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Abstract
Garnet and zircon in a marble-hosted eclogite from the Dabie ultrahigh-pressure (UHP) terrane, eastern China record a 
wealth of information on multistage pervasive fluid–rock interactions and Hf mobility in deep continental subduction zones. 
The eclogite has a peak mineral assemblage of garnet + omphacite + phengite + coesite + magnesite ± dolomite + rutile. Five 
(inner patchy core, outer core, mantle, inner rim, outer rim) compositional zones were recognized for garnet. According to 
phase equilibria modeling, the inner patchy and outer cores of garnet likely document a prograde breakdown of lawsonite 
to UHP peak (3.0–4.5 GPa and 630–750 °C), while a Ca-metasomatism could have also played a role in their formation. 
The other three garnet zones resulted from multistage garnet re-equilibration at eclogite-facies conditions during isothermal 
exhumation. The stepwise compositional changes between these different garnet zones suggest that dissolution and repre-
cipitation played a key role in the garnet re-equilibration, while the repeated actions of such a re-equilibration mechanism 
reflect multistage pervasive fluid–rock interactions. Zircon from the rock develops three eclogite-facies domains (1, 2, 3). 
Textural relationships suggest that domain 2 formed in between domain 1 and 3. LA-ICP-MS analyses yielded 206Pb/238U 
ages of 233 ± 6 Ma, 232 ± 2 Ma and 222 ± 3 Ma for domain 1, 2 and 3, respectively. Domain 1 includes coesite and magnesite 
and its Th/U is usually higher than 0.1. This domain is interpreted to have formed in the absence of allanite during prograde 
UHP metamorphism. Domain 2 shows slightly lower ∑MREEs (middle rare earth elements; 7.5–13.5 ppm) and lower Ti 
(3.0–6.0 ppm) contents than domain 1 (∑MREEs = 10.5–21.0 ppm; Ti = 4.5–7.0 ppm) and most likely formed at the UHP 
peak. Domain 3 contains much lower ∑MREEs (3.5–6.0 ppm) and higher Ti (7.5–11.0 ppm) contents than domain 1 and 2, 
which is interpreted to have formed in the stability field of epidote during decompression. Domain 2 (0.282354–0.282607) 
and 3 (0.282449–0.282636) display lower initial 176Hf/177Hf values than domain 1 (0.282563–0.282667), suggesting that 
external fluids introduced Hf into the eclogite. These findings not only shed new light on the flow mode of fluids and their 
role in resetting mineral compositions in deep subduction zones, but also suggest that Hf (a key high-field strength and 
tracer element) can be efficiently mobilized by (U)HP fluids. Moreover, this study highlights the influence of epidote-group 
minerals and pressure on the chemistry (Th/U ratio and REE and Ti contents) of zircon.
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Introduction

Fluids modulate many geodynamic processes in deep sub-
duction zones, such as metamorphic reactions (e.g. Car-
son et  al. 2000; Guiraud et  al. 2001; Proyer 2003) and 

geochemical recycling (e.g. Hermann et al. 2006; Spandler 
and Pirard 2013). The release of fluids is mainly related to 
dehydration reactions in descending slabs, and experimen-
tal and thermodynamic modeling studies have provided a 
framework of devolatilization regimes for subducted rocks 
(e.g. Massonne 2009; Schmidt and Poli 1998; Wei and Duan 
2018). Nonetheless, the nature of fluid activities in descend-
ing slabs and the role of deep fluids in element transfer 
remain unclear in many aspects.

There are two basic modes of fluid flow (i.e. pervasive 
and channelized flow) in deep subduction zones (Ague 
2014). Channelized flow is defined as fluids being focused 

Communicated by Othmar Müntener.

 *	 Penglei Liu 
	 liupenglei@cug.edu.cn

1	 School of Earth Sciences, China University of Geosciences, 
Wuhan 430074, China

http://orcid.org/0000-0002-8560-5169
http://crossmark.crossref.org/dialog/?doi=10.1007/s00410-024-02158-5&domain=pdf


	 Contributions to Mineralogy and Petrology (2024) 179:7979  Page 2 of 24

into a highly strained or a lithologic contact zone where the 
high permeability allows efficient fluid migration. Fluid flow 
in this way can easily cause the alteration of local bulk-rock 
composition because of the high fluid–rock ratio in a con-
fined environment (e.g. Guo et al. 2012; Hoover et al. 2022; 
John et al. 2008). By contrast, pervasive flow allows fluids 
to equilibrate with the rock matrix pervasively due to fluid 
migration along grain boundaries and microfractures in a 
bulk rock with low permeability (e.g. Bovay et al. 2021; Liu 
et al. 2017; Vho et al. 2020). In favorable cases, new miner-
als formed by consuming early minerals, leaving evidence of 
pervasive fluid flow easily recognized (e.g. Guo et al. 2022; 
Massonne 2012; Zeh and Gerdes 2014). In other cases, early 
minerals were only partly altered for their compositions and 
no new minerals formed (e.g. Bovay et al. 2021; Liu et al. 
2017; Nosenzo et al. 2023). Alternatively, all the early min-
erals could have been totally replaced, and only a bulk-rock 
chemical fingerprint was left (e.g. Gao et al. 2019; Xiong 
et al. 2021). Partly because of crypticity, pervasive flow has 
received much less attention than channelized flow. Also 
noted is that dissolution and reprecipitation play a key role 
in altering mineral compositions during pervasive fluid–rock 
interactions (Martin et al. 2011; Putnis and Mezger 2004; 
Smit et al. 2008).

Since pervasive fluid–rock interactions are more chal-
lenging to decode, a more targeted mineral and approach 
is required. Garnet, a mineral that has been widely used to 
reconstruct pressure–temperature-time (P–T–t) paths, can 
also record key information on fluid–rock interactions (e.g. 
Bovay et al. 2021; Giuntoli et al. 2018; Vho et al. 2020). In 
response to fluid–rock interactions, the garnet composition 
can get partly reset via fluid-aided dissolution and reprecipi-
tation (Cheng et al. 2007; Martin et al. 2011). In addition, 
microfractures in garnet have been shown to be efficient 
fluid-mediated transport channels for element exchange 
between the garnet interiors and matrix and/or for the dis-
solution of former garnet cores, leaving fingerprints such as 
healed fractures and atoll grains (Bovay et al. 2021; Giuntoli 
et al. 2018; Vho et al. 2020). Accordingly, a detailed study 
of garnet chemistry and texture can help reconstruct both the 
P–T–t path and fluid evolution of the host rock.

Metamorphic zircons are another good indicator of 
fluid–rock interactions as their formation are usually aided 
by fluids (Corfu et al. 2003; Rubatto and Hermann 2003; 
Zheng et al. 2004). Metamorphic zircons commonly dis-
play a Th/U ratio lower than 0.1, which likely reflects the 
compositional influence of coexisting allanite (and/or mona-
zite; Rubatto et al. 2009; Stepanov et al. 2016). Epidote-
group minerals are also known to be rich in light and mid-
dle rare earth elements (LREEs and MREEs). Their growth 
may exert a control on the contents of LREE and MREE in 
metamorphic zircons. However, such a correlation has been 
rarely demonstrated in literature. Meanwhile, the content of 

Ti in zircon is positively correlated with temperature (Ferry 
and Watson 2007; Watson et al. 2006). Thus, the increase 
of Ti contents in zircon has been often used as an indicator 
of prograde metamorphism (e.g. Chen et al. 2013; Gao et al. 
2011; Stepanov et al. 2016). In fact, pressure also exerts 
a control on the Ti content in zircon (Ferriss et al. 2008; 
Tailby et al. 2011), which has to be considered when inter-
preting the formation of zircons in UHP rocks that traveled 
through a large pressure window (Liu and Jin 2022).

A key question related to pervasive fluid–rock interac-
tions is the origin of fluids, which can be either internally 
or externally derived. Oxygen isotopes in garnet and zircon 
have been widely used to constrain the origin of metasomatic 
fluids (e.g. Bovay et al. 2021; Chen et al. 2011). Whether 
Hf isotopes in zircon can be used as an efficient fluid tracer 
remains to explore and relevant successful applications have 
been rarely reported in literature (Zeh and Gerdes 2014). 
Answering this question also bears important implications 
for the mobility of Hf, a key high field-strength element 
(HFSE). Hafnium has a very low solubility in aqueous fluids 
(Ayers and Watson 1991; Kovalenko and Ryzhenko 2009; 
Schmidt et al. 2006), which has been commonly invoked 
as an explanation for the preservation of initial Hf isotopes 
in fluid-aided recrystallized zircons (Chen et  al. 2010; 
Gerdes and Zeh 2009; Lenting et al. 2010). However, the 
occurrences of zircon in (ultra)high-pressure ((U)HP) veins 
require a new understanding of the behavior of Hf (and Zr) 
in deep fluids (Chen et al. 2012; Zheng et al. 2007). Experi-
mental studies have demonstrated that Na–Al–silicate-bear-
ing and alkaline CaCl2 solutions can dissolve considerable 
Zr (up 1000 ppm) in the form of alkali zircon-silicate and 
Ca3[Zr(OH)6]4+ complexes, respectively (Brendebach et al. 
2007; Wilke et al. 2012). It can be thus inferred that Hf (an 
analogue of Zr given the similar ionic charges and radii) can 
be used as a fluid tracer in favorable situations.

In this study, a marble-hosted eclogite from the Dabie 
UHP terrane was subjected to a detailed study. Garnet and 
zircon in the eclogite develop complicated zoning patterns 
and record multistage pervasive fluid–rock interactions. In 
combination of phase equilibria modeling and zircon geo-
chronology, the P–T–t-fluid evolution of the eclogite was 
reconstructed. Importantly, zircon Hf isotopic studies pro-
vided a key constraint on the fluid source. At the meantime, 
the role of epidote-group minerals and pressure in determin-
ing the zircon chemistry (Th/U ratio and LREE-MREE-Ti 
contents) were highlighted.

Geological setting

The Dabie–Sulu orogenic belt contains one of the largest 
UHP metamorphic terranes in the world and is characterized 
by well-preserved coesite-bearing eclogites (e.g. Carswell 
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et al. 1997; Guo et al. 2012; Li et al. 2004; Liu et al. 2019). It 
lies in the eastern part of the Qinling–Dabie–Sulu orogenic 
belt (Fig. 1a) and resulted from northward subduction of 
the South China Block beneath the North China Block dur-
ing the Triassic (e.g. Cong 1996; Hacker et al. 1998; Zheng 
et al. 2003). The Dabie and Sulu terranes are separated by 
the Tanlu fault with a sinistral displacement of about 550 km 
(Fig. 1a). The Dabie terrane to the west is further truncated 
by the NS-trending Shangma fault, the western and eastern 
segments of which are known as the Hongan (or western 
Dabie) and eastern Dabie terrane, respectively (Fig. 1a). The 
eastern Dabie terrane are separated by a series of large-scale 
EW-trending faults into five major litho-tectonic units with 
distinct metamorphic grades (Fig. 1a). From north to south, 
these five units are (1) the Beihuaiyang greenschist-facies 
zone, (2) the North Dabie granulite-facies and migmatitic 
zone, (3) the Central Dabie medium-T/UHP eclogite-facies 
zone (CDZ), (4) the South Dabie low-T eclogite-facies zone, 
and (5) the Susong blueschist-facies zone (Zheng et al. 
2005a). All these five units are intruded by Early Cretaceous 
granitoids that resulted from the anatexis of thickened oro-
genic lithospheric keel during the collapse of the orogen 
(Chen et al. 2002; Zhang et al. 2002).

As shown in Fig. 1b, the CDZ includes three major litho-
logical units: ortho- and para-gneiss, granitic gneiss, and 
marble-paragneiss units (Baker et al. 1997; Liu et al. 2003; 
Rolfo et al. 2004). The ortho- and para-gneiss unit is mainly 
composed of mica-plagioclase gneisses and schists, whereas 
the granitic gneiss unit mainly of two-feldspar granitic 
gneisses. The marble-paragneiss unit consists of paragneiss, 
marble, calc-silicate rock, schist, and jadeite quartzite and 
represents a supracrustal metasedimentary sequence. Eclog-
ites, occurring as lenses, pods or layers within gneisses, 
marbles, and mafic–ultramafic complexes, are widespread 
in the ortho- and para-gneiss and marble-paragneiss units 
but absent in the granitic gneiss unit (Liu et al. 2003; and ref-
erences therein). Inclusions of coesite and its pseudomorph 
have been found in nearly all the rock types (e.g. eclogite, 
marble, jadeite quartzite, and paragneiss) in the marble-
paragneiss unit (e.g. Cong et al. 1995; Liu et al. 2001; 2015, 
2017; Okay et al. 1989; Rolfo et al. 2004; Wang and Liou 
1993). The UHP P–T conditions have been estimated by 
many studies using conventional geothermobarometry and 
forward modelling, which are > 3 GPa and 650–750 ℃ (e.g. 
Carswell et al. 1997, 2000; Liu et al. 2015; Schmid et al. 
2000; Wei et al. 2013). The period of UHP metamorphism 
has been well constrained by U–Pb dating on coesite-bearing 
zircons, with three main episodes of zircon growth iden-
tified at 241 Ma, 233 Ma, and 227 Ma, respectively (Liu 
et al. 2006a; Wu et al. 2006; Zheng et al. 2009). The Dabie 
UHP rocks experienced a two-stage exhumation (Li et al. 
1993, 2000; Zheng et al. 2003). The early exhumation to 
the lower and/or middle crustal level was nearly isothermal 

and relatively fast, with an exhumation rate of 3–10 mm per 
year (Liu and Liou 2011; Liu et al. 2006b; Wu et al. 2011).

The protoliths of most Dabie–Sulu UHP rocks formed 
in a continental rift setting to the north margin of the South 
China Block in the middle Neoproterozoic, in response to 
the breakup of the supercontinent Rodinia (Hacker et al. 
1998; Zhang et al. 2009; Zheng et al. 2008). Extensive 
meteoric hydrothermal alterations had led the protoliths to 
obtain negative δ18O values before subduction (Zheng et al. 
2003). The preservation of such an isotopic signature in 
the rocks suggests limited mass exchange between the sub-
ducted slab and mantle during subduction and exhumation 
(Rumble et al. 2000; Zhang et al. 2009; Zheng et al. 2003). 
Nonetheless, fluid flow was still active within the subducted 
slab at mantle depths, as recorded by various (U)HP veins 
(e.g. Chen et al. 2012; Guo et al. 2012; Liu et al. 2019; 
Zhang et al. 2008; Zheng et al. 2007). The vein-forming 
fluids were generally locally sourced (Li et al. 2001; Zhao 
et al. 2016; Zheng et al. 2007), suggesting short distances of 
fluid migration via channelized flow. By contrast, evidence 
for pervasive (U)HP fluid flow has been documented much 
less for the Dabie–Sulu UHP rocks. Garnet Lu–Hf (Schmidt 
et al. 2008) and Sm–Nd (An et al. 2018) dating results indi-
cate that the Dabie–Sulu UHP eclogites could have expe-
rienced extensive pervasive fluid–rock interactions during 
early exhumation. This has also been proposed for the Dabie 
impure marbles and jadeite quartzites based on the studies 
of Sr and Mg isotopes (Gao et al. 2019; Wawrzenitz et al. 
2019). In addition, studies on mineral chemistry and phase 
equilibria modelling revealed two episodes of pervasive and 
cryptic fluid–rock interactions in the Dabie impure marbles 
and marble-hosted eclogites during early exhumation (Liu 
et al. 2017, 2019). Different to the vein-forming fluids, an 
external origin was usually proposed for the fluids responsi-
ble for the pervasive fluid–rock interactions (e.g. Gao et al. 
2019; Liu et al. 2017, 2019; Massonne 2012; Schmidt et al. 
2008; Wawrzenitz et al. 2019). The fluids could have been 
sourced from either a crustal (Gao et al. 2019; Liu et al. 
2017; Massonne 2012) or a mantle (Wawrzenitz et al. 2019) 
reservoir.

Sample description

The eclogite (GJL10-8; GPS coordinates: 30°38′41.9″N, 
116°19′37.4″E) studied here was collected from the Ganji-
aling area in the marble-paragneiss unit (Fig. 1b). It appears 
as a decimeter-sized block in impure marbles that exhibit 
compositional layers with different contents of silicate min-
erals and colors (Fig. 1c; Liu et al. 2015). Its contact to the 
host marble is sharp and characterized by a thin retrograde 
amphibolite rim after the eclogite. Many HP veins occur 
in this area and include quartz-, mica-, amphibole-, cal-
cite-, and epidote-rich varieties (Liu et al. 2015). Interstitial 
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coesite and abundant coesite inclusions were found in rocks 
from the Ganjialing area and the peak UHP P–T conditions 
have been constrained at 4–4.5 GPa and 750 ± 50 °C (Liu 
et al. 2015, 2019).

Sample GJL10-8 is fine-to medium-grained and retro-
gressed to a medium degree. It consists of mainly garnet, 
omphacite, amphibole, phengite, clinozoisite, dolomite, and 
quartz/coesite (in order of content). Minor and accessory 
minerals include biotite, plagioclase, magnesite, calcite, 
rutile, titanite, zircon, and apatite. Garnet (0.2–2.0 mm) is 
idioblastic to xenoblastic and often forms clusters (Fig. 2a, 
b). Inclusions of omphacite, rutile, apatite, and coesite 
occur in garnet. Omphacite (0.2–2.0  mm) is generally 
hypidioblastic and partly replaced by a symplectite of diop-
side + amphibole + plagioclase (Fig. 2c, d). It contains inclu-
sions of garnet, rutile, apatite, and coesite (Fig. 2a). Phengite 
(0.5–2.5 mm) includes small garnet blasts and can be partly 
replaced by a symplectite of biotite + plagioclase (Fig. 2c, 
d). Retrograde amphibole and clinozoisite occur either as 
coronae around garnet and omphacite or as hypidioblasts 
and xenoblasts (Fig. 2b–f). Noted is that some clinozoisite 
grains contain an allanite core (Fig. 2e). Dolomite is the 
main carbonate mineral and generally rimmed by calcite 
(Fig. 2f). Magnesite was only found in zircon. Rutile is par-
tially or completely replaced by titanite (Fig. 2b).

Analytical methods

Analysis of bulk‑rock composition

The bulk-rock composition was determined by X-ray flu-
orescence (XRF) on a fused glass disk at the State Key 
Laboratory of Geological Processes and Mineral Resources 
(GPMR), China University of Geosciences (CUG), Wuhan. 
The loss-on-ignition (LOI) was obtained from the weight 
loss after heating the dried rock powder at 1000 ℃ for 
90 min. A Shimadzu XRF-1800 sequential X-ray fluores-
cence spectrometer was used for XRF analyses, with work-
ing conditions of 40 kV voltage and 70 mA current. Accu-
racy and precision monitored by analyses of USGS standard 
BHVO-2 and repeated samples were better than 3% and 1%, 
respectively. The measured bulk-rock composition is given 
in Table S1.

Analyses and X‑ray mapping of mineral major elements

The analyses of major elements of minerals were completed 
by using two electron probe microanalyzers (EPMAs) at 
the Center for Global Tectonic (CGT), School of Earth Sci-
ences, CUG, Wuhan and at the Institut für Mineralogie und 
Kristallchemie (IMK), Universität Stuttgart. At the CGT, 
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a JEOL JXA-8230 EPMA with four wavelength-dispersive 
spectrometers (WDS) were used. The working conditions 
were 15  kV accelerating voltage, 20 nA beam current, 
1–10 μm beam diameter, and 10–20 s counting times. Raw 
X-ray intensities were corrected using a ZAF correction 
procedure and calibrated against a series of natural and 
synthetic SPI standards. Analyses at the IMK were per-
formed using a CAMECA SX100 EPMA with five WDS. 
The working conditions were like those used at the CGT 
except that the beam current was 10–15 nA. Matrix cor-
rection was conducted by the PaP procedure provided by 
CAMECA. Natural and synthetic minerals and oxides were 
used as standards. Major element compositions of minerals 
are given in Tables S2–S8.

Elemental mapping was performed using the above two 
EPMAs. The operating conditions for the JXA-8230 EPMA 
were 15 kV accelerating voltage, 100 nA beam current, 
5 μm step width and 10 ms dwell time, while those for the 
CAMECA SX100 EPMA were 15 kV accelerating voltage, 
20 nA beam current, 3 μm step width and 10 ms dwell time.

Analyses of garnet trace elements

The analyses of trace elements of garnet were conducted in 
thin sections by laser ablation inductively coupled plasma 
mass spectrometry (LA-ICP-MS) at GPMR, CUG, Wuhan. 
A GeoLas 2005 laser ablation system and an Agilent 7900 
ICP-MS instrument were used for laser sampling and to 
acquire ion-signal intensities, respectively. Helium was used 
as the carrier gas and mixed with Argon (makeup gas) via 
a T-connector before entering the ICP. Nitrogen was intro-
duced into the central gas flow (Ar + He) of the Ar plasma 
to improve the detection limits and the precision (Hu et al. 
2008). A spot size of 32 μm and a laser frequency of 6 Hz 
were used. For each analysis, the Agilent Chemstation was 
applied to incorporate a background acquisition of 20–25 s 
followed by a 50 s acquisition from the sample. Off-line 
selection, integration of background and analytical signals 
and time-drift correction and quantitative calibration were 
carried out by the Excel software ICPMSDataCal (Liu et al. 
2008, 2010). Element abundances were calibrated against 
reference materials of BIR-1G, BCR-2G and BHVO-2G 
without using an internal standard (Liu et al. 2008). Analy-
ses of reference standards show that the precision and the 
accuracy (1σ) are better than 10% for trace elements (and 
2% for major elements). Garnet trace element composition 
is given in Table S9.

Zircon cathodoluminescence (CL) imaging

Zircon grains from GJL10-8 were separated by magnetic 
and heavy liquid techniques and hand-picked under a bin-
ocular microscope. Separated zircon grains were mounted 

in epoxy resin and polished down to the grain center. Two 
zircon mounts were prepared. One zircon mount was imaged 
by a Gatan Mono CL4+ cathodoluminescence system fit-
ting on a FEI Quanta 450 field emission gun scanning elec-
tron microscope (SEM) at the GPMR, CUG, Wuhan. The 
imaging conditions were 10 kV accelerating voltage, 5 mm 
spot size, and 14 mm working distance. The other zircon 
mount was imaged at the Wuhan Sample Solution Analytical 
Technology Co., Ltd., Wuhan, China, using an Analytical 
SEM (JSM-IT300) connected to a Delmic sparc system. The 
imaging conditions were 0.5–30 kV voltage of electric field 
and 72 μA current of tungsten filament.

Identification of mineral inclusions in zircon

Mineral inclusions in zircon were identified using a Ren-
ishaw RM-1000 Raman spectrometer (532 nm line of an 
Ar+ laser) at the GPMR, CUG, Wuhan and a Renishaw inVia 
Raman spectrometer (514.5 nm line of an Ar+ laser) at the 
State Key Laboratory of Continental Dynamics, North-
west University, China. The 520 cm−1 signal generated by 
a monocrystalline Si wafer was used for calibrating both 
spectrometers. Mineral inclusions exposed at the surface 
were also identified using an Oxford INCAX-Max 50 energy 
dispersive spectrometer fitting on a FEI Quanta 450 field 
emission gun SEM at the GPMR, CUG, Wuhan. The work-
ing conditions were 20 kV accelerating voltage, 5 mm spot 
size, and 12 mm working distance.

Analyses of zircon U–Pb and Lu–Hf isotopes

Analyses of U–Pb isotopes and trace elements of zircon 
were conducted synchronously by LA-ICP-MS. One zircon 
mount was analyzed at the GPMR, CUG, Wuhan. A Geo-
Las 2005 laser ablation system and an Agilent 7900 ICP-
MS instrument were used for laser sampling and to acquire 
ion-signal intensities, respectively. The other zircon mount 
was analyzed with a GeolasPro laser ablation system and 
an Agilent 7900 ICP-MS at the Wuhan Sample Solution 
Analytical Technology Co., Ltd., Wuhan, China. Both laser 
ablation systems include a “wire” signal smoothing device. 
The working conditions were nearly identical at these two 
laboratories. Helium was used as the carrier gas and mixed 
with Argon (makeup gas) via a T-connector before entering 
the ICP. A spot size of 32 μm and a laser frequency of 5 Hz 
were used. Each analysis included a background acquisition 
of approximately 20–30 s followed by 50 s of data acquisi-
tion for the sample. Zircon standard GJ-1, Plesovice and 
Tanz were analyzed as unknows. External standards used 
for U–Pb dating and trace element calibration were zircon 
91,500 and glass NIST610, respectively. The external preci-
sion (2σ) of 91,500 is better than 2%. The pooled concordant 
ages of the secondary reference GJ-1 (recommended value: 
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608.5 ± 1.5 Ma; Jackson et al. 2004), Plešovice (recom-
mended value: 337.1 ± 0.4 Ma; Sláma et al. 2008;) and Tanz 
(recommended value: 566.16 ± 0.77 Ma; Hu et al. 2021) 
are 604 ± 3 Ma, 336 ± 4 Ma and 566 ± 5 Ma respectively. 
Detailed operating conditions for the laser ablation system 
and the ICP-MS instrument can be found in Liu et al. (2008) 
and Zong et al. (2017).

Hafnium isotopic ratios of zircon were determined with 
a Neptune Plus multiple collection ICP-MS equipped with a 
Geolas HD excimer ArF laser ablation system at the Wuhan 
Sample Solution Analytical Technology Co., Ltd., Wuhan, 
China. A “wire” signal smoothing device is included in this 
laser ablation system. Helium was utilized as the carrier gas 
and mixed with argon (makeup gas) after flowing out the 
ablation cell. Small amounts of N2 were added to the argon 
makeup gas flow to improve the sensitivity of Hf isotopes. 
A single spot ablation mode (spot size 44 μm) was applied, 
and the energy density of laser ablation was ~ 7.0 J cm−2. 
The signal acquisition was set to 20 s for the background and 
50 s for the sample. Zircon Plešovice was used as an external 
standard for calibration. Zircon 91,500 and GJ-1 were used 
as the second standards to monitor the quality of data correc-
tion. The external precisions (2σ) of the three international 
zircon standards are better than 0.000025 (176Hf/177Hf). 
The test values are consistent with the recommended val-
ues within the error ranges. More details on the analytical 
conditions and procedures can be found in Hu et al. (2012).

Raw data of trace elements and U–Pb and Hf isotopes 
were processed by the excel-based software ICPMSDataCal 
(Liu et al. 2008, 2010) and the results are summarized in 
Tables S10 and S11, respectively. Concordia diagrams and 
weighted mean calculations of U–Pb ages were made using 
Isoplot/Ex_ver4.15 (Ludwing 2003). εHf(t) values in this 
study are defined to denote the 1‱ difference between the 
sample and the chondritic reservoir (176Hf/177Hf = 0.282772, 
176Lu/177Hf = 0.0384; Blichert-Toft and Albarede 1997) at 
the time of zircon growth.

Mineral chemistry

Garnet

Representative garnet grains were selected for major ele-
ment mapping and quantitative profile analysis. Five 
zones (inner core, outer core, mantle, inner rim, outer rim) 
were identified for  larger grains (Fig. 3a–d, i), whereas 
smaller grains only contain one to four of these five zones 
(Fig. 3e–i). Taking the larger grains as an example, the 
inner core (zone A) displays a patchy microstructure and 
has a composition (Alm40–44Grs39–45Prp13–16Sps1) that var-
ies between different patches (Fig. 3a–d, i; Table S2). The 
other four zones are relatively homogeneous in composition. 

The outer core (zone B; Alm35–40Grs42–47Prp15–18Sps1; 
Fig. 3; Table S2) contains the highest Ca and the lowest 
Fe contents among all the five zones. The mantle (zone C; 
Alm41–43Grs35–39Prp18–21Sps1; Table S2) and the inner rim 
(zone D; Alm49–51Grs28–30Prp19–21Sps1; Table S2) display 
a successive decrease of the Ca content and increase of the 
Mg and Fe contents (Fig. 3). There are three short transition 
zones between zone A, B, C, and D (Fig. 3i). A network of 
veinlets with strong BSE brightness occurs in the mantle 
(zone C) and inner rim (zone D) and ends at the core-mantle 
(zone A/B-zone C) interface (Fig. 3a, e). The veinlets are 
too thin for accurate measurements of their composition. In 
the outer rim (zone E), the contents of Ca, Fe, and Mn are 
slightly increased, which are compensated by a drop of the 
Mg content (Alm50–52Grs28–31Prp18Sps2; Fig. 3i; Table S2).

All the measured garnet zones (A, B, C, D; E is too thin to 
analyze) show a relatively flat distribution pattern of heavy 
rare earth elements (HREE; LuN/DyN = 1.06–1.36; Table S9) 
with weak Eu anomalies (δEu = 0.83–1.11; Fig.  4a; 
Table S9), but the trace element contents do vary between 
them. The contents of P, Ti, Na, and Ga increase from zone 
A to B and then decrease to zone C and D (Fig. 4b), whereas 
the contents of REE (such as Sm, Gd, Y, and Yb) vary in a 
reverse way (Fig. 4c). For transitional metal elements, (1) 
the content of Cr displays a gradual increase from zone A to 
zone D, (2) the contents of Co and Zn reach maxima in zone 
C, and (3) the content of V is similar between zone A and B 
and then decreases to C and D (Fig. 4d).

Other minerals

Omphacite in the matrix commonly shows a core-
rim zoning. The core of matrix omphacite has a com-
position of Wo34–36En30–31Jd24–31Ae0–6Fs3–5, while 
the rim of matrix omphacite has lower Na contents 
(Wo35–38En29–35Jd17–29Ae0–13Fs4–7; Fig.  S1a; Table  S3). 
Diopside in the symplectite after omphacite displays a 
composition of Wo44–45En35–37Jd5–9Ae2–4Fs8–11 (Fig. S1a; 
Table S3). Phengite contains 3.2–3.6 Si, 1.81–2.42 Al, 
and 0.02–0.04 Ti per formula unit (p.f.u.), with the Si 
content decreasing towards the rim (Fig. S1b; Table S4). 
Biotite in the symplectite after phengite has a Ti content of 
0.08–0.14 p.f.u. and a Mg* value (= Mg/(Mg + total Fe)) 
of 0.61–0.71 (Table S4). Amphibole contains a Si content 
of 6.12–6.86 p.f.u. and a Mg# (= Mg/(Mg + Fe2+)) value 
of 0.53–0.77 (Table S5). According to the classification 
scheme of Leake et al. (1997), amphibole in GJL10-8 is 
pargasite and edenite (Fig. S1c). Plagioclase in the symplec-
tite after omphacite is generally albite (Ab68–97An3–30Or0–2; 
Table S6), while that in the symplectite after phengite is 
richer in Ca (Ab64–73An24–36Or1–4; Table S6). Clinozoisite 
has a XFe (= total Fe/(total Fe + Al)) value of 0.15–0.19 
(Table S7). Dolomite and calcite display a composition of 
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Ca50–51Mg42–44Fe6–8(CO3)2 and Ca88–97Mg1–7Fe1–5(CO3)2, 
respectively (Table S8).

Zircon geochronology

Zircon in sample GJL10-8 is isometric or oval (aspect 
ratio of 1:1 to 1:2) with the long axis ranging from 60 
to 130 μm (Fig. 5). CL imaging revealed a core-rim or a 

core-mantle-rim zoning for many zircon grains. According 
to the CL feature, mineral inclusion distribution, and com-
positional variation, three main domains were identified for 
zircon.

Domain 1 commonly occurs in the core and is weakly 
zoned (Fig. 5a–e). It contains inclusions of coesite, garnet, 
omphacite, phengite, magnesite, dolomite, calcite, rutile, 
and apatite (Figs. 5a, b and 6; Table 1). Ten U–Pb analy-
ses on domain 1 yielded concordant 206Pb/238U ages from 
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243 to 221 Ma, with a weighted mean age of 233 ± 6 Ma 
(MSWD = 6.7; Fig.  7a, b; Table  S10). The Th content 
(12–54 ppm) of domain 1 is higher than the other two 
domains, but the U content (143–328 ppm) is relatively low 
(Fig. 8a; Table S10). The Th/U ratio (0.05–0.21) of domain 
1 is normally greater than 0.1 (Fig. 8a; Table S10). Domain 
1 shows a nearly flat HREE distribution pattern (LuN/
DyN = 1.50–2.41) and weak Eu anomalies (δEu = 0.64–1.05; 
Fig. 8b). This domain has a ∑MREEs content of 5.1 to 
23.0 ppm with a median of 13.0 ppm and an interquartile 
range (IQR) of 10.7–21.2 ppm (Fig. 8c; Table S10). The 
Ti contents of this domain have a range of 3.3–9.5 ppm, 
with a median of 5.9 and an IQR of 4.5–6.9 ppm (Fig. 8d; 
Table  S10). Sixteen Lu–Hf analyses were conducted 
on domain 1, yielding a very low 176Lu/177Hf ratio of 
0.000011–0.000027 (Table S11). The initial 176Hf/177Hf 
ratios (0.282563–0.282667) were calculated using the 
weighted mean age of domain 1 (233 Ma) and the decay 

constant of 176Lu of Söderlund et al. (2004), which are 
just the same as the measured 176Hf/177Hf ratios (Fig. 9a; 
Table S11).

Domain 2 shows a much weaker CL emission than 
domain 1 and 3. It is generally patchy zoned and occurs 
as mantles surrounding domain 1, or as cores where 
domain 1 is not present (Fig. 5e–g). Mineral inclusions 
are rare and only one garnet inclusion was identified in 
domain 2 (Table 1). Twenty U–Pb analyses on domain 2 
yielded concordant 206Pb/238U ages from 243 to 226 Ma 
(Fig. 7; Table S10). The weighted mean age of domain 2 
(232 ± 2 Ma, MSWD = 2.8) is the same as domain 1 within 
the uncertainties (Fig. 7b, c). Domain 2 contains a relatively 
low Th content (3.6–32.4 ppm) and a much higher U content 
(299–1185 ppm) than the other two domains, giving rise to 
a very low Th/U ratio (0.01–0.06; Fig. 8a; Table S10). The 
REE distribution pattern of domain 2 (LuN/DyN = 1.05–3.00; 
δEu = 0.58–1.17) is similar to domain 1 (Fig. 8b; Table S10). 
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The ∑MREEs content of domain 2 is lower than domain 1 
and varies from 3.3 to 21.2 ppm (one outlier of 49.5 ppm) 
with a median of 9.9 ppm and an IQR of 7.5–13.6 ppm 
(Fig. 8c; Table S10). Except for two outliers (14.5 and 
13.7 ppm), domain 2 has a Ti content of 1.7–10.4 ppm with 
a median of 4.0 ppm and an IQR of 3.2–6.2 ppm (Fig. 8d; 
Table S10), slightly lower than the Ti content in domain 1. 
Fifteen Lu–Hf analyses on domain 2 yielded a 176Lu/177Hf 
ratio of 0.000004–0.000036 and an initial 176Hf/177Hf ratio 
(calculated at 232 Ma) of 0.282354–0.282607 (Fig. 9a; 
Table S11). While there is a slight overlap between the initial 
176Hf/177Hf ratios of domain 1 and 2, domain 2 shows much 
lower values (Fig. 9a).

Domain 3 occurs as single grains or surrounds the other 
two domains. It displays a homogeneous or a patchy zoning 
and comprises 2 to 3 subdomains in some cases (Fig. 5b–h). 
Mineral inclusions identified in domain 3 include garnet, 
omphacite, quartz, calcite, rutile, and apatite (Figs. 5g and 
6; Table 1). Twelve U–Pb analyses on domain 3 yielded 
concordant 206Pb/238U ages from 236 to 219  Ma, with 
a weighted mean age (222 ± 3 Ma; MSWD = 2.1) much 
younger than domain 1 and 2 (Fig.  7a, d; Table  S10). 
Among the three domains, domain 3 contains the lowest 
Th (3.8–15.1 ppm) and U contents (171–351 ppm) and 
a Th/U ratio (0.02–0.06) comparable to that of domain 
2 (Fig. 8a; Table S10). The REE distribution pattern of 
domain 3 (LuN/DyN = 1.63–3.42; δEu = 0.27–1.04) is simi-
lar to the other two domains (Fig. 8b; Table S10). How-
ever, the ∑MREEs content of domain 3 (1.9–8.3 ppm; 
median = 4.8  ppm; IQR = 3.4–5.9  ppm) is much lower 
than the other two domains (Fig.  8b, c; Table  S10). 

Moreover, domain 3 contains a Ti content (4.3–15.8 ppm; 
median = 9.2 ppm; IQR = 7.4–11.0 ppm; Fig. 8d; Table S10) 
much higher than the other two domains. Twelve Lu–Hf 
analyses on domain 3 yielded a low 176Lu/177Hf ratio of 
0.000009–0.000035 (Table S11). The initial 176Hf/177Hf 
ratios (0.282449–0.282636; calculated at 222  Ma) of 
domain 3 are in between those of domain 1 and 2 (Fig. 9a; 
Table S11).

Forward modeling and P–T estimates

Modeling methods

Forward modeling was performed using Perple_X (ver-
sion 7.0.1, Connolly 2009) in the simplified system of 
Na–K–Ca–Fe–Mg–Mn–Al–Si–C–H–O. The thermodynamic 
dataset of Holland and Powell (2011) and the state equation 
of H2O-CO2 fluid of Holland and Powell (1991) were used. 
For solid and fluid solutions, the following models were 
selected: garnet, phengite, biotite and chlorite (White et al. 
2014), omphacite (Green et al. 2007), amphibole (Green 
et al. 2016), feldspar (Fuhrman and Lindsley 1988), epidote 
(Holland and Powell 2011), magnesite and dolomite (Hol-
land and Powell 1998), and fluid (Connolly and Tromms-
dorff 1991). Quartz, coesite, lawsonite, titanite, and rutile 
were treated as pure phases. As apatite is not considered in 
our calculation, the CaO in apatite was deducted from the 
measured bulk-rock composition. Using the Fe3+ contents 
in constituent minerals, 10–15% of the bulk-rock Fe was 
estimated to be Fe3+ (corresponding to additional O2 content 
in the model system). A H2O content (ca. 3 wt%) that can 
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saturate the whole modeled P–T range with a fluid phase 
was used.

In order to constrain the P–T evolution, a P–T pseudo-
section was calculated in the P–T range of 1.0–5.0 GPa and 
600–750 °C (Fig. 10). Noted is that the rock could have 
experienced a complicated carbonation and decarbonation 
history during metamorphism. Thus, it’s hard to recover the 
bulk-rock CO2 content for each metamorphic stage. The 

carbonate content (ca. 3 vol%) in GJL10-8 indicates a bulk-
rock CO2 content of 1–1.5 wt% CO2. However, a value of 
2.5 wt% was chosen to calculate the P–T pseudosection. The 
major reason for this is to reproduce the highest grossular 
content measured in garnet in the modeled P–T range. To 
evaluate the influence of the CO2 content on the modeling 
results, two T-X pseudosections at 3.5 and 4.5 GPa and 
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Table 1   Statistic of mineral 
inclusions in different zircon 
domains from eclogite GJL10-8

Inclusions were identified by laser micro Raman spectrometer and energy dispersive spectrometer

Mineral Grt Omp Phn Coe Qz Mgs Dol Cal Rt Ap

Domain 1 43 52 2 5 1 1 1 3 44 15
Domain 2 1
Domain 3 45 30 2 1 19 4
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one P-X pesudosection at 700 °C were further calculated 
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(Fig. 11). The effective bulk-rock compositions (EBCs) used 
for modeling are shown in Table S1.

Modeling results

Petrographic features and mineral inclusions in zircon sug-
gest a peak UHP mineral assemblage of garnet + ompha-
cite + phengite + coesite + magnesite ± dolomite + rutile for 
the eclogite (Table 1). According to the modeling results, 
this assemblage is stable at pressures higher than 3.5 GPa 
at 700 °C (Fig. 10a). Phengite in GJL10-8 contains a Si 
content up to 3.6 p.f.u. (Table S4), which indicates a mini-
mum peak pressure of 4.0 GPa at 700 °C (Fig. 10c). The 
composition of garnet zone A falls in the lawsonite field 
at UHP conditions: (1) some Mg-rich patches contains 
39–40 mol% grossular and 16 mol% pyrope (Fig. 3i), the 
isopleths of which intersect at 3.2–3.4 GPa and 620–630 °C 
in the field of garnet + omphacite + phengite + law-
sonite + coesite + magnesite + dolomite + rutile (Fig. 10a); 
and (2) the other compositional patches (42–45 mol% gros-
sular and 13–15 mol% pyrope; Fig. 3i) yielded low-angle 
intersections in the field of garnet + omphacite + phen-
gite + lawsonite + coesite + magnesite + rutile and no 
conclusive P–T intersections can be obtained (Fig. 10a, 
d, e). Garnet zone B contains 45–47 mol% grossular and 
16–17 mol% pyrope (Fig. 3i), which indicate higher P–T 
conditions than zone A and are suggested to represent the 
peak composition (Fig. 10d, e). The compositional isop-
leths of zone B are nearly parallel to each other in the UHP 
field, but its grossular contents suggest a peak P–T condi-
tion higher than 3.9–4.6 GPa and 680–750 °C (Fig. 10d). 
Garnet zone C and D contain successively lower grossular 
and higher pyrope contents and this compositional variation 
trend reverses in zone E (Fig. 3i). As discussed later, these 

three zones resulted from a dissolution and reprecipitation 
process and the EBCs responsible for their formation cannot 
be estimated. Nevertheless, the modeling results shown in 
Fig. 10 can still be used to constrain relevant P–T evolu-
tion in a semiquantitative way. To do so, the magnitudes 
of compositional variations between garnet zones were 
especially considered. This finally yielded a nearly isother-
mal decompression P–T path (Fig. 10d, e). Along this P–T 
path, the grossular content decreases and the pyrope content 
increases quickly in the field of garnet + omphacite + phen-
gite + coesite + magnesite + dolomite + rutile, which most 
likely corresponds to the formation stage of zone C. In the 
same way, zone D is interpreted to have formed in the field 
of garnet + omphacite + phengite + epidote + quartz ± dolo-
mite + rutile. The growth of dolomite by consuming mag-
nesite and epidote by consuming garnet should have deter-
mined the compositional changes from zone B to C and then 
to D, respectively (Fig. 10b). With further decompression, 
the amphibole formation could lead to the increase of gros-
sular content and the decrease of pyrope content in garnet 
zone E (Fig. 10b).

The minimum peak P–T conditions inferred from the 
peak mineral assemblage and the Si content in phengite 
change little with the bulk-rock CO2 content in the range 
of 1–5 wt% (Fig. 11a, b). Neither changes the general 
shape of the decompression P–T path (Fig. 11c, d). In con-
trast, the P–T conditions recorded by garnet zone A and 
B do change. With more CO2 in the bulk-rock, the field of 
garnet + omphacite + phengite + lawsonite + coesite + mag-
nesite + dolomite + rutile gets extended to lower tempera-
tures and higher pressures and to accommodate more 
compositional intersections of garnet zone A (Fig. 11a–c). 
In addition, the modeled maximum grossular content 
increases with the bulk-rock CO2 content: the usage of 
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a value less than 2.5 wt% cannot reproduce the highest 
grossular content measured in zone B in the modeled P–T 
range, while a value between 2.5 and 5.0 wt% does not 
change the minimum P–T conditions recorded by zone B 
(Fig. 11b–d). Even with these P–T uncertainties, a gen-
eral clockwise P–T path as shown in Fig. 10 can still be 

outlined: (1) garnet zone A records a prograde P–T con-
dition in the field of garnet + omphacite + phengite + law-
sonite + coesite + magnesite ± dolomite + rutile; (2) garnet 
zone B records a peak P–T condition in the field of gar-
net + omphacite + phengite + coesite + magnesite ± dolo-
mite + rutile; (3) garnet zone C, D, and E record a nearly 
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isothermal decompression still within eclogite-facies; and 
(4) the symplectites after omphacite and phengite record 
a typical amphibolite-facies retrogression. In Fig. 12 and 
Table 2 is summarized the evolution history of eclogite 
GJL10-8.

P–T estimates from Ti‑in‑zircon thermometer

The P-dependent Ti-in-zircon thermometer newly calibrated 
by Crisp et al. (2023) was applied and the TiO2 and SiO2 
activities were both assumed as one given the occurrence of 
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rutile and coesite/quartz in GJL10-8. The analytical uncer-
tainties (1σ) of Ti contents in zircon were in the range of 
15–20% in our study, which would be propagated to the cal-
culated temperatures.

Domain 1 of zircon in GJL10-8 includes coesite, dolo-
mite, and magnesite (Table 1) and is interpreted to have 
formed at a UHP stage (Fig. 10a). Domain 2 contains a Ti 
content slightly lower than domain 1 (Fig. 8d) but textur-
ally later (Fig. 5e). According to their similar ages (Fig. 7) 
and the distribution of Ti-in-zircon isopleths in P–T space 
(Fig. 12), it is inferred that domain 1 and 2 most likely 
formed shortly before and at the peak UHP stage, respec-
tively. Domain 1 records a crystallization temperature of 
739–847 (median = 795; IQR = 768–812) °C at 3.5 GPa, 
while domain 2 records a crystallization temperature of 
705–891 (median = 785; IQR = 762–831) °C at 4.5 GPa. 
Domain 3 most likely formed in the stability field of epidote 
during early exhumation (see discussion part) and records 
a crystallization temperature of 701–827 (median = 771; 
IQR = 750–789) °C at 2.0 GPa.

Discussion

Zoned garnet as a witness of P–T changes 
and pervasive fluid–rock interactions: the key role 
of dissolution and reprecipitation

Evidence on the prograde history before UHP peak has been 
rarely documented for the Dabie–Sulu UHP rocks (Ebanu 
and Nagasaki 1999; Taguchi et al. 2016; Zhang et al. 2005). 
It has been proposed that the Dabie–Sulu UHP eclogites 
could have evolved through the stability field of lawsonite 
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Table 2   Metamorphic evolution 
of eclogite GJL10-8

Stage

Note Prograde Peak UHP UHP-EG HP-EG AM

Grt Grt_A Grt_B Grt_C Grt_D&E

Cpx Omp Di

Phn Si≥3.6 p.f.u.

Bt

Coe

Qz

Lws

Aln

Ep

Amp

Pl

Mgs

Dol

Cal

Rt

Ttn

EG Eclogite facies; AM Amphibolite facies

Grt_A

Omp

Si≥3.6 p.f.u.

Grt_B Grt_C Grt_D&E

Di

EG Eclogite facies; AM Amphibolite facies
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during prograde metamorphism (Guo et al. 2012, 2013; Li 
et al. 2004; Wei et al. 2013). Garnet zone A in this study 
acts as a piece of potential evidence on this prograde meta-
morphism (Fig. 10a). It is noteworthy that garnet zone A 
shows a patchy microstructure (Fig. 3a), a typical alteration 
result from dissolution and reprecipitation (Faryad et al. 
2018; Konrad-Schmolke et al. 2007; Kulhánek et al. 2021; 
Putnis 2002; Vho et al. 2020). The fluid responsible for this 
alteration could have been sourced either from the prograde 
breakdown of lawsonite or from an external source (see later 
discussion). Garnet zone A is connected to zone D and E 
by a network of veinlets in zone C (Fig. 3a). The veinlets 
are interpreted as microfractures that have been healed and 
formed later than zone C. Earlier studies suggested that these 
microfractures could behave as efficient channels for flu-
ids to alter the garnet interiors (Bovay et al. 2021; Giuntoli 
et al. 2018; Vho et al. 2020). This indicates that the patchy 
microstructure observed in this study could have alterna-
tively formed at a retrograde stage, for example, at the same 
time with garnet zone D or E. Nevertheless, garnet zone A 
shows very different compositions to zone D or E (Fig. 3i), 
thus, ruling out this possibility.

Garnet zone B contains the highest grossular contents 
among all the garnet zones and is interpreted as a peak 
growth after zone A (Figs.  3i and 10d). This explana-
tion is supported by the highest contents of P, Ti, and Na 
measured in zone B (Fig. 4b) since these minor elements 
can be positively correlated with pressure (Hermann and 
Spandler 2008; Konzett and Frost 2009). This garnet zone 
records a minimum peak P–T condition of 3.9–4.6 GPa and 
680–750 °C (Fig. 10a, d), comparable to earlier estimates 
for the Dabie UHP rocks (Liu et al. 2015, 2019; Schmid 
et al. 2000; Wei et al. 2013). The highest grossular con-
tents in garnet zone B are mainly attributed to the final 
breakdown of lawsonite during prograde metamorphism 
(Fig. 10a). As discussed later, a Ca-bearing C–H–O fluid 
from the host marble could have infiltrated the eclogite at 
the peak stage. There is no wonder that the addition of Ca 
could have increased the grossular content in garnet zone B. 
Moreover, the addition of CO2 has to be considered since 
the peak garnet composition may change with the bulk-rock 
CO2 content: (1) if garnet zone B had formed in the field of 
garnet + omphacite + phengite + lawsonite + coesite + mag-
nesite + dolomite + rutile, the influence could have been 
minor; (2) if garnet zone B had formed in the field of gar-
net + omphacite + phengite + lawsonite + coesite + magne-
site + rutile, the addition of CO2 could have contributed to 
the increase of its grossular content (Fig. 11). It should be 
noted that garnet zone B also contains higher pyrope con-
tents than zone A (Fig. 3i). This cannot be interpreted only 
by infiltration of an Ca-bearing C–H–O fluid. Otherwise, 
the pyrope content would have decreased in garnet zone B 
(Fig. 11b–d). Therefore, lawsonite breakdown related to P–T 

changes should have dominated over the infiltration of an 
Ca-bearing C–H–O fluid in shaping the major element com-
position of garnet zone B.

Garnet zone C, D, and E record a nearly isothermal 
decompression P–T path, along which the modal content of 
garnet would decrease (Fig. 10b). Thus, these three garnet 
zones are interpreted to have formed from re-equilibration 
of former garnet instead of as new growth zones. Compo-
sitional re-equilibration of garnet depends on two basic 
mechanisms, i.e. diffusion and dissolution-reprecipitation 
(Kohn 2014; and references therein). Elemental exchange 
with other minerals by diffusion generally forms a transi-
tional zoning in garnet, which contradicts with the relatively 
flat compositional profiles observed for each of the three 
retrograde garnet zones (Fig. 3i). In contrast, dissolution-
reprecipitation generally forms a sharp zoning boundary that 
is shared by different elements (Cheng et al. 2007; Giuntoli 
et al. 2018; Martin et al. 2011). The compositional contacts 
between different garnet zones in this study are largely 
stepwise (Fig. 3i) and more compatible with a dissolution-
reprecipitation mechanism. The short transitional zones 
between different zones can be attributed to modifications of 
following interface diffusion. Depending on the precipitated 
sites of dissolved materials, dissolution and reprecipitation 
can be space-coupled (i.e. pseudomorphic) or -uncoupled 
at the submicroscopic scale (Giuntoli et al. 2018; Martin 
et al. 2011). In this study, space-coupled dissolution and 
reprecipitation is preferred for larger garnet grains because 
most of them retained their intact shape after the formation 
of garnet zone C, D, and E (Fig. 3a, e), which is a typical 
space-coupled result (Martin et al. 2011; Putnis and Mezger 
2004; Smit et al. 2008). Space-uncoupled dissolution and 
reprecipitation must have also taken place as some smaller 
grains among garnet aggregates display corroded outlines 
(Fig. 3e).

Since dissolution-reprecipitation needs the action of flu-
ids, the repeated actions of such a mechanism in altering gar-
net composition suggest multistage fluid–rock interactions 
during exhumation. Moreover, the alteration patterns of gar-
net and the formation of healed fractures in garnet (Fig. 3) 
indicate fluid flow along grain boundaries and microfrac-
tures, i.e., the fluid–rock interactions were pervasive (Ague 
2014). The fluids responsible for the garnet compositional 
alteration during exhumation could have been either exter-
nally or internally derived. In the case of an external origin, 
more Ca-bearing C–H–O fluids could have infiltrated the 
eclogite during exhumation (Fig. 12). The addition of Ca 
could increase the grossular contents in garnet, which is 
consistent with the compositional recordings of garnet zone 
E but not with those of zone C and D (Fig. 3i). Meanwhile, 
the addition of CO2 had little influence on the garnet com-
position (Fig. 11d). Again, it can be concluded that P–T 
changes instead of infiltrated Ca-bearing C–H–O fluids have 
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dominated the compositional changes of major elements 
in garnet zone C, D, and E.

It is noteworthy that the REE contents in garnet first 
decrease from zone A to zone B and then increase to zone C 
and D (Fig. 4c). Garnet is the major host of HREE in eclog-
ite (Liu et al. 2019; Spandler and Pirard 2013). The decrease 
and increase of the HREE contents can get explained by 
the prograde growth and retrograde breakdown of garnet, 
respectively (Fig. 10b). The decrease of LREE and MREE 
contents in garnet zone B could have been related to the 
breakdown of lawsonite and the formation of allanite at the 
peak stage (Fig. 12), the latter of which can sequester con-
siderable LREE and MREE from the bulk rock (Martin et al. 
2014; also see later discussion). It’s more complicated to 
explain the increase of LREE and MREE contents in garnet 
zone C and D. The breakdown of garnet could have also 
released some MREE but not LREE during exhumation. 
Infiltration of external fluids could have introduced extra 
LREE and MREE into the eclogite.

Multiple generations of eclogite‑facies zircons: 
the compositional influences of epidote‑group 
minerals and pressure decrease

All the three zircon domains display a flat HREE distribu-
tion pattern and weak Eu anomalies (Fig. 8b) and contain 
eclogite-facies mineral inclusions (Table 1), suggesting that 
they formed at eclogite-facies conditions (Rubatto 2002; 
Whitehouse and Platt 2003). Without anatexis, metamorphic 
zircon can form from the following mechanisms: solid-state 
and fluid-aided recrystallization of former magmatic zircons 
and growth from fluids (e.g. Geisler et al. 2007; Hoskin 
and Black 2000; Rubatto and Hermann 2003). Solid-state 
recrystallization is inefficient in resetting the composition 
of former magmatic zircons (Chen et al. 2010; Hoskin and 
Black 2000) and thus cannot explain the concordant U–Pb 
ages or the REE features of the studied zircon. The other 
two mechanisms are largely equivalents to the space-cou-
pled and -uncoupled dissolution-reprecipitation discussed 
above. They can guarantee the concordance of U–Pb ages 
and equilibration of trace element composition of metamor-
phic zircon with surrounding minerals (Chen et al. 2010; 
Harlov et al. 2023; Martin et al. 2008) and are preferred to 
explain the formation of the studied zircon. Consequently, 
the eclogite-facies zircons provide another evidence for mul-
tistage pervasive fluid–rock interactions that had happened 
in the eclogite.

Metamorphic zircons commonly have a Th/U ratio 
below 0.1 (Rubatto 2017; and references therein), but zir-
con domain 1 in this study has a Th/U ratio higher than 0.1 
(Fig. 8a). One can argue that the high Th/U could have inher-
ited from former magmatic zircons after recrystallization. If 
so, the REE pattern must have also inherited the magmatic 

left-declined feature to some extents (Chen et al. 2010). 
However, this is not the case. A closer examination reveals 
that the high Th/U in zircon domain 1 is mainly related to 
its high Th contents (Fig. 8a). The presence of allanite and 
monazite (two Th-rich phases) has been invoked as a reason 
for low Th/U in coexisting metamorphic zircon (Rubatto 
et al. 2009; Stepanov et al. 2016; Yakymchuk et al. 2018). 
As presented above, zircon domain 1 formed at a prograde 
UHP stage, likely in the stability field of lawsonite (Fig. 12). 
The absence of allanite and monazite could have produced 
metamorphic zircon with high Th contents and high Th/U 
at this stage. Prograde lawsonite breakdown would release 
LREE and Th (Martin et al. 2014) so to facilitate the forma-
tion of allanite at the peak stage. Allanite has a wide stability 
field in P–T space (Hermann 2002; Poli and Schmidt 2004) 
and occurs in the eclogite (Fig. 2e). The formation of allanite 
after lawsonite can explain the low Th/U in zircon domain 
2 and 3 (Fig. 8a). It is noteworthy that zircon domain 2 also 
contains higher U contents than the other two domains. As 
discussed below, an external fluid infiltrated the eclogite dur-
ing the formation of zircon domain 2. Uranium (in the state 
of U6+) is more soluble than Th in aqueous fluids (Kessel 
et al. 2005; Spandler et al. 2007). The introduction of U by 
external fluids could have contributed to the higher U con-
tents in zircon domain 2.

Zircon domain 2 contains slightly lower ∑MREEs con-
tents than domain 1, while the ∑MREEs contents become 
further lower in domain 3 (Fig. 8b, c). These composi-
tional variations can be best interpreted by the formation of 
MREE-rich minerals in the eclogite. Zircon domain 2 most 
likely formed at the peak stage and coexisted with allan-
ite (see above). Compared to lawsonite, allanite is not only 
richer in LREE but also richer in MREE (Martin et al. 2014). 
Thus, the formation of allanite after lawsonite can explain 
the slight decrease of ∑MREEs contents in zircon domain 
2. During exhumation, more and more epidote formed in the 
eclogite at pressures below 2.0–2.5 GPa (Fig. 10a). Epidote 
is also a LREE- and MREE-rich mineral although not so rich 
as allanite (El Korh et al. 2009; Hermann 2002; Spandler 
et al. 2003). The further decrease of ∑MREEs contents in 
zircon domain 3 can be interpreted by the gradual formation 
of retrograde epidote. In fact, zircon domain 3 also contains 
lower ∑LREEs contents than domain 1 and 2 (Fig. 8b), 
which is another indicator of epidote coexistence. However, 
the LREE contents in zircon domain 3 are often below the 
detection limits so that a quantitative comparison cannot 
be made. In addition to epidote, the retrograde growth of 
titanite and amphibole may have also exerted an influence on 
the MREE contents in zircon domain 3 (El Korh et al. 2009; 
Sassi et al. 2000; Spandler et al. 2003). However, titanite and 
amphibole mainly formed at the amphibolite-facies stage 
and do not occur as inclusions in zircon domain 3. Thus, 
their influence can be neglected.
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Zircon domain 3 contains higher Ti contents than domain 
1 and 2 (Fig. 8d). In general, higher Ti contents in zircon 
are interpreted to reflect higher temperatures (e.g. Chen 
et al. 2013; Gao et al. 2011; Stepanov et al. 2016). How-
ever, pressure also exerts a control on the Ti incorporation 
in zircon (Ferriss et al. 2008; Tailby et al. 2011). The influ-
ence of pressure has to be considered especially for UHP 
rocks that traveled through a large pressure window. As dis-
cussed above, zircon domain 3 formed during exhumation. 
According to the distribution of Ti-in-zircon isopleths in 
P–T space, a nearly isothermal decompression P–T path as 
reconstructed in this study could also lead to the increase 
of Ti contents in zircon (Fig. 12). Different zircon domains 
record temperatures higher than 750 °C with the highest val-
ues more than 800 °C (Fig. 12). Such high temperatures are 
somewhat inconsistent with the preservation of the stepwise 
zoning pattern of garnet since fast volume diffusion at high 
temperatures could have erased this zoning pattern (Caddick 
et al. 2010; Carlson 2006; Ganguly et al. 1998). Besides, if 
the temperatures recorded by zircon were realistic, extensive 
hydrous melting should have occurred but were not observed 
in the eclogite. Since the Ti-in-zircon thermometer may have 
overestimated the metamorphic temperatures, we tentatively 
limit the peak temperature below 750 °C (Fig. 12) by refer-
ring to our early studies on the Ganjialing area (Liu et al. 
2015, 2019).

In view of the above discussion, we can assume that zir-
con domain 2 and 3 formed at 4.5 and 2.0 GPa, respec-
tively. The mean age difference between these two domains 
is 10 ± 5 Ma. Using these parameters, the early exhumation 
rate was roughly estimated. The result is 5.5–16.5 mm/y, 
with the upper limit higher than earlier estimates for the 
Dabie–Sulu UHP rocks (5.0–11.3 mm/y; Liu and Liou 2011; 
and references therein). It corresponds to a low to intermedi-
ate exhumation rate among all the (U)HP terranes (Hermann 
and Rubatto 2014).

Zircon Hf isotopes: insights into external fluids 
influx and Hf mobility

Zircon domain 2 formed later and contains much lower 
(176Hf/177Hf)t than domain 1 (Fig. 9a). Zircon is the major 
host for Hf and has the lowest Lu/Hf (< 0.0001) among com-
mon metamorphic minerals (Rubatto 2017; Spandler and 
Pirard 2013). Re-equilibration with other minerals normally 
elevates 176Hf/177Hf in zircon in a closed rock system (Zheng 
et al. 2005b). Taking lawsonite and epidote as two examples, 
both minerals contain much higher Lu/Hf than zircon, break-
down or dissolution of the two minerals would lead to a higher 
176Hf/177Hf in growing zircon. Thus, the lower (176Hf/177Hf)t 
in zircon domain 2 most likely reflects an infiltration of exter-
nal fluids. The Hf isotopic composition of zircon domain 2 is 
more heterogeneous than domain 1, supporting that domain 2 

had been in disequilibrium with an infiltrated fluid. It should 
be noted that the protolith of marble-hosted eclogites in the 
Dabie-Sulu UHP terrane is marl and/or basaltic tuff (Chen 
et al. 2016; Wu et al. 2006) and could have contained detrital 
materials with various origins. In such a case, another possi-
bility must be evaluated. Considering that zircon is the major 
host of Hf in most rocks (Spandler and Pirard 2013; and ref-
erences therein), the compositional difference of Hf isotopes 
between zircon domains 1 and 2 might be an inherit of two 
groups of detrital zircons. Such a selective inherit seems highly 
unlikely in the presence of fluids as there is no reason why low 
176Hf/177Hf detrital zircon did not participated the formation 
of zircon domain 1 at the very beginning. The (176Hf/177Hf)t 
of zircon domain 3 is in between those of domain 1 and 2. It 
is ambiguous if this is a just inherit of the earlier two domains 
or had involved any infiltrated fluids (Fig. 12). Compared to 
zircon domain 2, domain 3 shows higher (176Hf/177Hf)t, which 
can be partly attributed to the incorporation of radiogenic Hf 
released by garnet during HP recrystallization.

The εHf(t) of zircon domain 2 is -9.70 to -0.76 at the crys-
tallization time, much lower than that of domain 1 (-2.31 to 
1.40; Table S11). The negative εHf(t) of zircon domain 2 
suggests that the infiltrated fluid originated from an evolved 
crustal reservoir, such as the host marble (Fig. 9b). More 
importantly, the significant decrease of 176Hf/177Hf in zircon 
domain 2 indicates that Hf can be efficiently mobilized by flu-
ids at UHP conditions. As an important HFSE, Hf is insoluble 
in aqueous fluids (Ayers and Watson 1991; Kovalenko and 
Ryzhenko 2009; Schmidt et al. 2006). However, experimental 
studies have demonstrated that the presence of Na–Al–silicate 
and CaCl2 components can boost the dissolution of Zr in aque-
ous fluids by forming alkali zircon-silicate and Ca3[Zr(OH)6]4+ 
complexes, respectively (Brendebach et al. 2007; Wilke et al. 
2012). Hafnium behaves geochemically similar with Zr due 
to their similar ionic radii and charges (Hf4+ vs. Zr4+). Thus, 
it is inferred that Hf can be also mobilized by similar com-
plexes. The infiltrated fluid is explained to have originated 
from the host impure marble in this study, which must have 
been a CO2-bearing aqueous fluid (Castelli et al. 2007; Liu 
et al. 2015). The role of CO2 component in influencing the 
mobility of Hf is unclear now and calls for attention in the 
future. Meanwhile, recent forward modeling and fluid inclu-
sion studies demonstrated that UHP C–H–O fluids in impure 
marbles could dissolve considerable Ca (Connolly and Galvez 
2018; Maffeis et al. 2021). This provides a feasible geochemi-
cal context for Hf mobilization.

Conclusions

Garnet and zircon in a marble-hosted eclogite from the 
Dabie UHP terrane show complex zoning patterns and doc-
ument multistage pervasive fluid–rock interactions during 



	 Contributions to Mineralogy and Petrology (2024) 179:7979  Page 20 of 24

deep subduction and exhumation. The inner patchy and outer 
cores of garnet likely record a prograde breakdown of law-
sonite to UHP peak (3.0–4.5 GPa and 630–750 °C) and their 
formation could have also involved a Ca-metasomatism. The 
mantle and inner and outer rims mainly resulted from dis-
solution and reprecipitation of former garnet and record a 
nearly isothermal decompression at eclogite-facies condi-
tions. Zircon domain 1 (243–221 Ma; mean = 233 ± 6 Ma) 
formed at a prograde UHP stage and likely in the stabil-
ity field of lawsonite. The relatively high Th/U is related to 
the absence of allanite during its formation. Zircon domain 
2 (243–226 Ma; mean = 232 ± 2 Ma) formed at the UHP 
peak. The lower 176Hf/177Hf in this domain suggests that an 
external Ca-bearing C–H–O fluid from the host marble intro-
duced Hf into the eclogite. Zircon domain 3 (236–219 Ma; 
mean = 222 ± 3 Ma) formed at early exhumation and con-
tains much higher Ti and lower ∑MREEs contents than 
the other two domains, which reflect pressure decrease and 
epidote formation, respectively. The early exhumation rate 
was estimated to be in the range of 5.5–16.5 mm/y, corre-
sponding to a low to intermediate exhumation rate among 
all the (U)HP terranes.
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