ca,
Na and K which must be assumed to have been added
from the veins.

Spinel

Smith and Dawson (1975) observed a considerable range
in Cr/(Cr+ Al) in spinels from mantle peridotites. The
relatively low Cr,O5 contents in BD3024 spinel (44.9 wt%,
Table 1, analysis 6) are more similar to those in spinels

from lherzolites or fertile harzburgites, rather than to
those in refractory harzburgites in which Cr,Oj is gener-
ally >60 wt% (e.g., Hervig et al. 1980; Boyd et al. 1993).

Mineral chemistry — phases in the veins
Diopside

The clinopyroxene (Table 2, analysis 1) is a diopside
which contains more Ti and Fe but less Cr and Na than



Fig. 6 BSE image of ilmenite
with a reaction corona of per-
ovskite and Ti-Cr spinel

Table 1 Analyses of phases in peridotite wall rock. / Olivine.
2 Same olivine immediately adjacent to vein. 3 Enstatite. 4 Mean of
nine low-Na enstatites in fertile harzburgites (Dawson et al. 1980).
5 Mean of 13 enstatites from barren harzburgites (Dawson et al.
1980). 6 Magnesian fingerprint spinel (Cr/(Cr+ Al) 0.53; sum in-
cludes 1.62 wt% Fe,0;, calculated by stoichiometry). 7 Diopside in
fine-grained alteration fringe on enstatite. 8 Richterite intergrown
with diopside (analysis 7) in fine-grained alteration fringe on en-
statite (total includes 1.74 wt% K50, 0.46 wt% F, and —0.20 wt%
OoO=F

1 2 3 4 5 6 7 8

Si0, 408 403 560 574 585 005 543 53.5
TiO, 002 001 001 000 000 004 024 059
ALO; 001 001 277 291 096 248 024 239
Cr,0; 002 002 076 079 032 449 139 113
FeO 7.7 848 468 443 424 140 415 325
MnO  0.10 016 0.3 006 010 031 0.3 0.07
MgO 523 50.1 353 349 359 142 163 220
NiO 040 037 0.0 008 007 007 na  na.
CaO 001 010 080 083 023 000 223 7.12
Na,O  0.00 0.00 001 003 002 000 1.15 483
Total 100.83 99.55 100.56 100.47 100.35 99.99 100.20 96.88
mg® 093 091 0.3 0.64
“Mg/(Mg+Fe?)

the diopside in the metasomatic fringe on the palaeo-
some enstatite. Although it contains significant Cr,O3, it
shows lower contents than the Cr-diopsides in upper-
mantle lherzolites which also contain more Al,O3
(around 2.5 wt%) and less FeO (~2.0 wt%; Stephens
and Dawson 1977). Its low Al,O; content (0.26 wt%)
makes it similar to MARID suite diopsides, which are
mainly in the range 0.2 to 1.5 wt% (Dawson and Smith
1977; Waters 1987; Waters et al. 1989) or the least alu-
minous of the clinopyroxenes in micaceous kimberlites
in which Al,O; contents range between 0 and 1.5 wt%
(Dawson et al. 1977; Mitchell 1995).
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Mica

The vein mica (Table 2, analysis 2) is a titaniferous
(2.17 wt% TiO,) phlogopite characterised, like the
diopside, by low contents of Cr,O3 (0.14 wt%) and
Al O3 (10.8 wt%), all of which serve to set it apart from
primary and secondary micas in peridotite xenoliths
(Delaney et al. 1980). Although in many respects it re-
sembles micas in MARID xenoliths, which are likewise
low in Al,O3 (<11 wt%; Dawson and Smith 1977), the
mica is also similar to the Type II groundmass micas in
micaceous kimberlites (Smith et al. 1978), particularly in
its high BaO content (0.58 wt%).

Zircon

In the zircon (Table 3, analyses 1-4), the only significant
minor element is Hf and its content of 1.24 wt% HfO,
gives a Zr/Hf ratio (46.1) within the range found for
kimberlite zircon megacrysts (range 16 to 79, and mainly
<50; cf. review by Mitchell 1986). Zirconium contents are
constant within and between grains, and hafnium con-
centration variation is small (range 1.11 to 1.37 wt%). In
the one zoned grain found, differences in brightness in
BSE imaging (Fig. 3) can be attributed to higher contents
of Th, Y and Ce in the brighter areas (compare analyses
2-4, Table 3). As there is a positive correlation between
Th and U in the zircons (Kinny and Dawson 1992),
variations in trace amounts of U may also contribute to
differences in brightness. Trace-element analyses of 17
spots in six zircon grains are given in Table 4, together
with comparative data for zircon megacrysts from on-
craton southern African kimberlites and for a single
zircon in a MARID xenolith from the Kamfersdam
kimberlite, Kimberley (Belousova et al. (1998) also give
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Table 2 Compositions of phases in veins. / Diopside. 2 Phlogopite
(mean of six analyses; total includes 0.22 wt% BaO, 0.58 wt% F,
and —0.26 wt% O = F). 3 Intergranular serpentine. 4 Calcite (total
includes 0.31 wt% SrO). 5 Apatite (total includes 40.3 wt% P,Os,
0.27 wt% L3203, 0.53 wt% C6203, and 0.21 wt% Nd203, SrO
below detection limits). 6 Perovskite grain (80 pum) in serpentine
matrix (total includes 0.46 wt% Nb,Os, 0.16 wt% La,03, 0.40 wt%
Ce,03, and 0.16 wt% Nd,O3). 7 Mean of three perovskites in

perovskite/spinel replacement rim round ilmenite (Fig. 6; total in-
cludes 0.41 wt% Nb,Os, 0.13 wt%La,05, 0.36 wt% Ce,O5, and
0.14 wt% Nd,03). 8§ Magnesian ilmenite (total includes 0.17 wt%
Nb,Os, 0.23 wt% NiO, and 0.01 wt% ZnO). 9 Spinel in perovskite/
spinel replacement rim round ilmenite (Fig. 6; total includes
0.48 wt% NiO and 0.08 wt% ZnO). 10 Groundmass spinel, sur-
rounded by phlogopite (total includes 0.34 wt% NiO and 0.09 wt%
ZnO)

1 2 3 4 5 6 7 8 9 10

SiO, 53.7 40.5 40.3 0.00 0.18 0.11 0.06 0.01 0.08 0.06
TiO, 0.52 2.17 0.10 n.a. n.a. 56.5 57.0 56.1 20.6 21.4

710, n.a. n.a. n.a. n.a n.a. 0.65 0.45 0.29 0.21 0.07
Cr,03 0.26 0.14 0.00 n.a. n.a. n.a. n.a. 1.38 7.17 3.98
Al,O3 0.23 10.8 0.25 0.00 0.00 0.05 0.04 0.13 1.22 0.89
FeO 4.77 5.47 6.82 0.16 0.27% 1.08 1.05 29.2 57.3 61.8

MnO 0.14 0.04 0.19 0.11 0.02 0.00 0.00 0.50 0.59 0.77
MgO 16.4 24.0 36.5 0.29 0.31 0.05 0.05 12.7 9.48 7.91
CaO 22.9 0.00 0.00 56.4 52.9 39.5 38.9 0.29 0.36 0.06
Na,O 0.58 0.53 0.00 0.00 0.49 0.79 0.78 0.00 0.00 0.00
K,0 0.03 9.73 0.00 0.00 n.a. 0.00 0.00 0.00 0.00 0.02
Total 99.51 93.99 84.26 57.27 97.41 99.91 99.37 99.93 97.57 97.55

% Total iron as Fe,Os3, otherwise all iron as FeO
n.a. Not analysed

further data for Russian and off-craton occurrences).
Unlike Zr and Hf, the trace-element contents may vary
both within and between grains. For example, in grain B1
contents of Nb, Ba and La vary fourfold between dif-
ferent spots, whereas Sr, the other REE, Th and U vary
by a factor of only 2. Y and Pb contents are reasonably
constant within this grain. Compared with the other
mantle-derived zircons (Table 4), those in BD3024 are

Table 3 Analyses of zircon, baddeleyite and zirconolite in BD3024,
and comparative analyses of zirconolite in other ultramafic rocks. /
Zircon (mean of eight analyses; Zr/Hf 46.1). 2 Zircon, bright core
in BSE image, point A in Fig. 3. 3 Zircon, dark overgrowth, point
B in Fig. 3. 4 Zircon, darkest rim, point C in Fig. 3. 5 Baddeleyite
(mean of 12 analyses). 6—7 Baddeleyite, two most extreme com-
positions with respect to Zr and Ti (Zr/Hf 50.9 and 52.0). 8 Zir-
conolite (mean of 15 analyses; Zr/Hf 43.8). 9—-10 Zirconolite, the
two most extreme compositions with respect to Zr, Ti and Ca.

extremely enhanced in all the trace elements listed, the
only similar concentrations being for Pb in a MARID
zircon. The REE enhancements, especially for the LREE,
are well seen on a chondrite-normalised REE plot (Fig. 7)
in which there is a positive Ce anomaly which appears to
be typical of many zircons (e.g., Belousova et al. 1998;
Hoskin and Ireland 2000). However, the flatness of the
pattern for the MREE and HREE (Gd to Lu) is in con-

Analysis 9 is of relatively bright zirconolite (in BSE imaging), re-
flecting higher Z. /1 From Zircon/ilmenite intergrowth in kim-
berlite, Kimberley, South Africa (Raber and Haggerty 1979). 12
From Ultramafic adcumulate, Laouni ultrabasic complex, Algeria
(Lorand and Cottin 1987). /3 From Olivine-rich mesocumulate,
Rhum layered complex, Scotland (Fowler and Williams 1986). n.d.
Below detection limit at 2¢ level; n.a. Not analysed (see text); — Not
reported

1 2 3 4 5 6 7 8 9 10 11 12 13

Nb,Os5 0.02 0.13 n.d. n.d. 0.04 n.d. n.d. 0.25 0.23 0.33 - 0.22 0.25
Ta,Os5 0.03 0.02 0.13 n.d. 0.08 0.16 0.08 0.07 0.03 0.05 - - -

SiO, 32.8 32.8 32.8 32.6 0.0l n.d. 0.13 0.21 0.09 0.19 - - 0.00
TiO, 0.13 0.15 0.08 0.13 3.83 5.36 2.75  36.2 34.8 37.7 40.48 35.67 35.73
ZrO, 65.9 65.6 65.9 65.6 96.6 94.3 97.0 44 .4 46.4 42.5 41.91 43.58 44.18
HfO, 1.24 1.19 1.20 1.37 1.68 1.62 1.63 0.88 0.92 0.93 - 0.34 0.57
ThO, 0.16 0.48 0.10 0.05 0.04 n.d. 0.09 0.04 0.05 0.04 - 0.41 0.59
Cr,05 0.03 0.04 0.03 0.03 0.05 0.08 0.04 0.77 0.80 0.77 0.09 0.05 0.05
AlLO; n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 0.23 0.59 0.50
Y,03 0.10 0.15 0.13 0.05 0.05 n.d. n.d. 0.04 0.04 n.d. - 2.50 2.45
La,O; 0.00 n.d. n.d. n.d. n.d. n.d. n.d. 0.03 0.03 0.02 - 0.02 0.01
Ce,03 0.07 0.12 0.07 0.04 0.08 0.11 0.06 0.29 0.35 0.32 - 0.18 0.13
Pr,O; n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. - 0.15 0.13
Nd,O; n.d. n.d. n.d. n.d. 0.04 n.d. n.d. 0.11 0.09 0.04 - 0.17 0.25
Sm,0; n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. - - -

FeO 0.13 0.13 0.13 0.15 0.50 0.62 0.45 4.99 5.43 4.36 5.15 4.85 4.87
MnO 0.02 0.02 0.03 n.d. 0.02 0.04 0.03 0.10 0.13 0.08 0.11 - 0.16
MgO n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 0.49 0.19 0.20
CaO 0.06 0.06 0.07 0.03 0.23 0.58 0.20 11.3 10.6 12.1 11.10 10.67 11.15
Total 100.71  99.89 99.66 99.92 103.24 102.87 102.46 99.68 99.99 99.43 99.56 99.59 101.28




trast to the sloping pattern for the other zircons, and
serves to emphasise the relative enrichment in the LREE.
Further, in its absence of a negative Eu anomaly, the
BD3024 zircon pattern is similar to patterns in zircon
from the Mud Tank carbonatite (Australia) and the
Jwaneng kimberlite (Botswana) but it differs from zircons
in more siliceous igneous rocks and in high-grade meta-
morphics (Hoskin and Ireland 2000). The values given
here for Th and U (averages 1,028 and 324 ppm, re-
spectively) are very similar to those found on the A.N.U.
SHRIMP, reported in our earlier geochronology study
(Kinny and Dawson 1992). These contents are consider-
ably higher than in the other mantle-derived zircons listed
in Table 4, and also higher than values of 359-659 ppm U
and 254-557 ppm Th (Th/U 0.67-0.85) in a zircon in-
cluded in diamond from Zaire (Kinny and Meyer 1994),
and than the values of 48 to 131 ppm U reported in zircon
megacrysts from the Mbuji Mayi kimberlite, Democratic
Republic of the Congo (Schérer et al. 1997). The rela-
tively high contents of Th in the BD3024 zircons, and
resulting high Th/U ratios (average 3.17) are particularly
distinctive. Values of 14-1,066 ppm U in zircons from
three MARID xenoliths from kimberlite intrusions in the
Kimberley area (Konzett et al. 1998) match the U con-
tents in BD3024 zircons, but the Th contents (4458 ppm)
and Th/U ratios (0.2-0.86) are significantly lower.

Baddeleyite

The main minor oxides in the baddeleyite are TiO,
(varying from 2.7 to 5.4 wt%), HfO, (1.63%) and iron
(equivalent to ~0.4 to 0.6 wt% FeO; Table 3, analyses 5
and 6). Zr and Ti contents vary inversely. The three
minor elements appear to be ubiquitous in baddeleyites
in general (Heaman and Le Cheminant 1993), though
analyses in the literature indicate that they occur in quite
variable amounts. For example, baddeleyite from the
Benfontein kimberlite contains low TiO, (up to 0.8%),
up to 1.31% FeO, and the Zr/Hf ratio is 49 (Scatena-
Wachel and Jones 1984), whereas baddeleyite formed by
subsolidus reaction between zircon and ilmenite in
composite grains from the Monastery and Mothae
kimberlites contains higher TiO; (up to 6.10 wt%; Raber
and Haggerty 1979). The elemental Zr/Hf ratio of 51 to
52 in the BD3024 baddeleyite compares with 46.1 for the
parental zircon, suggesting a small amount of fraction-
ation of Hf from Zr during the alteration process.

Zirconolite

The compositions of terrestrial and lunar zirconolites
have been reviewed by Williams and Gieré (1996) who
not only point out the wide range of elements which can
substitute for Ca (e.g., the REE and actinides), but also
highlight the large variations in the TiO, and ZrO,
contents which can give rise to departures from the ideal
formula of CaZrTi,O,. The composition of the zircon-
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olite in BD3024 (Table 3, analyses 7-9) falls within the
wide range of individual oxide contents listed by Wil-
liams and Gieré (1996), viz. CaO 1.83-16.54, ZrO,
22.82-44.18, and TiO, 13.56-44.91. CaO and TiO2
contents vary sympathetically, and both vary inversely
with ZrO,. In grains which show different brightnesses
in BSE images, the brighter areas are high in Zr and
contrast with darker high-CaTi areas. The zirconolite
also contains appreciable FeO (3.85 wt%), together with
significant Hf, Th, and Cr. Its REE values are unusual in
that, although Ce and Nd are relatively high, Y, La and
Pr contents are low. However, it may be noted that Ce is
high compared with La in the parental zircon (Table 4,
Fig. 7). Although not having the same high contents of
Nb, Th and the REE as many carbonatite zirconolites,
the BD3024 zirconolite has the low-Al, Fe>Mg and
LREE > HREE characteristics considered by Gier¢ et al.
(1998) to be specific to carbonatite zirconolites.

Compared with analyses listed by Williams and Gieré
(1996), the BD3024 zirconolite is closest to that reported
to be a reaction product in a zircon/ilmenite intergrowth
in kimberlite from Kimberley, South Africa (Raber and
Haggerty 1979; see Table 3, analysis 10). However, it is
set apart from this intergrowth, and from zirconolites in
other ultramafic parageneses (analyses 11 and 12) in
containing no MgO or Al,O;. Most significantly, it is
distinct from other terrestrial zirconolites in containing
appreciable Cr,O3 (~0.8 wt%) which has only been
reported in such concentrations in a very few lunar
zirconolites.

Ilmenite

The ilmenite (Table 2, analysis 8) is a magnesian il-
menite-geikielite solid solution containing signficant
Cr,0;5 (1.11 wt%). Although the various oxide contents
fall within the ranges reported for kimberlite megacryst
or groundmass ilmenites, it differs in that stoichiometric
calculations require no iron as Fe,Os3. Like the diopside
and phlogopite it is low in Al,Os, in this respect re-
sembling MARID ilmenites. Contents of trace elements
analysed at 25 spots on five different ilmenite grains are
listed in Table 5. Elements occurring in significant
amounts are Sc, V (though possibly enhanced by Mg
molecular interference), Co, Zr, Hf, Nb, Ta and Pb.
Although Sc, Co and Hf levels are reasonably constant,
there are appreciable intragrain and intergrain
variations in V (e.g., relatively low values in grain A2
compared with the other grains), Zr, Nb (e.g., range
1,400-2,400 ppm in grain Al), Ta and Pb. However,
there are no systematic core/rim variations within the
individual grains. Contents of La, Ce, Nd and Sm are
very low and may well be spurious due to molecular Ti
interference. W, Th and U values are mainly at the <1-
ppm level. The BD3024 ilmenite contents for Sc, Co and
Hf fall within the ranges reported in kimberlite mega-
cryst ilmenites (summarised by Mitchell 1986), whereas
Zr, Nb and Ta contents are higher. It may be noted that
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the data summarised by Mitchell (1986) were produced
by emission spectroscopy, neutron activation and XRF
analysis of whole-megacryst samples. Comparative spot
analyses for the above elements in kimberlite ilmenites
are few, but electron-probe analyses have detected up to
1.53 wt% Nb,Os and 0.61 wt% ZrO, in groundmass
ilmenites in kimberlite dikes at Koidu, Sierra Leone
(Tompkins and Haggerty 1985), up to 0.39% Nb,Os and
0.08% ZrO, in ilmenite megacrysts from the Dalnaya
kimberlite, Russia (Patchen et al. 1997), and 2.64%
Nb,Os in ilmenite from the Aries kimberlite, Australia
(Edwards et al. 1992). Mitchell et al. (1973) have pointed
out the enrichment in Zr in kimberlite ilmenites relative
to other terrestrial ilmenites. The Zr contents in BD3024
ilmenites are even higher, although there is not a cor-
responding enhancement in Hf, as reflected in their
higher Zr/Hf ratios (average 52.9) compared with kim-
berlite ilmenites (Zr/Hf 29-40).

Apatite

Apatite (Table 2, analysis 5) is a fluorapatite containing
~1 wt% LREE oxides. This is lower than the high
contents often found in carbonatite apatites, and there is
also an absence of SrO, the presence of which is held to
be diagnostic of carbonatite apatites (Hogarth 1989).
However, it does contain sufficient Na,O (0.49 wt%) to
make it similar to carbonatite apatites.

Calcite

The calcite (Table 2, analysis 4) is a low-Mg variety, the
most distinctive feature of which is 0.31 wt% SrO. This
can be matched in kimberlite calcites but is lower than
that found in many carbonatite calcites (e.g., 0.45 to
2.68 wt%; Dawson et al. 1996).

Perovskite

The perovskite occurring in isolated grains contains
slightly higher amounts of ZrO, and Nb,Os than the
perovskite replacing ilmenite, but the major-element
contents (cf. Table 2, analyses 7 and 8) are so similar as
to suggest that the groundmass grains derive from il-
menite reaction rims. Overall, the Zr, Fe, and Na con-
tents can be matched in perovskites from kimberlites
(Mitchell 1986), and the LREE, although present, are
not as enriched as the levels generally recorded in per-
ovskites from carbonatites and associated silicate rocks.

Spinel

The small (20 pm) spinel grain which occurs with per-
ovskite in the reaction rims around ilmenite grains
(Fig. 6) is a high-Ti magnetite which is unusual in con-
taining substantial Cr,O5 (> 7 wt%) and significant NiO
(0.48 wt%). The only comparable data from the litera-
ture is for a grain mantling corroded ilmenite in the
Benfontein kimberlite, Kimberley (Boctor and Boyd
1981). The groundmass spinel differs from the reaction
rim spinel (compare analyses 9 and 10, Table 2) in
containing less Cr,O3; and MgO but higher Fe, and re-
sembles the Ti-rich, Cr-poor end-members of a mag-
matic trend recognised in spinels from several kimberlite
intrusions (see review by Mitchell 1986).

Heazlewoodite

Rare rounded 15-20-pum grains of heazlewoodite occur
in the veins. A representative composition is Ni 70.9, Fe
1.53, Cu 0.17, S 26.7, total 99.30 wt%; structural for-
mula (Ni2_917Feo_066Cuo_007)2.990$2_009. Heazelwoodite is a
comparatively rare mineral, having been reported
mostly as a breakdown product of pentlandite in ser-
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pentinised orogenic peridotite complexes (Kullerud and
Yund 1962). However, it has also been recorded in
kimberlites as the result of olivine serpentinisation, and
also a primary groundmass phase (see review by
Mitchell 1986).

Discussion
Wall-rock metasomatism

Compared with the extensive and pervasive metasoma-
tism occurring in some veined and metasomatised peri-
dotite xenoliths from kimberlite, the metasomatic effects
in specimen BD3024 are small, which is not unexpected
alongside such thin veins. Metasomatism of the palae-
osome olivine is restricted to rims adjacent to veins,
where the olivine is altered to a higher Fe variety,
comparatively enriched also in Mn and Ca. Similar en-
hancements have been reported in olivines in veined
peridotites from Tanzania (Dawson and Smith 1988).
However, the main effect has been the alteration of wall-
rock enstatite to a mixture of diopside, richterite and
phlogopite at its contact with the veins. This combina-
tion of new phases signals additions of Fe, Ti, Na, K,
OH and F, but by far the most important effect is an
increase in Ca to form diopside and richterite. As
pointed out by Dawson (1987), a particular problem
with Ca in many metasomatised peridotites is whether
Ca is inherited and redistributed from pre-existing Ca-
bearing phases (diopside and/or garnet), or introduced
partly or wholly during metasomatism. In the specific
case of BD3024, the absence of garnet and diopside in
the palaecosome (though small amounts of Ca are pre-
sent in the enstatite) means that the new Ca-bearing
reaction minerals replacing wall-rock enstatite and
changes in the Ca contents of the olivine rims adjacent
to the veins can be largely attributed to Ca metasoma-
tism. The veins themselves obviously hold high contents
of Ca, as witnessed by the presence of diopside, zir-
conolite, perovskite apatite and calcite.

Zircon presence

Although zircon has been previously found in metaso-
matised peridotites and in MARID xenoliths (e.g.,
Gurney and Harte 1980; Haggerty and Gurney 1984;
Konzett et al. 1998), it has not been identified in the two
rare composite xenoliths which comprise MARID ma-
terial in direct (? intrusive) contact with metasomatised
peridotite (Waters et al. 1989; Boyd 1990). Hence, its
identification in the vein paragenesis of composite xe-
nolith BD3204 is worthy of note.

Zircon and ilmenite alteration

In BD3024, some zircons have been altered, and their
initial replacement by ZrO, must have been due to a
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desilication reaction. Kresten et al. (1975), and Fiermans
and Ottenburgs (1979), in describing kimberlite mega-
cryst zircons which are coated with mixtures of mono-
clinic and tetragonal ZrO,, attribute the coats to
interaction between zircon and a carbonatitic liquid.
Baddeleyite has also been found, together with zircon-
olite, diopside, sphene and calcite, at the interface
between zircon and ilmenite in zircon/ilmenite inter-
growths from one Lesothan and two South African
kimberlites (Raber and Haggerty 1979). The formation
of the interface assemblages in the subsolidus is sug-
gested as having been triggered by a carbonatitic fluid
which provided the necessary Ca to form diopside and
zirconolite. It would appear intuitively that a high-Ca/
low-Si environment is favourable for baddeleyite for-
mation. Certainly baddeleyite is the usual Zr phase in
carbonatite complexes (e.g., Phalaborwa), and badde-
leyite, calzirtite and an unnamed Ca-Zr oxide have been
found as primary phases (Scatena-Wachel and Jones
1984; Mitchell 1994) in the kimberlite of the Benfontein
sills which is sufficiently high in calcite to have been re-
ferred to as carbonatitic (Dawson and Hawthorne 1973).

In BD3024, there is textural evidence for (1) periph-
eral replacement of zircon by baddeleyite, and (2) re-
placement of baddeleyite by zirconolite (addition of Ca
and Ti). These are very localised reactions, and not all
zircon grains are similarly affected. Although there is
direct contact between zircon and zirconolite in some
composites, textural evidence for replacement of zircon
by zirconolite is ambiguous; and it appears more likely
that zirconolite has completely replaced the baddeleyite
which formerly rimmed zircon. Further, the formation
of zirconolite around zircons not in contact with, or in
the immediate vicinity of ilmenite grains indicates that,
as proposed in the Raber and Haggerty (1979) model,
ilmenite-zircon interaction (with the involvement of
carbonatitic Ca) is not the case for BD3024 zirconolite.
A more simple explanation is that the zirconolite formed
by interaction of baddeleyite with the same Ca- and Ti-
rich fluids which subsequently precipitated ilmenite, and
that the later ilmenite grains sometimes partially en-
closed the zircon-baddeleyite-zirconolite composites.
Hence, the suggested reactions are

Zircon(minus SiO,) — Baddeleyite(plus Ca and Ti) — Zirconolite
eri04 ZI’OQZ CaZrT12 07

The zircon was an early precipitate from the liquid
which precipitated the other vein phases and, at that
stage, the magma must have been sufficiently saturated
in SiO, to precipitate zircon rather than ZrO,. A change
in the magma chemistry must have occurred, with the
magma first having reduced the silica content (resulting
in baddeleyite), subsequently becoming enhanced in Ca
and Ti, and reacting with the baddeleyite to form zir-
conolite. Similarly, ilmenite reacted with a Ca-rich fluid
to form perovskite rims.

As to the nature of the magma, the coincidence of the
date recorded for the zircon grains with the age of the
Kimberley area kimberlite magmatism (Kinny and
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Dawson 1992) suggests kimberlite as a possible candi-
date, a possibility supported by the high-K, Ti, Mg, Ca,
and OH nature of the magma, inferred from the min-
eralogy of the veins.

However, inversion of the REE data for the BD3024
average zircon, using the zircon/liquid partitioning data
of Hinton and Upton (1991), indicates that the zircon
must have been in equilibrium with a magma which was
highly enriched in the LREE (La 3,600 x chondrite),
with a very steep slope towards low HREE contents (La/
Lucy ratio ~1,600, i.e. >three orders of magnitude).
Kimberlites, both group I and group II (orangeites), al-
though having LREE enhancement and steeply sloping
patterns (summarised by Mitchell 1986, s1995), contain
lower amounts of all the REE than this calculated
magma. The only magmatic rocks which consistently
match these calculated parameters are carbonatites (e.g.,
see Woolley and Kempe 1989). However, carbonate is
rare in the veins which (if the veins formed from a car-
bonatitic melt) implies that they are the result of open-
system crystallisation, and that the vein phases are the
early precipitates plating the vein walls. The lost liquid
residue of this magma must have had a very low viscosity
to enable it to migrate onwards before the freezing of the
very thin veins. This again points to carbonatite, as
currently it is the only magma type known to possess
such very low viscosities (Treiman 1989).

In the case of the alteration rims around ilmenite
(Fig. 6), as in the case of the zirconolite rims on zircon,
there must have been interaction with a Ca-rich medium
to produce the perovskite. Nonetheless, although crys-
tallisation from REE-enriched melt appears to be valid
for zircon, later crystallising phases such as zirconolite,
apatite, calcite and perovskite do not have the same
REE contents as their analogues in carbonatites.

A simple model might be that a calcite-rich kimberlite
intruded minor fractures in the harzburgite palacosome,
inter alia causing Ca metasomatism of the palaeosome.
After initial precipitation of diopside, zircon, phlogopite
and ilmenite, most of the residual liquid migrated,
though interstitial serpentine, calcite and apatite may
represent small amounts of nonmigrated residual liquid.
Such a model, drawing in part on the zircon and ilmenite
alteration, implies evolution and substantial changes in
the magma chemistry during cooling. In this context, it
is pertinent to note that pre-emplacement changes in
kimberlite magma chemistry have been previously re-
ported from the Kimberley area in the fractionated
carbonate-rich kimberlite of the Benfontein sills (Daw-
son and Hawthorne 1973).
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