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Abstract
Explosive silicic eruptions pose a significant threat to society, yet the development and destabilization of the underlying 
silicic magmatic systems are still controversial. Zircons provide simultaneous information on the trace element composition 
and age of silicic magmatic systems, while melt inclusions in quartz and plagioclase yield important constraints on their 
volatile content as well as magma storage depth. Melt inclusions in zircons (MIZs) combine these data from a single mineral 
grain, recording the age, storage depth, temperature, and composition of magmas, and thus provide unique constraints on 
the structure and evolution of silicic magmatic systems. We studied MIZs from the Laguna del Maule (LdM) volcanic 
field in the southern Andes that is among the most active Pleistocene-Holocene rhyolitic volcanic centers worldwide and 
a potentially hazardous system displaying inflation rates in excess of 25 cm/yr. The host zircon ages suggest that the LdM 
MIZ record extends to ~ 30 kyr before eruption, in contrast to the melt inclusions in LdM plagioclase and quartz crystals 
that formed only decades to centuries before eruption. The major element compositions of MIZs are minimally affected 
by post-entrapment crystallization, and agree well with the LdM rhyolitic whole rock data. The MIZs record long-term 
differences in zircon-saturated melt composition between two eruptive units (rdm: Rhyolite of the Laguna del Maule vs. rle: 
Rhyolite of Los Espejos). The more evolved major element composition of rle MIZs than rdm MIZs, suggests a long-term 
deeper connection of the rdm crystal mush to a more primitive magma body than that of the rle. The evidence of slow H 
diffusion observed in MIZs suggest that their  H2O contents are not significantly affected by diffusion of H through the host 
zircon. The magma storage pressures of 1.1 to 2.8 kbars recorded by the  H2O contents of rdm and rle MIZs are consistent 
with the optimal emplacement window (2.0 ± 0.5 kbar) of silicic magma reservoir growth, storage, and eruptibility based 
on thermomechanical modeling (Huber et al. 2019).
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Introduction

Silicic magmatic systems can generate explosive eruptions 
of moderate to large sizes (< 1 to >  103  km3), posing sig-
nificant risks to local communities and potentially causing 
substantial disruptions to global climate patterns that can 
adversely affect human societies and natural ecosystems. 
Shallow silicic magmas are thought to reside in the crust in 
the form of a crystal mush comprising less than 50% of melt, 
making it too viscous to erupt in bulk (Hildreth 2004). The 
process by which magma reservoirs develop and expand to 
significant sizes in the shallow crust over thousands of years, 
as well as the factors that cause destabilization, unrest, and 
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eruption, is a topic of debate (Mahood 1990; Bachmann and 
Bergantz 2004; Bindeman and Simakin 2014; Wolff et al. 
2015). The emerging model of trans-crustal magmatic sys-
tems suggests that sub-volcanic magma storage and differ-
entiation occurs within multiple mushy magma reservoirs 
distributed vertically throughout the crust (Cashman et al. 
2017).

Zircons have the unique ability to provide simultaneous 
information on the trace element composition and age 
within a single crystal domain by in situ microanalytical 
techniques (e.g., Claiborne et al. 2010; Reid et al. 2011). 
The examination of zircon ages and compositions in silicic 
systems has revealed a variety of processes, such as long-
term magma accumulation  (103–104 years), the merging of 
magmas with differing compositions, and the remobilization 
of near‐solidus silicic magma (e.g., Bindeman et al. 2008; 
Wilson and Charlier 2009; Charlier and Wilson 2010; 
Barker et al. 2014; Chamberlain et al. 2014; Wotzlaw et al. 
2015; Reid and Vazquez 2017). Zircons have also provided 
constraints on the duration of mobile and eruptible magma 
storage prior to eruption, although conflicting observations 
have been made based on trace element diffusion profiles in 
zircon that suggest eruptible magmas are a transient feature 
in a predominantly cool, crystalline, and largely subsolidus 
crystal mush (Cooper and Kent 2014; Rubin et al. 2017; 
Szymanowski et al. 2017), while Ti-in-zircon temperatures 
suggest storage of eruptible magma for a  103–104 year time 
scale (Barboni et al. 2016).

Eruptible rhyolite can be extracted via gravitational 
compaction and hindered settling (Bachmann and Bergantz 
2004), while injections of hotter primitive magma catalyze 
this process by thermally rejuvenating the crystal-rich 
magma or remelting the silicic crust and cumulate (Mahood 
1990; Bachmann and Bergantz 2004; Bindeman and Simakin 
2014; Wolff et al. 2015). Volatiles such as  CO2 and  H2O play 
an important role, as they can transfer heat from a degassing 
primitive magma to the overlying crystal mush (e.g., 
Bachmann and Bergantz 2006), promote melt migration 
through a crystal mush (e.g., Huber and Parmigiani 2018), 
cause second boiling, inflation of magma reservoir, and 
explosive behavior (Blundy and Cashman 2008). Melt 
inclusions in minerals such as quartz and plagioclase provide 
important constraints on the volatile content of the primitive 
and more evolved magma, as well as their storage depth 
(Wallace et al. 1999; Blundy and Cashman 2005; Wallace 
2005).

We present major element and  H2O contents of 
melt inclusions in zircon (MIZs) and the trace element 
composition and 230Th-238U ages of the host zircons erupted 
in the rhyolitic LdM volcanic field. Values of δ18O are also 
reported for MIZs and host zircons. LdM volcanic field 
is among the most active Pleistocene-Holocene rhyolitic 
volcanic centers worldwide and a potentially hazardous 

system showing inflation rates > 25 cm/yr (Singer et al. 
2014a). MIZs can record volatile saturation pressure 
 (H2O-CO2 in MIZ), temperature (Ti-in-zircon thermometer), 
composition (MIZ major and trace element), and time 
(230Th-238U ages) that provide a unique set of constraints on 
the understanding of the structure and evolution of silicic 
magmatic systems (e.g., Thomas et al. 2003). Using our data, 
we distinguish and evaluate the effect of post-entrapment 
modification versus primary magmatic processes on the MIZ 
composition through crystallization and diffusive exchange. 
We then use our data to examine the structure and storage 
conditions of magma reservoirs at LdM through time.

Geological setting

The Laguna del Maule volcanic field is located in the South-
ern Volcanic Zone (SVZ) of central Chile, 30 km behind the 
active volcanic front (Fig. 1). The volcanism at LdM has 
been dominantly silicic and concentrated within the cen-
tral lake basin since the most recent glacial retreat, which 
is estimated to have occurred locally at c. 23 to 19 ka based 
on 40Ar/39Ar dates of unglaciated lava flows (Singer et al. 
2000; Andersen et al. 2017). Both effusive and explosive 
eruptions at LdM yielded rhyolites that contain less than 
10 vol.% phenocrysts of plagioclase, biotite, and magnet-
ite ± quartz ± amphibole ± zircon. The 20  km3 plinian Rhyo-
lite of Laguna del Maule (rdm), thought to have erupted 
from a vent beneath the modern lake (Fierstein 2018), is the 
earliest known post-glacial rhyolite. The subsequent rhyolite 
eruptions, each less than 3  km3 in volume, occurred most 
frequently during an early post-glacial (EPG) period from 
22.5 to 19 ka, and during the middle to late Holocene. Rhyo-
dacite and andesite eruptions also occurred throughout post-
glacial times, but comprise a smaller cumulative volume 
than the rhyolites and were concentrated in the western LdM 
basin, away from the locus of rhyolite volcanism. Based 
on these observed spatial relations, Hildreth et al. (2010) 
proposed that a massive silicic magma reservoir is present 
below LdM, obstructing the rise of mafic magma.

This hypothesis is increasingly supported by geological, 
geochronological, and geophysical studies, which suggest 
that the shallow magma system is still active at present with 
ongoing average inflation of ~ 20 cm/year since 2007 (up to 
29 cm/year) (Feigl et al. 2014; Le Mevel et al. 2015, 2016; 
Andersen et al. 2017, 2018; Miller et al. 2017; Cordell et al. 
2018; Fierstein 2018; Singer et al. 2018; Wespestad et al. 
2019; Le Mével et al. 2021). Both surface- and teleseismic-
tomography have shown the presence of a crystal-rich 
reservoir with 450 to 500  km3 of partial melt at a depth of 
2–12 km beneath the northwest portion of the lake at LdM 
(Wespestad et al. 2019; Bai et al. 2020). Magnetotelluric 
observation suggests the presence of a deeper partially 
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molten reservoir that extends beyond 15 km depth (Cordell 
et al. 2018, 2019).

Plagioclase trace element compositions as well as 
plagioclase and quartz melt inclusions have provided 
constraints on magma extraction processes and magma 
storage conditions that have not been available from whole 
rock data (Andersen et al. 2018; Klug et al. 2020). Trace 
element diffusion modeling of LdM plagioclase suggests a 
short time scale (decades to centuries) between extraction 
of crystal-poor rhyolite from crystal mush and its eruption 
(Andersen et al. 2018). Melt inclusions in plagioclase and 
quartz revealed shallowing magma  storage depth with 
increasing degree of melt differentiation, with the latter 
being more evolved and recording lower  H2O contents/
shallower storage depth (Klug et al. 2020). Based on these 
observations, Klug et al. (2020) argued that crystal-poor 

rhyolite went through decompression-driven fractional 
crystallization as it ascended from ~ 14 km to ~ 4 km shortly 
before eruption.

Zircon petrochronology records up to 160 kyr of rhyolitic 
magma production in the crystal mush reservoir of the 
LdM (Andersen et al. 2019). The significant age difference 
between plagioclase and quartz (decades to centuries) 
compared to zircon has been attributed to extraction of 
rhyolite from a crystal mush entraining smaller zircons 
preferentially over larger crystals of major phases (Claiborne 
et al. 2010; Stelten and Cooper 2012; Andersen et al. 2019). 
Based on the Ti-in-zircon thermometry as well as modeling 
of zircon crystallization rates, contemporaneous existence 
of hot zones and regions of cold storage within the mush 
reservoir has been hypothesized (Andersen et al. 2019).

Samples and Methods

Samples

The sample that is the main focus of this study is from the 20 
 km3 plinian rdm unit (22.5 to 19 ka) that comprises ash and 
pumice lapilli (up to 4 cm in diameter) from quickly cooled 
tephra within well-defined stratigraphic sections (Klug et al. 
2020). We report data from an additional sample of the Los 
Espejos rhyolite (rle) unit, which erupted at 19.0 ± 0.4 ka 
subsequent to rdm (Andersen et al. 2017).

Mount preparation

A ~ 2 kg pumice sample of the rdm unit was crushed and 
sieved into ≥ 250 μm and < 250 μm size fractions. Approxi-
mately 1000 zircon grains were separated from the < 250 μm 
fraction using conventional techniques including Wilfley-
type shaking table, Frantz isodynamic magnetic separator, 
and heavy liquid separation. The zircon grains were then 
handpicked, cast in epoxy grain mounts, and polished. 
At least two grains each of UWZ-1 zircon (Valley et al. 
2024) and UWQ-1 quartz (Kelly et al. 2007) standards were 
also cast in the same mount. The relief between the grains 
and adjacent epoxy was minimized to < 1 μm and grains 
were placed in the central 8 mm radius region of the mount 
to ensure good spot-to-spot reproducibility (Kita et al. 2009; 
Peres et al. 2013). In addition to the epoxy mount, we also 
studied a mount with LdM zircons that was prepared and 
analyzed by Andersen et al. (2019) who pressed the zircon 
grains into soft indium and analyzed euhedral crystal faces 
for trace elements and 230Th-238U isotope ratios. The indium 
mount was then polished to expose the crystal interiors 
which were also analyzed for trace elements and 230Th-238U 
isotope ratios by Andersen et al. (2019). The MIZs exposed 

Fig. 1  Simplified map of the Laguna del Maule lake basin and the 
distribution of post-glacial eruptive units and vents (black stars). Lava 
flows and pyroclastic flows/falls that erupted in the early post-glacial 
period (22.5–19 ka) are outlined in blue, while those that erupted in 
the Holocene (8.0–1.8 ka) are outlined in red. Those that erupted in 
the interim are outlined in black. Eruptive units for which MIZ data 
were obtained (rdm and rle units in the northwest) are highlighted 
with darker red fill. Map is modified from Hildreth et al. (2010) and 
Andersen et al. (2019). The green square in the inset shows the loca-
tion of Laguna del Maule in the southern Andes
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in these zircons were studied here, which are all from the 
rle unit.

Imaging of zircons/MIZs

Zircons were imaged by reflected light, backscattered elec-
trons (BSE), and cathodoluminescence (CL) using a Hitachi 
S-3400N Scanning Electron Microscope (SEM) and Gatan 
Chroma CL system at the University of Wisconsin–Madison. 
For both the epoxy and indium mounts, we focused only on 
zircons that have MIZs. The crystal sizes range from 57 to 
174 μm on the long axis and 26 to 88 μm on the short axis 
with aspect ratios of 1 to 3.3 (Figs. 2 and S1). Zircon mor-
phologies range from anhedral to euhedral and prismatic and 
all the crystals are clear and colorless. In CL, the zircons are 
characterized by sector and oscillatory zoning. Around some 
melt/mineral inclusions, the host zircon is characterized by 
undulating CL pattern and/or bright CL (Fig. S1).

All zircon grains were imaged by BSE to look for MIZs 
exposed at the grain surface. A potential issue to this 
approach is that some of the 3D context of the MIZ and 
host zircon is lost from the polishing process of exposing the 
MIZ. This limits certain characterization of the MIZs such 
as their volume and dimensions, their spatial distribution 
within the host zircon, as well as the potential presence 
of vapor bubbles and crystals (e.g., Sobolev and Kostyuk 
1975; Roedder 1984; Bodnar and Student 2006; Rose-Koga 
et al. 2021) in the MIZs that may have been polished away. 
Despite the loss of certain 3D context, it is highly unlikely 
that the MIZs were embayment/melt channel that were 
in contact with the surrounding melt based on the clearly 
distinct  H2O content and major element composition of the 
MIZs compared to those of the surrounding melt (i.e., matrix 
glass) (Sects.  “Major Elements” and “H2O Contents”) 
indicating lack of communication between the MIZs and 
the surrounding melt.

Qualitative analyses of major elements of MIZs were 
done by an Oxford AZtecOne energy-dispersive X-ray 
spectroscopy (EDS) system with acceleration voltage and 
beam current of 15 kV and 1 nA, respectively. We carefully 
selected MIZs that are glassy and homogeneous. We also 
avoided MIZs that are visibly intersected by cracks in the 
host zircon. The nineteen MIZs identified in 17 rdm zircon 
grains range from 8 to 25 μm on the long axis and 5 to 14 μm 
on the short axis with aspect ratios of 1.1 to 5.3 (Figs. 2 and 
S1). Six MIZs found in the rle zircons range from 5 to 43 μm 
on the long axis and 3 to 5 μm on the short axis with aspect 
ratios of 1.1 to 8.7 (Figs. 2 and S1). On the exposed surface, 
all 25 MIZs are glassy and 20 are completely homogene-
ous while 5 of them are mostly homogeneous except small 
microcrystals of titanomagnetite and pyroxene (not shown). 
Nineteen of the MIZs are circular to oval in shape, while 

six are elongated to irregularly shaped. Four out of 17 rdm 
zircon grains have matrix glass adhered onto them.

EPMA of MIZs

Chemical composition of the MIZs was measured with 
a CAMECA SXFive Field Emission Electron Probe 
Microanalyzer (FE-EPMA) at the Department of Geoscience 
at the University of Wisconsin–Madison. The sample mounts 
were coated with a 20 nm carbon layer after being cleaned 
with distilled water and ethanol. Analyses were conducted 
with an accelerating voltage of 15 kV, a beam current of 1 
nA, and a beam diameter of 2 or 3 μm. The low beam current 
was selected to minimize beam induced element migration 
during the EPMA measurements. Major elements (Na, Al, 
Si, Mg, K, Ca) were measured for 200 s and quantified 
using Mean Atomic Number (MAN) background regression 
(Donovan et al. 2016). Oxygen and the remaining minor 
elements (P, Fe, Mn, Ti, Zr) were quantified using off-
peak background regression and measured for 60 s on peak 
and 30 s on each high and low background position. An 
exponential background regression was used for analysis 
of O. Time-dependent intensity corrections were applied 
for Na, K, Si, and O. Analysis of hydrous haplogranite 
glass (6.6 wt%  H2O; Morgan and London 2005) was used 
to evaluate accuracy of the analytical routine. Many of the 
zircon MIZs had diameter < 5 μm. This resulted in secondary 
fluorescence of Zr from the surrounding zircon matrix. 
Monte-Carlo simulation of electron-specimen interactions 
using PENEPMA was used to constrain the extent of 
secondary fluorescence for various inclusion dimensions and 
beam diameters. Addition of Zr into the analysis routine was 
used to monitor the effects of secondary fluorescence on 
individual measurements; any measurements with > 1 wt% 
 ZrO2 were interpreted as affected by secondary fluorescence 
and discarded from consideration. For MIZ analyses with < 1 
wt.%  ZrO2, the compositions were corrected to be  ZrO2-free, 
assuming essentially all Zr signal was from host zircon.

SIMS

Zircon δ18O; MIZ δ18O and  H2O

Zircon oxygen isotope ratios as well as MIZ oxygen 
isotope ratios and  H2O contents were measured using the 
CAMECA IMS-1280 secondary ion mass spectrometer 
(SIMS) at the WiscSIMS laboratory at the University of 
Wisconsin–Madison. The zircon epoxy mount was gold-
coated after being cleaned with distilled water and ethanol 
and kept in a vacuum oven at 60ºC for 24 h. Zircon analyses 
were made following the methods described previously (Kita 
et al. 2009; Valley and Kita 2009; Wang et al. 2014). A 
primary 133Cs+ ion beam was focused to 10 μm diameter 
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Fig. 2  a BSE and CL images of representative MIZs/host zircons 
(scale bars = 50 μm). b BSE image of SIMS pits and Cs spatter from 
the analyses of δ18O/H2O of the MIZ (~ 3 μm diam.). c and d BSE 
images of SIMS pits from the analyses of δ18O (~ 10 μm diam.) and 

trace element (~ 13 μm diam.) of the zircons, respectively. e BSE 
image of a SHRIMP pit from the 238U–230Th age dating of the zircons 
(~ 40 μm diam.)
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with an intensity of 1.7 to 1.8 nA, to generate ~ 3 ×  109 counts 
per second (cps) of secondary 16O– ions. The multicollection 
(MC) Faraday cup (FC) detectors were used to 
simultaneously measure 16O–, 18O–, and 16O1H– signals with 
feedback resistors of  1010,  1011, and  1011 Ω, respectively. 
Individual zircon analyses lasted approximately 3.5 min 
including sputtering of the gold coated surface (10  s), 
automatic centering of the secondary ion beam in the field 
aperture (60 s), and 40 cycles of 4 s integrations of oxygen 
ion measurements. Analysis pits were ~ 2 μm deep. For the 
MIZ analysis, the primary  Cs+ ion beam was focused to 3 μm 
diameter with an intensity of 25 pA, to generate ~ 3.5 ×  107 
counts per second (cps) of secondary 16O– ions. Each MIZ 
analyses lasted approximately 4 min including sputtering 
of the gold coated surface (30 s), automatic centering of 
the secondary ion beam in the field aperture (60 s), and 
20 cycles of 8 s integrations of oxygen ion measurements. 
The 16O– and 18O–, and 16O1H– signals were measured 
simultaneously in two FCs (16O– and 16O1H–, both with 
feedback resistors of  1011 Ω) and one electron-multiplier 
(EM) for 18O– (~ 7 ×  104 cps). Hydride interferences at mass 
18 were resolved at mass resolving power (MRP at 10% 
peak height) of 2,200, and MRP of 5,000 was used for mass 
17 to resolve 16O1H– from 17O–. A liquid  N2 trap was used 
to maintain vacuum in the sample chamber ≤ 5 ×  10–9 mbar 
to reduce hydrogen background. Four analyses of UWZ-1 
zircon standard were made at the beginning of the session 
and after every 10 unknowns. The bracketing sets of eight 
analyses of UWZ-1 (δ18O = 4.98 ‰ VSMOW) were used to 
monitor instrumental bias for zircon standard and the spot-
to-spot reproducibility for individual brackets, which ranged 
between 0.17 and 0.21 ‰ (2SD) for the zircon analyses and 
0.51 to 0.75 ‰ (2SD) for the MIZ analyses.

For  H2O contents of MIZs, calibration was made between 
the measured 16O1H–/16O– and  H2O content using rhyolitic 
glass standards with known  H2O concentrations (Newman 
et al. 1986; Singer et al. 2014b; Klug et al. 2020). The major 
element compositions of these rhyolitic glass standards 
encompass those observed in the MIZ (Fig. S2). For the 
February 2022 session, we obtained a linear regression 
line between 16O1H–/16O– versus  H2O wt.% (0.33 to 3.51 
wt.%  H2O rhyolitic glasses; Newman et al. (1986), Klug 
et al. (2020)) (Fig. S3a, Table S2). The majority of MIZ 
 H2O contents obtained during this session were beyond 
the calibration range (> 3.5 wt.%). A subsequent session in 
June 2022 was conducted, in which we measured higher 
 H2O content standards (0 to 6.09 wt.%  H2O rhyolitic 
glasses; Singer et al. (2014b)). We obtained a polynomial 
regression line between 16O1H−/16O– versus  H2O wt.% 
(Fig. S3b, Tables S3). The  H2O contents of MIZs  that 
were analyzed during both February 2022 and June 2022 
sessions agree to within 10% on average (Fig. S3c). For 
both sessions, the background levels of 16O1H−/16O– were 

determined by multiple analyses of the UWZ-1 zircon 
grains, which were subtracted from the 16O1H−/16O– of the 
melt inclusion analyses before converting them to  H2O wt.%. 
The background corrections were typically smaller than 10% 
of measured 16O1H–/16O– values. To correct for MIZ δ18O 
instrumental mass fractionation, anhydrous glass standards 
with known δ18O (Jochum et al. 2006) were analyzed that 
have a range of  SiO2 from 51.4 to 75.6 wt.% (Tables S2 and 
S3). The δ18O bias was estimated relative to zircon (bias*) 
as a function of the  SiO2 content of the glass standards. The 
δ18O of individual MIZs were corrected for the bias based on 
the bias estimated from bracketing zircon standard analyses 
and the relative bias (bias*) of each MIZ that is calculated 
using the  SiO2 content (EPMA data). The effect of  H2O on 
the MIZ δ18O instrumental mass fractionation was evaluated 
using some of the aforementioned hydrous rhyolitic glass 
standards as well as hydrous basaltic glass standards that 
had previously been  analyzed for δ18O (Newman et  al. 
1988; Eiler et al. 2000). This showed that the instrumental 
biases of the hydrous glasses agree well with those of the 
anhydrous glasses such that the effect of  H2O on the MIZ 
δ18O instrumental mass fractionation is minimal.

Zircon trace elements

Zircons were analyzed for 26 trace elements (Al, P, Ca, Sc, 
Ti, Fe, Y, Nb, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, 
Tm, Yb, Lu, Hf, Ta, Th, U) using the CAMECA IMS-1280 
secondary ion mass spectrometer (SIMS) at the WiscSIMS 
laboratory at the University of Wisconsin–Madison. 
Analyses used a 16O– primary beam at a current of 5.4 nA 
and a total impact energy of 23 kV (–13 kV at the ion source 
and + 10 kV on the sample surface). Analytical pits were ~ 13 
µm in diameter. The mass spectrometer was operated at a 
nominal mass resolving power (MRP = M/ΔM) of 14,000, 
which allows for separation of 45Sc+ and 93Nb+ from 
interferences with 90Zr++ and 92ZrH+, respectively (e.g., 
Grimes et al. 2015; Coble et al. 2018; Blum et al. 2023). 
No energy offset was applied because most molecular 
interferences, such as REE oxides on REE, were fully 
resolved. Each analysis included a 30 s pre-sputter, centering 
of the secondary beam within the field aperture, and five 
cycles of counting from low to high mass by magnetic 
peak-jumping on axial mono-collector (mostly EM except 
for major element Si and Zr peaks on FC). Normalized 
count rates (normalizing species 28Si) are converted to trace 
element concentrations based on element specific relative 
sensitivity factors (RSFs). RSFs were determined for the 
primary reference material, NIST610 (Pearce et al. 1997) 
with correction factors based on multiple zircon reference 
materials to account for matrix mismatch between glass and 
zircon, similar to those in previous studies (Page et al. 2007; 
Bouvier et al. 2012; Kitajima et al. 2012). Zircon reference 
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materials analyzed in this study are 91500 (Wiedenbeck 
et al. 2004; Coble et al. 2018), MAD-559 (Coble et al. 
2018), and GZ7 (Nasdala et al. 2018). For elements (Al, 
Ca, Sc, and Fe) that do not have homogeneous or well 
characterized published values in the reference material 
suite, no correction factor is applied (Wiedenbeck et al. 
2004; Coble et al. 2018). Additional analytical details will 
be published elsewhere.

Zircon 230Th‑238U

To prepare the zircon epoxy grain mount for SIMS U-Th 
analyses, the mount was cleaned with a 10% EDTA 
(ethylenediaminetetraacetic acid) wash, thoroughly rinsed 
with DI water, then given a quick ~ 30 s rinse in 1 M HCl to 
remove surface contamination before being dried at 50 °C in 
a vacuum oven for 30 min. The sample surface was coated 
with ~ 10–20  nm of gold for conductivity before being 
loaded in the instrument sample lock chamber.

Zircon U-Th analyses were conducted on the 
SHRIMP-RG (reverse geometry) ion microprobe in the 
co-operated Stanford and U. S. Geological Survey SUMAC 
facility at Stanford University. Analytical procedure and data 
reduction follows methods developed by Williams (1997) 
and Ireland and Williams (2003). An  O2

– primary beam with 
accelerating voltage of 10 kV was used to sputter secondary 
ions from the sample surface with a ~ 19 nA primary beam 
current focused to ~ 42 µm. Prior to analysis, spots were 
presputtered for 60  s remove gold coating and surface 
contamination from the analysis area, and the primary and 
secondary beams were auto-tuned to maximize transmission. 
Seven masses were measured, including 90Zr2

16O, 238U+, 
232Th12C+, 230Th16O+, background measured 0.050 AMU 
above the 230Th16O+ peak, 232Th16O+, and 238U16O+. An 
energy slit set to 1 mm width was employed to reduce 
interferences. Data were collected over 8 scans per spot, 
for a total run time of 33 min, collected by magnet peak-
jumping on an EPT discrete-dynode electron multiplier. 
Mass resolution (M/ΔM) was set to ~ 8000 for all masses, 
sufficient to resolve any interfering molecular species.

Zircon U concentration data were standardized against 
the well-characterized MAD-559 (3940 ppm U; Coble et al. 
2018) and MAD-1 zircon standards (Barth and Wooden 
2010) measured from a separate mount that was co-loaded 
in the analysis chamber. (238U)/(232Th) and (230Th)/(232Th) 
ratios were calculated using λ238 = 1.55125 ×  10–7   ka−1 
(Jaffey et al. 1971), λ232 = 4.9475 ×  10–8  ka−1 (Steiger and 
Jäger 1977), λ230 = 0.0091705   ka−1 (Cheng et al. 2013). 
The (238U)/(232Th) was also corrected for instrument 
mass fractionation using early-erupted Bishop Tuff 
(767.1 ± 0.9 ka, Crowley et al. 2007), which is relatively 
high-U (1000–4000 ppm) and old enough that the U-Th is 
in secular equilibrium. For analyses measured in this session 

(230Th)/(238U) = 0.8461 ± 0.0069 (1σ, n = 9, MSWD = 2.2), 
which is the RSF that was applied to the unknowns. Data 
was reduced using the Microsoft Excel add-in programs 
Squid2.51 and Isoplot3.764 of Ken Ludwig (Ludwig 2001; 
2003).

Results

230Th‑238U ages of the LdM zircons

We determined the 230Th-238U ages of 11 rdm zircons, rang-
ing from 18.7 ka to secular equilibrium (> 350 ka) (Fig. 3). 
Out of the 11 rdm zircon grains that were dated, four of them 
(hereafter referred to as younger rdm zircons) have non-sec-
ular equilibrium ages that range from 18.7 to 47.0 ka, fall-
ing within the 230Th-238U ages (18.1 to 78.8 ka) previously 
determined for the zircons from the same unit (Andersen 
et al. 2019). The youngest zircon age is 18.7+5.0

−4.7
 (1SD) ka, 

which agrees well with the eruption age of the rdm unit 
(19–23 ka based on field relationships). The remaining seven 
rdm zircon grains are in secular equilibrium indicating unre-
solvable ages that are > 350 ka (hereafter older rdm zircons). 
The six rdm zircon grains that could not be dated (hereafter 
no age (NA) rdm zircons) either due to the size or SHRIMP 
beam overlapping epoxy are not included in further discus-
sion given the difficulty in putting them in context of other 
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Fig. 3  238U–230Th isochron diagram for zircons from the rdm unit of 
the LdM. Each ellipse represents a SHRIMP-RG analysis of a spot in 
separate zircon grains. Error ellipses are 1SD. Red ellipses are analy-
ses on the younger rdm zircons (non-secular equilibrium ages), while 
the blue ellipses are analyses of older rdm zircons (secular equilib-
rium ages). The small black dot represents the whole rock composi-
tion used to calculating the model ages (average of post-glacial rhyo-
lite whole rock data from Andersen et  al. (2017)). The heavy black 
line represents the equiline, while the gray lines represent isochrons 
of ages from 0 to 200 ka. Some older rdm zircons plot above the equi-
line, which is likely due to the primary beam overlapping with the 
epoxy that causes elevated 230ThO+ background
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data without their 230Th-238U ages. For the rle zircons, the 
previously determined 230Th-238U ages range from 14.9 to 
80.8 ka, and those with MIZs found in this study are 19.7 to 
48.3 ka (Andersen et al. 2019). No MIZ was found in the rle 
zircon that is in secular equilibrium.

Major elements

The major element composition of the younger rdm MIZs 
are all rhyolitic (75.1 to 76.6 wt.%) and relatively homo-
geneous (Fig. 4). Their composition agrees well with the 
tight array defined by the whole rock data of the post-glacial 
silicic units (Hildreth et al. 2010; Andersen et al. 2017). 
Their composition is less evolved compared to the rdm 
whole rock data (Hildreth et al. 2010; Andersen et al. 2017) 
and the rdm matrix glasses (Contreras et al. 2022) (Fig. S4). 
The younger rdm MIZs agree well with the most evolved 
side of the compositional range defined by the rdm plagio-
clase melt inclusions, which show significant range in  SiO2 
(71 to 76 wt.%) (Fig. S4). However, the younger rdm MIZs 
are less evolved compared to the rdm quartz melt inclusions 
(Klug et al. 2020) (Fig. S4).

In contrast to the younger rdm MIZs, the major element 
composition of older rdm MIZs are rhyodacitic to rhyolitic, 
significantly more heterogeneous, and for the most part 
do not agree well with those of the rdm whole rock/melt 
inclusions nor with those of the post-glacial silicic units 
(Andersen et al. 2017) (Fig. 4). The post-glacial whole 

rock data form a tight array of chemical data, while the 
whole rock composition of older units (> 25 ka) is more 
scattered (Fig. S5). Some of the older rdm MIZs agree 
with the composition of these older units (Hildreth et al. 
2010). However, many of the older rdm MIZs are anomalous 
(e.g., those with high  K2O of > 6 wt.%) even compared to 
the whole rock composition of the older eruption units. 
While there may be a tendency for CL pattern of zircons 
surrounding older rdm MIZs to have more complex patterns 
(Fig. S1), clear correlation between MIZ composition and 
surrounding zircon CL pattern were not observed.

Similar to the younger rdm MIZs, the major element 
composition of the rle MIZs agree well with the trend 
defined by the whole rock data of the post-glacial silicic 
units (Andersen et al. 2017) (Fig. 4). The three less evolved 
rle MIZs are compositionally similar to the rle whole rock 
data (Hildreth et al. 2010; Andersen et al. 2017) and rle 
matrix glasses (Contreras et al. 2022), while the other 3 
rle MIZs are more evolved  (SiO2 = 77 to 78 wt.%) (Figs. 4 
and S6). The more evolved rle MIZs are compositionally 
similar to the rle plagioclase melt inclusions, most of which 
are similarly evolved  (SiO2 = 76 to 78 wt.% for 11 out of 12 
plagioclase melt inclusions) (Klug et al. 2020) (Fig. S6).

H2O contents

The  H2O contents of the younger rdm MIZs span 4.1 to 5.7 
wt.%, and they agree well with those of the rdm plagioclase 
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melt inclusions (Klug et al. 2020) (Fig. 5). In contrast, the 
 H2O contents of older rdm MIZs are significantly scattered 
(2.1 to 6.6 wt.%) compared to the range observed in the 
rdm plagioclase melt inclusions, reaching similarly low  H2O 
contents as some quartz melt inclusions (Klug et al. 2020) 
(Fig. 5). A measurement of the matrix glass adhered onto 

an undated rdm zircon (zircon f4) yielded a distinctly lower 
 H2O content of 0.05 wt.% in comparison to MIZs. The  H2O 
contents of the rle MIZs (4.3 to 6.2 wt.%) are comparable 
to the younger rdm MIZs, although extending to slightly 
higher  H2O contents. These  H2O contents are comparable 
with those in the rle plagioclase melt inclusions (5.4 to 5.8 
wt.%) (Klug et al. 2020).

Oxygen isotope ratios

Oxygen isotope ratios of the rdm zircons are homo-
geneous regardless of age (i.e., younger or older rdm) 
(δ18O = 5.76 ± 0.32 ‰, 2SD) (Fig.  6a). The δ18O val-
ues of younger rdm MIZs are also homogeneous 
(δ18O = 8.22 ± 0.80 ‰, 2SD), while that of older rdm 
MIZs is highly variable (δ18O = 4.1 to 8.9 ‰) (Fig. 6a). 
The oxygen isotopic fractionation between the glass in 
younger rdm MIZ and host-zircon is relatively constant 
(Δ18OMIZ-Zrn = 2.59 ± 1.01 ‰, 2SD) (Fig. 6b), and within 
uncertainty with the equilibrium zircon-melt oxygen isotopic 
fractionation factor (Lackey et al. 2008). The equilibrium 
fractionation between zircon and melt is nearly constant at 
magmatic temperatures (Lackey et al. 2008; Grimes et al. 
2011; Bucholz et al. 2017). In contrast, oxygen isotopic 
fractionation between the older rdm MIZ and host-zircon is 
highly variable (Δ18OMIZ-Zrn = -1.52 to 3.22 ‰) (Fig. 6b), 
and some do not preserve equilibrated values from mag-
matic conditions. The oxygen isotopic composition of the 
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rle MIZs/zircons were not determined, due to the lack of 
suitable oxygen isotope standard grain in the indium mount.

Ti‑in‑zircon thermometry

Ti-in-zircon temperatures were calculated using the 
calibration of Ferry and Watson (2007), which requires 
the  TiO2 activity  (aTiO2),  SiO2 activity  (aSiO2) and pressure. 
Following the previous study on LdM zircons of Andersen 
et al. (2019), we first used the  aTiO2 of 0.72 obtained based 
on magnetite-ilmenite equilibrium (Ghiorso and Evans 
2008) and an  aSiO2 of 1 based on the presence of quartz in the 
LdM rhyolites (Andersen et al. 2017). The effect of pressure 
was not taken into account, but such effect is relatively small 
(~ 50ºC/10 kbar). Ti-in-zircon temperatures calculated based 
on these  aTiO2 and  aSiO2 values along with the measured Ti 
content in zircons span 708 to 839ºC (younger rdm = 708 to 
792ºC, older rdm = 722 to 839ºC, rle = 724 to 796ºC). These 
are comparable to the Ti-in-zircon temperatures previously 
determined for LdM zircons (Andersen et al. 2019) as well 
as the temperature range of LdM rhyolites estimated based 
on the Fe-Ti oxide thermometer (Andersen et al. 2017).

Zircon trace elements

The trace element composition (e.g., U, Hf, Ti, REE con-
tents) of the younger rdm zircons agree well with those that 

were previously observed for rdm zircons (Andersen et al. 
2019) (Fig. 7). While it is somewhat unexpected given the 
anomalous major element composition of older rdm MIZs 
(Fig. 4), the trace element composition of older rdm zir-
cons compares well with other rdm zircons (Fig. 7a). The 
Ti content of younger rdm zircons range from 5 to 12 ppm, 
and correlates negatively with their Hf content that ranges 
from 8,500–10,700 ppm (Fig. S7). The U content of the 
younger rdm zircons range from 353 to 1,688 ppm, which 
tends to correlate with the bright and dark CL regions, 
respectively. The trace element composition of the rle zir-
cons with MIZs  (UZrn = 266–557 ppm,  TiZrn = 6–12 ppm, 
 HfZrn = 8,100–10,700 ppm) are representative of those of 
the larger rle zircon data set, except for the most U-rich and 
-depleted zircons (Andersen et al. 2019). The melt in equi-
librium with the zircons calculated using the zircon-melt 
REE partition coefficients (Sano et al. 2002) are consist-
ent with the whole rock data for the LdM post-glacial units 
(Andersen et al. 2017) (Fig. S8).

Discussion

Post‑entrapment modification of MIZs

Subsequent to entrapment in the host crystal, melt inclusions 
can be modified by processes such as devitrification, 
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crystallization of new zircon, cracking of host zircon 
and diffusive exchange with the surrounding melt (e.g., 
Danyushevsky et  al. 2002). However, multiple lines of 
evidence suggest that post-emplacement processes have 
had minimal effects on many of the MIZs from rdm and 
rle units, and that many of the MIZs retain major element, 
oxygen isotopic composition, and water contents of the 
entrapped magmas. Post-entrapment crystallization (PEC) 
(e.g., Kress and Ghiorso 2004) of zircon during cooling is 
minimal for MIZs given the small concentration of Zr in 
the melt. For example, LdM whole rocks have a maximum 
Zr content of 265 ppm (Hildreth et al. 2010), which limits 
the maximum amount of PEC of zircon to < 0.05 wt.% in 
a MIZ, assuming Zr content of 500,000 ppm in zircon and 
that all Zr in the melt is converted to zircon. The effect of 
PEC of other minerals on the composition of the MIZs in 
this study is difficult to constrain as we did not conduct 
heating experiments. However, the younger rdm as well 
as the rle MIZs in this study have minimal to no textural 
evidence by SEM of PEC phases given their homogeneous 
nature (Figs. 2 and S1). Further, the agreement between 
the major element composition of younger rdm and rle 
MIZs (230Th-238U age of host zircon < 60 ka) to those of 
whole rock data of the post-glacial silicic units (Andersen 
et al. 2017), as well as those of plagioclase and quartz melt 
inclusions from the same unit (Klug et al. 2020), suggests 
that PEC did not have a substantial effect on the younger rdm 
and rle MIZ compositions (Fig. 4). In contrast, the major 
element composition of most older rdm MIZs (230Th-238U 
age of host zircon in secular equilibrium) significantly 
deviate from those of whole rock, and plagioclase and quartz 
melt inclusions, which could be due to the effect of PEC. 
Nevertheless, the most notable difference in major element 
composition between younger rdm and older rdm MIZs 
would require a substantial amount of PEC (e.g.,  K2O of 
4.4 wt.% in younger rdm MIZ vs. 6.5 wt.% in some older 
rdm MIZs require ~ 33 wt.% crystallization of quartz) if the 
original melts were of the same composition. The lack of 
substantial PEC minerals in SEM images of the older rdm 
MIZs does not support such large amount of PEC (Figs. 2 
and S1). Together with the old age (> 350 ka) of the older 
rdm MIZs, a more likely explanation is that they formed 
from a parental melt that formed under magmatic conditions 
unrelated to those that produced the younger rdm and rle 
MIZs and other LdM units.

Melt inclusions can record the pre-eruptive volatile 
contents of magmas. However, after entrapment, volatiles 
can sometimes diffuse into or out of melt inclusions through 
the host mineral (e.g., Qin et al. 1992). There are so far 
no experimental measurements of H diffusion coefficient in 
zircon under conditions relevant to the LdM zircons (e.g., 
fO2 conditions). In the LdM MIZs, we observe a negative 
correlation between the degree of differentiation  (SiO2) 

and  H2O contents of MIZs (Fig. 5) that is consistent with 
those observed in plagioclase and quartz melt inclusions. 
This negative correlation has been interpreted to suggest 
decompression-driven fractional crystallization and  H2O 
degassing as the rdm magma ascended from deeper to 
shallower portion of the LdM reservoir (Klug et al. 2020). 
The preservation of such negative correlation in the rdm 
MIZs strongly suggests the retention of MIZ  H2O contents 
since the time of entrapment, as diffusive exchange would 
decouple  H2O from  SiO2 in the MIZs. Some older rdm MIZs 
(> 350 ka) are characterized by low  H2O contents for a given 
 SiO2 (Fig. 5), and may indicate instances of  H2O leakage 
from these MIZs. With these exceptions aside, we infer that 
the negative correlation between  SiO2 and  H2O contents to 
indicate that the MIZs in this study were not significantly 
impacted from diffusive equilibration of H through the host 
zircon since the time of entrapment.

Identification of xenocrystic rdm zircons/MIZs (older 
rdm)

The older rdm zircons that are in secular equilibrium 
(> 350 ka) host MIZs that are anomalous in composition 
(Fig. 4). Their compositions do not agree with those of the 
rdm unit nor other whole rock data of the post-glacial silicic 
units and older units (Hildreth et al. 2010; Andersen et al. 
2017). The older rdm MIZs are generally low in FeO and 
MgO and also show significantly more variable CaO,  TiO2, 
as well as  H2O contents for a given  SiO2 content compared 
to the younger rdm and rle MIZs and LdM whole rock data 
(Figs. 4 and 5). Three older rdm MIZs have significantly 
higher  K2O content than younger rdm and rle MIZs as well 
as LdM whole rock (Fig. 4). These high  K2O older rdm 
MIZs have anomalously low δ18O values that are not in 
isotopic equilibrium with the host zircon (Fig. 6b). While the 
distinct major element composition could in part be due to 
post-entrapment crystallization of certain phases, high  K2O 
contents and anomalously low δ18O observed in some MIZs 
are difficult to explain by such process. Taken together with 
their secular equilibrium ages (> 350 ka), we hypothesize 
that older rdm zircons/MIZs are xenocrystic in origin and 
that the MIZs record older exotic melt compositions that 
formed under magmatic conditions unrelated to those that 
produced the rdm and rle eruptions. The highly variable  H2O 
content of older rdm MIZs also supports this hypothesis. 
Our observation shows the importance of age dating the 
host zircon in order to avoid xenocrystic zircons that may 
host MIZs with chemical composition that is irrelevant 
to the magmatic system of interest. In terms of the origin 
of the older rdm zircons, they may have originated from 
deeper granites that are represented by crustal xenoliths 
found in the pyroclastic flow facies of the rdm unit. These 
are exceptionally large (up to ~ 1 m) crustal debris with 
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heterogeneous lithologies that could be Pliocene-Miocene 
plutonic rocks that housed the magmatic precursor to the 
more recent LdM system, analogous to those observed in 
the Risco Bayo-Huemul plutonic complex 20 km west of 
the LdM system (Schaen et al. 2018, 2021). The other post-
glacial units including the rle do not contain such granitoid 
xenoliths. The rdm unit is exceptional in this regard, which 
explains the uniquely high abundance of secular equilibrium 
age zircons in the rdm units compared to other units 
including the rle unit.

Major element composition and  H2O contents 
of the younger rdm and rle MIZs: Implications 
for the LdM magmatic system

In contrast to the older rdm zircons and MIZs, the geo-
chemical data of the younger rdm zircons and MIZs are 
consistent with their formation from the active magmatic 
system that underlies the LdM. The 230Th-238U ages of 
18.7

+5.0

−4.7
to 47.0

+4.0

−3.9
 (1SD) ka for the younger rdm zircons 

agrees with the previously determined 230Th-238U ages (18.1 
to 78.8 ka) of the rdm unit zircons (Andersen et al. 2019). 
All younger rdm MIZs are in oxygen isotopic equilibrium 
with their host zircon (Fig. 6b). The major element compo-
sitions of younger rdm MIZs are akin to those of the whole 
rock data for the rdm unit as well as other post-glacial LdM 
units (Hildreth et al. 2010; Andersen et al. 2017), matrix 
glasses (Contreras et al. 2022), and plagioclase/quartz melt 
inclusions (Klug et al. 2020) (Figs. 4 and S4). The  SiO2 
contents of these younger rdm MIZs are consistent with the 
predicted  SiO2 content (> 70 wt.%) above which the LdM 
whole rocks become zircon saturated based on their Zr con-
tent and zircon saturation models of Watson and Harrison 
(1983) and Boehnke et al. (2013) (Andersen et al. 2017). 
In addition, the trace element concentrations (e.g., REE, U, 
Hf, Ti contents, Eu/Gd) of younger rdm zircons are also 
within those that were previously observed for rdm zircons 
(Andersen et al. 2019) (Fig. 7). Following the same reason-
ing, rle zircon trace element composition and 230Th-238U 
ages (Andersen et al. 2019) (Fig. 7) and the rle MIZ compo-
sition (Figs. 4 and S6) supports the notion of their formation 
from the magmatic system that underlies the LdM. Hence, 
the younger rdm and rle zircons in this study formed from 
melts in a growing crystal mush over a significant part of its 
60 kyr history (based on the oldest zircon ages of Andersen 
et al. (2019)), and the MIZs hosted in these zircons record 
the compositions and storage depths of the zircon-saturated 
regions within the crystal mush melt over time. In order 
to correlate the 238U–230Th age from the host zircon with 
the MIZ composition, uncertainties associated with the 
placement of the age spots relative to the location of the 
MIZs within the host zircon were considered. We used the 
CL images of the host zircon (Fig. S1-1) to determine if an 

age spot can be considered to date the (1) age of the MIZ 
entrapment (when the age spot is directly in the same CL 
domain as the MIZ), or should rather be considered to date 
the (2) minimum or (3) maximum age of the MIZ entrap-
ment (depending on whether the age spot is in a CL domain 
that is further away from (i.e., min. age) or closer to (i.e., 
max. age) the zircon core than the MIZ (refer to the caption 
of Fig. 8 for details)).

The younger rdm and rle MIZ compositions record 
relatively homogeneous crystal mush melt composition 
during its buildup (Fig. 8) that is consistent with the post-
glacial silicic whole rock data (Fig. 4). However, there 
are compositional differences between the younger rdm 
and rle MIZs. The younger rdm MIZs are on average less 
differentiated (e.g., lower  SiO2, higher  Al2O3 and MgO) than 
the rle MIZs (Fig. 8), and this difference is observed from 
at least ~ 30 kyr before eruption until close to the eruption 
ages of both units (19 to 23 ka) (Fig. 8). Less evolved rdm 
MIZ compared to rle MIZ is consistent with the hypothesis 
that the rdm crystal mush was better connected to the deeper 
mid-crustal plumbing system than the rle crystal mush, as 
proposed by Klug et al. (2020) based on the less evolved rdm 
plagioclase melt inclusion with deeper entrapment depths 
as compared to those of rle. While the plagioclase melt 
inclusions were entrapped only decades to centuries before 
eruption (Andersen et al. 2018), MIZs record a persistent 
difference between rdm and rle going back to ~ 30 kyr before 
eruption, suggesting the long-term connection of the rdm 
crystal mush to deeper depths (higher T and lesser degree of 
plagioclase/zircon fractionation) than that of the rle.

The magma storage pressures recorded by the entrapment 
pressures of younger rdm MIZs are 1.1 to 2.8 kbars (4.0 
to 10.5 km depth) (Fig. 9), based on their  H2O contents, 
assumed range of  CO2 content of 0 to 570 ppm (based on 
the plagioclase-hosted melt inclusions from the rdm unit), 
and the MagmaSat model of Ghiorso and Gualda (2015) 
implemented in the VesiCal v1.01 software (Iacovino et al. 
2021). There is no clear correlation between the storage 
pressure and the MIZ entrapment age for the younger rdm 
MIZs (Fig. 9). The magma storage pressures are consistent 
with those recorded by the silicic plagioclase-hosted melt 
inclusions from the rdm unit (1.6 to 2.4 kbars) (Klug et al. 
2020) that formed decades to centuries before the eruption 
of the rdm unit based on the disequilibrium trace element 
profiles (Andersen et al. 2018). Similar to the rdm MIZs, 
the rle MIZs record magma storage pressures of 1.4 to 2.8 
kbars (5.3 to 10.4 km depth) (assuming MIZ  CO2 of 25 to 
344 ppm based on the plagioclase-hosted melt inclusions 
from the rle unit) that match well with those recorded by 
the rle plagioclase melt inclusions (1.7 to 2.2 kbars) (Klug 
et al. 2020). The magma storage pressure recorded by the 
rle MIZs appears to decrease through time (Fig. 9), but the 
significance of this trend is unclear given the small number 
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of MIZs. The agreement between the magma storage pres-
sures recorded by the MIZs and the plagioclase-hosted melt 
inclusions suggests that the storage depths of evolved melts 
that are zircon- (+ plagioclase- ± quartz-) saturated were rel-
atively constant from the time of MIZ entrapment (younger 
rdm and rle zircon ages of 18.7 to 47.0 ka and 19.7 to 
55.8 ka, respectively) until the time of rdm and rle eruption 
(plagioclase age of decades to centuries before eruption at 
19 to 23 ka for rdm and 19 ± 0.4 ka for rle). The magma stor-
age pressures of 1.1 to 2.8 kbars recorded by younger rdm 
and rle MIZs are consistent with the optimal emplacement 
window (2.0 ± 0.5 kbar) of silicic magma reservoir growth, 
storage, and eruptibility based on the thermomechanical 
model of Huber et al. (2019).

Conclusion

The study of MIZs from the Laguna del Maule volcanic field 
provides unique insights into the structure and evolution 
of silicic magmatic systems. MIZs extend the record of 
magma compositions back to ~ 30 kyr before the eruption, 

providing important constraints on the age, storage depth, 
temperature, and composition of magmas. We observe a 
long-term difference in zircon-saturated melt composition 
between the rdm and rle eruption units, with the rdm MIZs 
indicating a less evolved crystal mush than that of the 
rle. These findings suggest the that since ~ 30 kyr before 
eruption, the rdm crystal mush was better connected to a 
deeper and more primitive magma body than the rle crystal 
mush. The correlation between  SiO2 and  H2O contents 
observed in the MIZs suggests that the  H2O contents of the 
MIZs are not significantly affected by diffusion of H through 
the host zircon. The rdm and rle MIZs record magma storage 
pressures of 1.1 to 2.8 kbars that are consistent with the 
optimal emplacement window (2.0 ± 0.5 kbar) of silicic 
magma reservoir growth, storage, and eruptibility based on 
thermomechanical model of Huber et al. (2019).

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00410- 024- 02133-0.
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Fig. 8  Major element composition of the rdm and rle MIZs vs. their 
entrapment ages estimated based on the 238U–230Th age data of the 
host zircons. The vertical light-red bar shows the eruption age of rdm 
and rle units (Andersen et  al. 2017). As discussed in Sect.  “Major 
Element Composition and  H2O Contents of the Younger rdm and 
rle MIZs: Implications for the LdM Magmatic System”, some 
238U–230Th age spots should be considered to be the minimum (i.e., 
age spot in CL domain further away from zircon core than that of the 
MIZ) or maximum (i.e., age spot in CL domain closer to zircon core 
than that of the MIZ) entrapment ages of the MIZs. In such cases, we 
estimated the maximum or minimum MIZ entrapment ages based on 

the mean age difference between the zircon rim and interior ages of 
the rdm (8.5 kyr) and rle (13.9 kyr) zircons (Andersen et  al. 2019). 
For example, if the age spot is in a CL domain that is closer to the 
zircon core than the CL domain that the MIZ is in (e.g., rdm-1 i1, 
Fig. S1-1), the 238U–230Th age (47.0+4.0

−3.9
ka) was considered the max-

imum age of MIZ entrapment and the minimum age was estimated 
by subtracting the mean age difference between the zircon rim and 
interior ages of the rdm (8.5 kyr) zircons (Andersen et al. 2019) from 
the negative uncertainty of the 238U–230Th age (entrapment age = 
(47.0

+4.0

−12.4
ka)
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