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Abstract
To better understand the behavior of Ti isotope fractionation during alkaline magma differentiation, we studied well character-
ized alkaline lavas from St. Helena Island (South Atlantic), as well as their titanomagnetite separates. The lavas are classified 
into three groups according to petrographic observations and major element composition. Group 1 and Group 2 samples (5 
to > 13 wt.% MgO) have a narrow δ49/47Ti range (− 0.02 to 0.05‰), suggesting that Ti isotopic fractionation is insignificant 
in less evolved basaltic lavas. Conversely, Group 3 samples (MgO < 5 wt.%) are saturated with titanomagnetite and display 
a wide range in δ49/47Ti (− 0.02 to 1.96‰). The δ49/47Ti values for Group 3 samples show significant correlation with  TiO2 
and  SiO2 content, as well as with Mg and Fe isotopic values. Moreover, titanomagnetite phenocrysts from Group 3 rocks have 
remarkably lighter δ49/47Ti values (− 0.54 to 0.01‰) relative to the corresponding whole rock (− 0.02 to 0.21‰), indicating 
that titanomagnetite crystallization exerts significant control over the δ49/47Ti of Group 3 samples. These observations are 
further supported by modeling calculations. Together with published Ti isotope data, the results demonstrate that the range 
in Ti isotopic evolution in alkaline, calc-alkaline and tholeiitic magmatic systems is controlled by fractional crystallization 
of diverse Fe-Ti oxides with contrasting Ti isotopic compositions. This makes Ti stable isotopes an important geochemical 
tracer for magma evolution. 
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Introduction

Titanium is a moderately incompatible element in mag-
matic systems and becomes concentrated in crustal rocks 
relative to the mantle. It has five stable isotopes (46Ti, 
47Ti, 48Ti, 49Ti and 50Ti) and its isotopic variations have 
been increasingly used to probe numerous fundamental 

geochemical and cosmochemical processes such as plan-
etary differentiation, crust production and crust-mantle 
interaction (e.g., Millet et al. 2016; Greber et al. 2017a, 
2017b, 2021; Deng et  al. 2018a, 2018b, 2019, 2023; 
Mandl 2019; Johnson et al. 2019, 2023; Aarons et al. 
2020; Kommescher et al. 2020; Zhao et al. 2020; Hoare 
et al. 2020, 2022; Rzehak et al. 2021, 2022; Williams 
et al. 2021; Anguelova et al. 2022; Storck et al. 2023). 
Early studies demonstrated that Fe-Ti oxide unsaturated 
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terrestrial mafic and ultramafic rocks such as komati-
ites and global oceanic basalts display limited Ti iso-
topic variation (δ49/47Ti between − 0.05 and 0.05 ‰), 
although a small, but resolvable Ti isotopic variation has 
been observed in komatiites and mid-ocean ridge basalts 
(Millet et al. 2016; Greber et al. 2017a; Deng et al. 2018b; 
Zhao et  al. 2020). By contrast, differentiated igneous 
rocks display systematically heavier Ti isotopic compo-
sitions that correlate with indicators of magmatic differ-
entiation such as  SiO2 or MgO contents, which is assumed 
to be primarily controlled by saturation and fractionation 
of isotopically light Fe-Ti oxides during magmatic differ-
entiation (Millet et al. 2016; Greber et al. 2017a). These 
findings make Ti isotopes a promising tracer of diverse 
geological and cosmochemical processes. However, 
subsequent work has demonstrated that the Ti isotope 
behavior becomes more complicated during magmatic 
differentiation, and different magmatic systems (such 
as alkaline, tholeiitic and calc-alkaline) exhibit different 
Ti isotopic evolution patterns (Millet et al. 2016; Deng 
et al. 2019; Johnson et al. 2019; 2023; Zhao et al. 2020; 
Hoare et al. 2020, 2022; Aarons et al. 2021; Greber et al. 
2021; Storck et al. 2023). For example, alkaline mag-
matic series have significantly higher δ49/47Ti (exceeding 
2‰) relative to subduction-related systems such as calc-
alkaline magmatism and arc tholeiites (up to 0.7‰) at 
the same  SiO2 content, likely related to the much higher 
initial melt  TiO2 contents enabling early saturation and 
fractional crystallization of Fe-Ti oxide with higher  TiO2 
contents in the alkaline magmatic series than subduction 
zone lavas (Deng et al. 2019; Johnson et al. 2019; 2023; 
Aarons et al. 2020, 2021; Hoare et al. 2020, 2022). Such 
distinct Ti isotope evolution patterns in igneous systems 
have led to controversial conclusions on the geodynamic 
origin of felsic continental crust (Greber et al. 2017b; 
Deng et al. 2019; Aarons et al. 2020, 2021). Further stud-
ies are required to investigate the cause of these complex 
Ti isotope variations in different magmatic systems.

St. Helena Island (5º 40′W, 16º 00′S), in the South 
Atlantic, provides us with a natural laboratory in which to 
investigate the impact of alkaline magma differentiation 
on Ti isotopes. These lavas experienced fractional crys-
tallization and mineral accumulation processes from a 
cogenetic mantle source, as deduced from their major and 
trace element chemistry, and radiogenic isotope charac-
teristics (Baker 1969; Kawabata et al. 2011; Hanyu et al. 
2014). This study investigates the Ti isotopic systemat-
ics of a well-characterized St. Helena alkaline sample 
suite (Kawabata et al. 2011; Hanyu et al. 2014; Wang 
et al. 2021; Zhao et al. 2022). Combined with published 
Ti isotopic ratios for other igneous rocks, we aim to fur-
ther explore the origin of Ti isotope variation in different 
magmatic systems.

Samples and analytical methods

The studied alkaline lavas were collected from St. Helena 
Island in the middle of the South Atlantic (Chaffey et al. 
1989; Kawabata et al. 2011). Twenty-four samples, cov-
ering basanite-alkali basalt, trachyandesite and trachyte, 
along with three hand-picked titanomagnetite separates 
from St. Helena Island were selected for Ti isotopes anal-
yses. They have previously been studied for petrology, 
major and trace element composition, and radiogenic/sta-
ble isotopic composition, and their magmatic evolution 
has been well characterized (Kawabata et al. 2011; Hanyu 
et al. 2014; Wang et al. 2021; Zhao et al. 2022; Zhang 
et al. 2022). These samples span a range of  SiO2 contents 
from 43.5 to 61.4 wt.%, MgO contents from 0.05 to 15.7 
wt.%, total-alkali  (Na2O +  K2O) contents from 1.7 to 12.6 
wt.%, and  TiO2 contents from 0.11 to 3.86 wt.% (Fig. 1; 
Kawabata et al. 2011; Table S1 in Supporting Information 
S1). They can be classified into three groups according 
to their petrological and geochemical features (Kawabata 
et al. 2011). Group 1 samples (MgO content > 13 wt.%) 
contain a substantial amount of cumulate olivine and 
clinopyroxene (Fig. 1). Group 2 samples (MgO content; 
5 wt.% to 12 wt.%) experienced olivine and clinopyrox-
ene crystallization (Fig. 1; Kawabata et al. 2011). Group 
3 samples (MgO content < 5 wt.%) experienced massive 
fractionation of plagioclase and Fe-Ti oxide, with minor 
amounts of apatite, olivine and clinopyroxene (Fig. 1; 
Kawabata et al. 2011). In Group 3 samples, Fe-Ti oxide 
(titanomagnetite) crystallized and fractionated as evi-
denced by the appearance of this phase (Wang et al. 2021; 
Zhao et al. 2022), and the clear decrease in  TiO2 and  FeOT 
contents at the 5 wt.% MgO inflection on whole rock dia-
grams (Fig. 1; Kawabata et al. 2011). Based on detailed 
scanning electron microscope (SEM) backscattered elec-
tron (BSE) images, energy-dispersive spectroscopy (EDS) 
spectra, and electro-probe microanalyzer data, Wang et al. 
(2021) and Zhao et al. (2022) have shown that all the Fe-Ti 
oxide phenocrysts from St. Helena lavas are ulvöspinel-
rich titanomagnetite. SEM images also show that titano-
magnetite phenocrysts in Group 3 samples are generally 
in contact with groundmass and devoid of exsolution 
lamellae of other Fe-Ti oxides, indicating they are equi-
librium with the melt. The ulvöspinel-rich titanomagnetite 
separates analyzed from the three Group 3 samples (SH-
62, SH-17, SH-89) were initially separated using Frantz 
magnetic selection, and then were hand-picked under a 
binocular microscope. The ulvöspinel-rich titanomagnetite 
separates in every sample show narrow chemical varia-
tions with  TiO2 contents ranging from 18.7–22.7 wt.%, 
 FeOT contents ranging from 65.5‒69.9 wt.%, and low 
contents of MgO (2.45‒4.68 wt.%) and  SiO2 (0.04–0.12 



Contributions to Mineralogy and Petrology (2024) 179:6 Page 3 of 14 6

wt.%) (Table 1; Wang et al. 2021; Zhao et al. 2022). More 
information about these volcanic rocks can be found in the 
literature (Baker 1968; Kawabata et al. 2011; Hanyu et al. 
2014; Wang et al. 2021; Zhao et al. 2022).

Chemical separation and Ti isotope measurements were 
carried out at the Laboratory of Isotopic Geology, Institute of 
Geology, Chinese Academy of Geological Sciences, Beijing, 
China, following the methods outlined in Zhao et al. (2020) 
and Li et al. (2022). Details of the Ti isotope analytical 
methods are given in Supporting Information S2. Titanium 

isotope data are presented as δ values in per mil relative 
to the OL-Ti standard: δ49/47Ti (‰) = [(49Ti/47Ti)sample/
(49Ti/47Ti)OL-Ti − 1] × 1000. The long-term average δ49/47Ti of 
NIST3162a and IGPG-Ti are 1.06 ± 0.04‰ (n = 173, 2SD) 
and 0.14 ± 0.03‰ (N = 42, 2SD), respectively (Table 1), 
consistent with published data (Greber et al. 2017a; Deng 
et al. 2018a; Zhao et al. 2020; Li et al. 2022). In addition, 
the δ49/47Ti values of BHVO-2, AGV-1 and GSP-2 obtained 
during this study agree well with previous works (Table 1; 
Millet and Dauphas 2014; Millet et al. 2016; Greber et al. 

Fig. 1  Magmatic differentiation in the St. Helena lavas illustrated by 
a  SiO2, b  TiO2, c  FeOT (total iron as FeO) and d  Na2O +  K2O con-
tents as a function of MgO contents. The major element data and the 
composition of primary melt are from Kawabata et al. (2011) and are 
also available in Table S1 of Supporting Information S1. Orange lines 
represent the MELTS-calculated fractional crystallization paths of St. 
Helena lavas with initial oxygen fugacity of QFM + 1 and a constant 

pressure of 3 kbar (see Sect. 5.1 of Wang et al. (2021) for more infor-
mation). All published data (small gray circles) for St. Helena rock 
samples are also shown for comparison, which are collected from 
GEOROC (http:// georoc. mpch- mainz. gwdg. de/ georoc/) database, 
and can be found in the Table S2 of Supporting Information S1 with 
detailed references. Ol  olivine, Cpx clinopyroxene, Pl plagioclase, 
Tmag  titanomagnetite, Ap apatite

http://georoc.mpch-mainz.gwdg.de/georoc/
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2017a, 2017b, 2021; Deng et al. 2018a, 2018b, 2019; John-
son et al. 2019; Mandl 2019; Zhao et al. 2020; He et al. 
2020; Hoare et al. 2020, 2022; Li et al. 2022). Replicates 
of four samples (SH-30, and titanomagnetite phenocrysts 
of SH-17, SH-89 and SH-62), which were digested from 

different aliquots of sample powder, display identical results 
within uncertainty (Table 1).

Samples SH-30 and SH-42 were also analyzed for Fe 
isotopes to complement the existing dataset. These meas-
urements were carried out on a Thermo Scientific Nep-
tune Plus multi-collector inductively coupled plasma 

Table 1  Ti isotopic composition and selected major element data of alkaline volcanic rock samples from St. Helena Island 

a N is the number of repeat measurements of the purified Ti solution;
b Data for  SiO2, MgO,  TiO2,  Na2O and  K2O are from Kawabata et al. (2011)
c Replicate represents the repeat sample dissolution, column chemistry and instrumental analysis

Sample Lithology Group δ49/47Ti 2SD Na SiO2
b TiO2 MgO Na2O+K2O

SH-35 Picritic basalt Group1 0.03 0.03 3 43.52 1.99 15.72 2.03
SH-86 Basalt Group1 0.03 0.03 3 45.33 2.00 15.42 1.67
SH-25 Basalt Group1 0.04 0.02 3 44.95 2.31 13.99 3.01
SH-84 Basalt Group2 0.04 0.03 3 44.67 2.66 11.77 2.99
SH-45 Basalt Group2 0.00 0.03 3 44.35 2.65 11.06 3.11
SH-38 Basalt Group2 0.05 0.03 3 45.12 2.39 10.77 2.91
SH-15 Basalt Group2 0.02 0.04 3 45.71 2.57 9.65 2.80
SH-10 Basalt Group2 0.05 0.02 3 45.22 2.90 8.25 3.52
SH-50 Basalt Group2 0.00 0.02 3 44.70 3.19 7.80 3.49
SH-109 Basalt Group2 0.03 0.02 3 44.63 3.35 6.62 4.12
SH-99 Trachybasalt Group2 0.05 0.04 3 46.91 2.93 5.52 5.19
SH-12 Basalt Group2 − 0.02 0.02 3 45.39 3.86 5.16 4.70
SH-58 Trachybasalt Group3 0.05 0.02 3 46.00 3.51 4.97 5.42
SH-76 Trachybasalt Group3 0.09 0.03 3 47.13 3.35 4.40 5.57
SH-62 Trachybasalt Group3 0.14 0.04 3 45.98 3.13 4.09 6.03
SH-17 Trachybasalt Group3 − 0.02 0.03 3 46.78 3.79 3.72 5.11
SH-73 Trachybasalt Group3 0.25 0.03 3 49.74 2.50 3.14 7.42
SH-89 Trachybasalt Group3 0.21 0.04 3 49.24 2.43 2.65 6.62
SH-43 Trachybasalt Group3 0.15 0.03 3 49.30 2.77 1.55 6.41
SH-59 Trachybasalt Group3 0.41 0.04 3 51.24 1.62 2.38 8.62
SH-53 Trachybasalt Group3 0.69 0.02 3 54.53 0.77 1.55 9.01
SH-93 Trachybasalt Group3 0.34 0.04 3 54.08 1.22 0.81 8.49
SH-30 Trachybasalt Group3 1.58 0.02 3 59.56 0.23 0.06 11.66
Replicatec Trachybasalt Group3 1.61 0.03 3 59.56 0.23 0.06 11.66
SH-42 Trachybasalt Group3 1.96 0.04 3 61.41 0.11 0.05 12.63
SH-17 Titanomagnetite Group3 − 0.43 0.03 3 0.09 21.3 3.73 0.03
Replicate − 0.45 0.02 3 0.09 21.3 3.73 0.03
SH-89 Titanomagnetite Group3 0.01 0.02 3 0.10 21.4 4.23 0.02
Replicate − 0.01 0.02 3 0.10 21.4 4.23 0.02
SH-62 Titanomagnetite Group3 − 0.53 0.03 3 0.06 21.0 2.67 0.02
Replicate − 0.54 0.02 3 0.06 21.0 2.67 0.02
Reference materials
SRM3162a 1.06 0.04 173
IPGP-Ti 0.14 0.03 42
BHVO-2 0.02 0.03 6
AGV-1 0.09 0.03 6
GSP-2 0.38 0.03 4
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mass-spectrometer (MC-ICPMS) at the State Key Labo-
ratory of Continental Dynamics of Northwest Univer-
sity, China, using the sample-standard bracketing method 
under “wet” plasma conditions (Chen et al. 2022). Details 
of the Fe isotope analytical methods are provided in Sup-
porting Information S2. Each sample was measured a 
minimum of three times. The Fe isotope data are reported 
using δ notation against the IRMM-014 standard: δX/54Fe 
(‰) = [(XFe/54Fe)sample/(XFe/54Fe) IRMM-014 − 1] × 1000, 
where X refers to 57 or 56. The long-term reproducibility 
for δ57/54Fe data is better than 0.07‰ (2SD; Table S3 in 
Supporting Information S1). Reference materials BCR-2 
and BHVO-2 were analyzed with samples, giving δ57/54Fe 
values similar to published values (Table S3 in Supporting 
Information S1; Craddock and Dauphas 2011; Sossi et al. 
2012; Zhao et al. 2012; He et al. 2015; Konter et al. 2016; 
An et al. 2017; Zhao et al. 2022) when the equivalent 2 SD 
errors are considered.

Results

Titanium isotopic data for the St. Helena lavas are shown in 
Table 1, along with other geochemical data. The St. Helena 
whole-rock samples display large Ti isotopic variations with 
δ49/47Ti ranging from − 0.02 to 1.96‰ (Fig. 2 and Table 1). 
Specifically, samples from Group 1 and Group 2 (MgO > 5 
wt.%) show insignificant δ49/47Ti variation (− 0.02 –0.05‰), 
regardless of their chemical composition (e.g.,  SiO2,  TiO2, 
MgO or  Na2O +  K2O composition; Fig. 2 and Table 1), 
which agrees well with the limited range in δ49/47Ti reported 
for global oceanic basalts and komatiites (Millet et al. 2016; 
Greber et al. 2017a; Deng et al. 2018a, 2019, 2023; Zhao 
et al. 2020). Compared with the other two groups, Group 3 
samples show a remarkable δ49/47Ti variation (from − 0.02 to 
1.96‰ for δ49/47Ti; Fig. 2 and Table 1), comparable to other 
alkaline differentiated lavas from the Afar Rift in Ethiopia, 
Acension and Heard Islands (0.01 –2.32‰; Fig. 2; Deng 
et al. 2019; Johnson et al. 2019; Zhao et al. 2020; Hoare 
et al. 2020). Our new Ti isotope data for the St. Helena sam-
ples confirm previous observations that alkaline differenti-
ated lavas show the largest range in Ti isotope composition 
followed by tholeiitic and calc-alkaline magmas (Fig. 2; Mil-
let et al. 2016; Greber et al. 2017a, 2021; Deng et al. 2019; 
Johnson et al. 2019, 2023; Zhao et al. 2020; Hoare et al. 
2020). In addition, titanomagnetite separates from Group 
3 samples have δ49/47Ti values (− 0.54 to 0.01‰) remark-
ably lower than the corresponding whole rock samples 
(from − 0.02 to 0.21‰; Table 1) with Δ49/47TiTmag-whole rock 
(= δ49/47TiTmag − δ49/47Tiwhole rock) values ranging from − 0.68 
to -0.22‰. This is consistent with previous investigations 
(Mandl 2019; Johnson et al. 2019, 2023; Greber et al. 2021; 

Rzehak et al. 2021, 2022; Hoare et al. 2022; Storck et al. 
2023) and confirms the major control that Ti-oxide crystal-
lization exerts on the Ti isotopic characteristics of igneous 
rocks.

The δ57/54Fe values of sample SH-30 and sample SH-42 
are summarized in Table S3 in Supporting Information S1. 
The δ57/54Fe values range from 0.34 to 0.35‰, relatively 
higher than those previously measured in other Group 3 
samples (0.17 to 0.32‰; Zhao et al. 2022).

Discussion

Our new results show significant Ti isotopic variability in 
St. Helena samples. Titanium is a moderately refractory ele-
ment during igneous processes and a fluid immobile ele-
ment (Pearce and Norry 1979; Kessel et al. 2005; Rapp et al. 
2010), and thus Ti isotopic signatures are likely unaffected 
by processes such as low-temperature alteration. The Th/U 
ratios are commonly used as tracers for low-temperature 
alteration due to high mobility of U in oxidized geological 
fluids (Mathieu et al. 2001), while Th behaves as an immo-
bile high field-strength element. U and Th are therefore 
often fractionated during low-temperature alteration. The 
absence of correlation between δ49/47Ti and Th/U for St. 
Helena samples (Fig. 3a), further suggests that low-temper-
ature alteration has an insignificant effect on δ49/47Ti varia-
tion. Radiogenic isotope ratios, such as initial 87Sr/86Sr and 
143Nd/144Nd, are valuable tracers of source heterogeneity, 
however, no discernable correlation exists between δ49/47Ti 
and initial 87Sr/86Sri (Fig. 3b) or 143Nd/144Nd (Fig. 3c) in St. 
Helena samples. This suggests source heterogeneity did not 
produce the measured Ti isotopic variability. Therefore, the 
large variation in δ49/47Ti observed in St. Helena samples 
likely reflects isotopic fractionation during high temperature 
igneous processes. This will be more fully explored below, 
in light of the established fractional crystallization sequence 
(Wang et al. 2021; Zhao et al. 2022).

Ti isotopic fractionation during fractional 
crystallization

St. Helena Group 1 samples (MgO contents > 13 
wt.%) have a limited range of Ti isotopic compositions 
(δ49/47Ti = 0.03– 0.04‰; Table 1 and Fig. 2), suggesting 
that olivine and clinopyroxene accumulation had a neg-
ligible influence on the Ti isotopic composition of the 
St. Helena lava. Group 2 samples also display a narrow 
δ49/47Ti range (− 0.02–0.05‰; Table 1), and show no dis-
cernable relationship between δ49/47Ti and geochemical 
indicators of magma differentiation (e.g.,  SiO2, MgO,  TiO2 
and total-alkali contents; Fig. 2). This implies that frac-
tional crystallization of olivine and clinopyroxene has little 
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impact on the Ti isotopic composition of St. Helena lava. 
Titanium isotope fractionation during igneous processes 
is theoretically controlled by differences in bond stiffness 
and coordination number (CN) between mineral phases 
and the melt. A small CN and short bond favor incorpora-
tion of heavy isotopes at equilibrium (Urey 1947; Schauble 
2004). Titanium is fourfold coordinated in olivine, and 
four to sixfold coordinated in silicate melt, depending on 
melt composition (average ∼4.5 to 5.4, Farges and Brown 

1997), olivine is therefore predicted to be slightly isotopi-
cally heavy relative to silicate melt (Wang et al. 2020). 
This prediction was confirmed by Greber et al. (2021) who 
found that olivine had a heavier Ti stable isotope compo-
sition than the bulk rock. However, fractional crystalliza-
tion of olivine seems to have a negligible effect on the Ti 
isotope composition of St. Helena lavas due to its negli-
gible  TiO2 contents. Unlike olivine, pyroxene can contain 
both six and fourfold coordinated Ti (Farges and Brown 

Fig. 2  Plot of δ49/47Ti vs  SiO2 (a),  TiO2 (b), MgO (c) and 
 Na2O +  K2O (d) contents for the studied St. Helena lavas. The hori-
zontal line represents the average δ49/47Ti value of the bulk silicate 
Earth (BSE) (0.05 ± 0.02‰, 2SD; Deng et al. 2023). Also shown are 
literature data for alkaline (Ascension Island, Afar rift, Heard island; 
Hoare et  al. 2020, 2022), subalkaline (Afar rift, Hekla in Iceland, 
Kilauea Iki; Deng et al. 2019; Johnson et al. 2019; Zhao et al. 2020), 
calc-alkaline (Santorini, Agung, Kos, Rindjani; Millet et  al. 2016; 

Hoare et al. 2020, 2022; Greber et al. 2021; Johnson et al. 2023) and 
tholeiitic (Monowai seamount, Alarcon Rise, Koolau, Hawaii; Hoare 
et  al. 2020, 2022; Zhao et  al. 2020) rocks. Error bar denotes two 
standard deviation (2SD), with the exception of error bars from Millet 
et al. (2016), Johnson et al. (2019, 2023), Hoare et al. (2020, 2022) 
and Greber et al. (2021) which are 95% c.i.. The δ49/47Ti data for St. 
Helena samples are from Table 1
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1997). Previous studies (Leitzke et al. 2018; Wang et al. 
2020; Aarons et al. 2021) have indicated that if Ti is solely 
hosted in sixfold coordination in pyroxene, no discernable 
Ti isotopic fractionation would be expected between the 
pyroxene and the silicate melt. On the other hand, when Ti 
is exclusively hosted in fourfold coordination in pyroxene, 
pyroxene are isotopically heavier than the coexisting melt. 
In additon, Rzehak et al. (2021, 2022) demonstrated that 
pyroxene can produce resolvable Ti isotope fractionation 
under more reducing lunar conditions. Ti primarily occu-
pies a sixfold coordination in pyroxene at upper mantle 

P–T conditions (Ackerson et al. 2017), and clinopyroxene 
is the main Ti-bearing phase in St. Helena Group 1 and 
Group 2 samples. The lack of resolvable Ti isotope varia-
tion in the St. Helena Group 1 and Group 2 samples sup-
ports the negligible impact of clinopyroxene-induced Ti 
isotopic fractionation.

In contrast, the St. Helena Group 3 samples (MgO con-
tent < 5.0 wt%) display a wide range in δ49/47Ti (− 0.02 to 
1.96‰; Table 1 and Fig. 2) and clear correlation between 
δ49/47Ti and magma differentiation indicators such as  SiO2, 
MgO,  TiO2, and total-alkali contents (Fig. 2). As noted 

Fig. 3  δ49/47Ti versus Th/U (a), 87Sr/86Sri (b), and 143Nd/144Nd (c) 
for St. Helena samples analyzed in this study. The horizontal dashed 
line and shaded areas represent the average δ49/47Ti values of the BSE 
(0.05 ± 0.02‰, 2SD; Deng et al. 2023). Error bars are 2SD. δ49/47Ti 

data for St. Helena samples are from Table 1. The trace element and 
radiogenic isotope data are from Kawabata et  al. (2011) and Hanyu 
et al. (2014), respectively, and can be found in Table S1 of Support-
ing Information S1
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above, Group 3 samples underwent massive fractionation 
of plagioclase and Fe-Ti oxide, with minor amounts of 
apatite, olivine, and clinopyroxene (Kawabata et al. 2011; 
Wang et al. 2021). Fractional crystallization of olivine and 
pyroxene had little effect on the Ti isotope variation in St. 
Helena Group1 and Group 2 samples according to our dis-
cussion above. Minerals like plagioclase and accessory 
apatite contain almost no  TiO2, so the effect of their crystal-
lization is also limited. However, ulvöspinel-rich titanomag-
netite is characterized by a high  TiO2 content (18.7–22.7 
wt.%) and a remarkably lighter Ti isotopic composition 
(δ49/47Ti = -0.54 to 0.01‰) relative to the corresponding 
whole rock (δ49/47Ti = − 0.02 to 0.21‰; Table 1). When 
sufficient titanomagnetite crystallizes, it drives the evolved 
melt toward a heavier Ti isotopic composition and depletes 
the melt in  TiO2 and  FeOT, consistent with our observa-
tions (Fig. 1 and Fig. 2). This is because Fe-Ti oxides (such 
as titanomagnetite, rutile and ilmenite) exclusively host Ti 
in sixfold coordination (Leitzke et al. 2018; Wang et al. 
2020; Aarons et al. 2021) and thus prefer light Ti isotopes 
relative to other silicate minerals and melts (Leitzke et al. 
2018; Wang et al. 2020; Zhao et al. 2020; Aarons et al. 
2021; Hoare et al. 2022). Consequently, the removal of 
Fe-Ti oxides would leave behind a residual magma isotopi-
cally heavy in Ti. This inference is supported by our newly 
measured and published Ti isotopic compositions of natu-
ral Fe-Ti oxide samples (Johnson et al. 2019, 2023; Mandl 
2019; Aarons et al. 2021; Greber et al. 2021; Nie et al. 2021; 

Greber et al. 2021; Rzehak et al. 2021; Hoare et al. 2022), 
as well as experimental results (Rzehak et al. 2021, 2022; 
Hoare et al. 2022). Recent work by Wang et al. (2021) and 
Zhao et al. (2022) on the same samples from St. Helena 
have shown that Mg and Fe isotopic compositions of Group 
3 samples vary and correlate with MgO contents, implying 
that these variations are largely controlled by ulvöspinel-rich 
titanomagnetite fractionation during magmatic differentia-
tion. Most notably, the δ49/47Ti values of Group 3 samples 
negatively correlate with δ26/24Mg (Fig. 4a), and positively 
correlate with δ57/54Fe (Fig. 4b). We therefore conclude that 
ulvöspinel-rich titanomagnetite crystallisation was the domi-
nant control on progressively heavier Ti isotope composi-
tions in evolving St. Helena Group 3 samples.

Quantitative modeling

We modelled Ti isotopic fractionation during magma dif-
ferention using the Rayleigh fractionation model described 
below:

where a ((49Ti/47Ti)mineral /(49Ti/47Ti)melt)) is the Ti isotope 
fractionation factor between mineral and melt, and fTi is the 
mass fraction of Ti in the remaining melt. fTi is estimated by 
comparing the Ti/Th ratios of the samples, assuming a parti-
tion coefficient of zero between mineral and melt for Th. In 

�
49∕47Timelt = (�

49∕47
Tiinitialmelt + 1000) × fTi

(a−1) − 1000

Fig. 4  δ49/47Ti versus δ26/24Mg (a) and δ57/54Fe (b) for St. Helena 
lavas. The horizontal dashed line denotes the average δ49/47Ti value 
of the BSE (0.05 ± 0.02‰, 2SD; Deng et  al. 2023). The verti-
cal solid line in panel (a) represents the average δ26/24Mg of the 
BSE (− 0.25 ± 0.04‰, Teng et  al. 2017), and the vertical solid line 
in panel (b) represents the upper mantle Fe isotopic composition 

(δ57/54Fe = 0.04 ± 0.04‰, Weyer and Ionov 2007; Craddock et  al. 
2013). δ49/47Ti data for St. Helena samples are from Table  1. Error 
bars are 2SD. δ57/54Fe data for samples SH-30 and SH-42 are from 
Table S3 of Supporting Information S1. Literature Mg and Fe isotope 
data are taken from Wang et al. (2021) and Zhao et al. (2022), respec-
tively, and can be found in Table S1 of Supporting Information S1



Contributions to Mineralogy and Petrology (2024) 179:6 Page 9 of 14 6

our simulation, sample SH-58 (δ49/47Ti = 0.05‰), with the 
highest MgO (4.97 wt%) and  TiO2 (3.51 wt%) was chosen 
as the initial melt composition, with MgO ≈ 5 wt.% marking 
the onset of Fe-Ti oxide saturation (Kawabata et al. 2011; 
Wang et al. 2021; Zhao et al. 2022). Figure 5a shows that the 
fTi vs. δ49/47Ti trend of St. Helena Group 3 samples can be 
reconciled by ∆49/47Timineral-melt (= 1000lna49/47Timineral-melt) 
of − 0.40 to − 0.30‰ (see Table S4 in Supporting Informa-
tion S1 for details of quantitative modelling).

To further assess the impact of titanomagnetite crystal-
lization on Ti isotopic composition of St. Helena lavas, we 
modelled Ti isotopic fractionation following the modelling 
method of Wang et al. (2021) and Zhao et al. (2022), who 
quantitatively evaluated the effect of each separated min-
eral on the Mg and Fe isotopic compositions of St. Helena 
lavas, respectively. An isotope mass balance model is used 
to calculate the Ti isotopic composition of residual melts 
after each crystallization step, and it can be expressed as the 
following equations:

(1)
�
49∕47Timelt,1

=
�
49∕47Timelt,2 × fmelt,2 × TiO2melt,2 +

∑n

i=1
�
49∕47Tii × fi,2 × TiO2i,2

�

fmelt,2 × TiO2melt,2 +
∑n

i=1
fi,2 × TiO2i,2

�

where δ49/47Timelt, 1 and δ49/47Timelt, 2 are the Ti isotopic 
compositions of the melts before and after a crystallization 
step, respectively. δ49/47Tii is the Ti isotopic composition 
of mineral i, and Δ49/47Tii-melt is the Ti isotopic fractiona-
tion between mineral i and melt. TiO2melt,2 and TiO2i,2

 denote 
the  TiO2 contents of residual melts and separated mineral 
i after a crystallization step, respectively. The proportions 
of segregated mineral i and residual melts after each crys-
tallization step are marked as fi, 2 and fmelt, 2, respectively. 
Olivine, clinopyroxene, and titanomagnetite are used in the 
modeling calculations. Apatite and plagioclase are ignored 
in our modeling calculations due to their very low  TiO2 
contents. The chemical compositions and proportions of 
segregated minerals and residual melts during the evolution 
history of St. Helena samples are from published MELTS 
calculation results (Table S5 in Supporting Information S1; 
Wang et al. 2021). The melt-mineral isotope fractionation 
between melts and silicate minerals such as olivine and 
clinopyroxene is assumed to be zero, and the titanomagnet-
ite-melt isotopic fractionation factor is from Johnson et al. 
(2023). The modeling results are reported in Table S5 in 

(2)�
49∕47Tii = Δ49∕47Tii−melt + �

49∕47Timelt,2

Fig. 5  Comparison of Ti isotope composition of samples from the 
St. Helena with a Rayleigh fractionation model using different bulk 
isotope fraction factors (1000 lnαmineral-melt) between all crystallizing 
minerals and the silicate melt (see Table S4 of Supporting Informa-
tion S1 for details) (a). Plot of δ49/47Ti vs MgO contents for the stud-
ied St. Helena lavas (see Table S5 of Supporting Information S1 for 
details of quantitative modelling) (b). The light orange shaded area 
represents the uncertainty of the calculated δ49/47Ti variation that 
derives from the uncertainty of the titanomagnetite-melt isotopic 

fractionation factor (Δ49/47TiTmag-melt = [(− 0.058 ± 0.015)*TiO2 + (0.
15 ± 0.24)] ×  106/T2) from Johnson et  al. (2023). The major element 
data of primary melt is from Kawabata et al. (2011) and the δ49/47Ti 
value of primary melt is assumed as 0.00‰. The horizontal dashed 
line and shaded areas represents the average δ49/47Ti values of BSE 
(0.05 ± 0.02‰, 2SD; Deng et  al. 2023). δ49/47Ti data for St. Helena 
samples are from Table 1. Error bars are 2SD. Major element data for 
the studied samples are from Kawabata et al. (2011)
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Supporting Information S1 and illustrated in Fig. 5b and 
Fig. 6. As shown in Fig. 5b, the measured trend of δ49/47Ti 
versus MgO for St. Helena samples can be well modeled 
using the above method. Furthermore, the observed trends 
of δ49/47Ti versus  SiO2,  TiO2 and total-alkali contents can 
be modeled for most St. Helena samples except for the two 
most evolved sample (e.g., SH-30, SH-42) with extremely 

low MgO (0.05–0.06 wt.%) and  TiO2 (0.11–0.23 wt.%) 
contents (Table 1 and Fig. 6). This discrepancy is prob-
ably due to the fact that the MELTS calculations failed to 
perfectly reproduce the true modes of Fe-Ti oxide minerals 
and especially the accurate MgO and  TiO2 contents of the 
residual melt and Fe-Ti oxides near the end of magma dif-
ferentiation at St. Helena (Wang et al. 2021). Nonetheless, 

Fig. 6  Plot of δ49/47Ti vs  SiO2 (a),  TiO2 (b), and  Na2O +  K2O (c) con-
tents for the studied St. Helena lavas. The orange lines show the mod-
eled variation of δ49/47Ti with changing  SiO2,  TiO2, and  Na2O +  K2O 
contents (see Table  S5 of Supporting Information S1 for details of 
quantitative modelling). The light orange shaded area represents the 
uncertainty of the calculated δ49/47Ti variation that derives from the 
uncertainty of the titanomagnetite-melt isotopic fractionation fac-
tor (Δ49/47TiTmag-melt = [(− 0.058 ± 0.015)*TiO2 + (0.15 ± 0.24)] ×  106/

T2; Johnson et al. 2023). The major element data of primary melt is 
from Kawabata et al. (2011) and the δ49/47Ti value of primary melt is 
assumed as 0.00‰. The horizontal dashed line and shaded areas rep-
resents the average δ49/47Ti values of BSE (0.05 ± 0.02‰, 2SD; Deng 
et  al. 2023). δ49/47Ti data for St. Helena samples are from Table  1. 
Error bars are 2SD. Major element data for the studied samples are 
from Kawabata et al. (2011)
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our modelling results reaffirm that titanomagnetite crystal-
lization is the major control on the progressive elevation of 
δ49/47Ti observed in St. Helena Group 3 samples.

Comparison with previous studies

Several studies have shown that differentiated lavas (alka-
line, tholeiitic and calc-alkaline series) experience different 
Ti isotopic evolution pathways during magmatic evolution 
(Deng et al. 2019; Johnson et al. 2019, 2023; Hoare et al. 
2020, 2022; Zhao et al. 2020). New Ti isotopic analyses for 
the St. Helena samples confirm this conclusion (Fig. 2). For 
example, at a given  SiO2 content, the St. Helena Group 3 
samples and other alkaline magmas show a greater increase 
in δ49/47Ti (− 0.04 to 2.32‰; Deng et al. 2019; Johnson et al. 
2019; Hoare et al. 2020; Zhao et al. 2020) than tholeiitic 
(0.01 to 1.06‰; Zhao et al. 2020; Hoare et al. 2020, 2022) 
and calc-alkaline (0.04 to 0.65‰; Millet et al. 2016; Greber 
et al. 2021; Hoare et al. 2020; 2022; Johnson et al. 2023) 
magma series (Fig. 2a). These differences likely result from 
caused by crystallization of a range of Fe-Ti oxides (e.g., 
magnetite, ilmenite, and pseudobrookite) with contrasting Ti 
isotopic compositions throughout magma evolution (Deng 
et al. 2019; Johnson et al. 2019, 2023; Hoare et al. 2020, 
2022; Zhao et al. 2020). Both theoretical models and meas-
urement of rock samples have demostrated that titanomag-
netite is highly enriched in isotopically light Ti relative to 
other Fe-Ti oxides (ilmenite, rutile, and pseudobrookite) at 
equilibrium (Johnson et al. 2019, 2023; Wang et al. 2020; 
Zhao et al. 2020; Hoare et al. 2020, 2022; Greber et al. 
2021). Therefore, at magmatic temperatures, progressive 
crystallization of titanomagnetite-dominanted Fe-Ti oxide 
raises the melt δ49/47Ti values more than crystallization of 
other Fe-Ti oxides (ilmenite, rutile, and pseudobrookite). 
Both  Ti4+ and  Fe2+ occupy the six-fold site in titanomagnet-
ite. Given that the  Fe2+ ion is larger than  Ti4+, titanomagnet-
ite has a relatively longer Ti–O bond length (2.05–2.06 Å) 
than other Fe-Ti oxides such as ilmenite, rutile, and pseu-
dobrookite (1.94–1.99 Å) (Smyth and Bish 1988; Howard 
et al. 1991; Farges et al. 1996a, b; Bosi et al. 2009). This 
longer Ti–O bond length means that light Ti is preferentially 
accommodated in the titanomagnetite structure at equilib-
rium (Bigeleisen and Mayer 1947; Urey 1947; Schauble 
2004). Our results show that the St. Helena Group 3 sam-
ples display higher δ49/47Ti than other alkaline differentiated 
lavas at a given  SiO2 from the Afar Rift in Ethiopia, Acen-
sion and Heard Islands (Fig. 2; Deng et al. 2019; Johnson 
et al. 2019; Zhao et al. 2020; Hoare et al. 2020). As dis-
cussed above, magmas that crystallize various Fe-Ti oxides 
(such as titanomagnetite, rutile and ilmenite) with divergent 
Ti isotopic compositions will preserve distinct Ti isotope 
compositions. At St. Helena, ulvöspinel-rich titanomagnet-
ite is the only crystallization Fe-Ti oxide phase during the 

compositional range of our studied Group 3 samples (Fe-Ti 
oxide saturated), whereas both titanomagnetite and ilmenite 
are Ti-bearing crystallization phases in other alkaline differ-
entiated lavas. Ulvöspinel-rich titanomagnetite is expected 
to have much lower δ49/47Ti than other Fe-Ti oxides (e.g., 
Hoare et al. 2020, 2023; Johnson et al. 2023). The differ-
ence between St. Helena Group 3 samples and other alkaline 
differentiated lavas is probably due to an earlier saturation 
and higher extent of ulvöspinel-rich titanomagnetite crystal-
lization from St. Helena Group 3 samples compared to other 
alkaline differentiated lavas.

Another factor controlling Ti isotopic fractionation is 
the composition of crystallising titanomagnetite. For exam-
ple, the  TiO2 content (15.9–28 wt.%) of titanomagnetite 
crystallized from alkaline/sub-alkaline lavas in intraplate 
settings (Afar, Ascension, Kilauea, Hekla, Heard; Deng 
et al. 2019; Johnson et al. 2019; Zhao et al. 2020; Hoare 
et al. 2020, 2022) is significantly higher than that of titano-
magnetite crystallized from arc-related calc-alkaline lavas 
 (TiO2 = 7–13.0 wt.%; Hailar, Kos Agung, Santorini, Rind-
jani; Millet et al. 2016; Hoare et al. 2020, 2022; Zhao et al. 
2020; Greber et al. 2021; Johnson et al. 2023). This com-
positional contrast likely explains the difference in the Ti 
isotopic evolution path of rocks in these two settings (Fig. 2). 
This speculation is supported by Hoare et al. (2022) who 
observed that Ti–rich titanomagnetite (~ 22 wt.%,  TiO2) was 
isotopically lighter than Ti-poor magnetite (~ 14 wt%  TiO2). 
This is also evidenced by a subsequent study by Johnson 
et al. (2023) who observed that Rindjani Ti-poor calc-alka-
line lavas crystallizing Ti-poor magnetite (7–10 wt%,  TiO2) 
experienced less Ti isotopic fractionation compared to other 
magma series. Further corroboration comes from the results 
produced in this work where the dominant Fe-Ti oxide in the 
St. Helena Group 3 samples is  TiO2 enriched ulvöspinel-rich 
titanomagnetite (18.7–22.7 wt.%  TiO2; Wang et al. 2021; 
Zhao et al. 2022) with a remarkably light Ti isotopic com-
position (δ49/47Ti = − 0.54–0.01‰; Table 1). The diverse 
Ti isotope fractionation trends observed in various mag-
matic systems is indirectly governed by the parental melt 
chemistry and redox state, which could control the onset 
of Fe-Ti oxide crystallizaion, as well as its modal abudance 
and compostition (Deng et al. 2019; Zhao et al. 2020; Hoare 
et al. 2020, 2022). For example, alkaline magmas from intra-
plate settings (reduced and  H2O-poor) have higher initial 
melt  TiO2 contents than those of tholeiitic and calc-alkaline 
lavas (oxidized and  H2O-rich; Prytulak and Elliot 2007), 
which enables early saturation of Ti–rich titanomagnetite 
or ilmenite with high modal abundance (Hoare et al. 2020, 
2022). This will also drive larger Ti fractionation in alka-
line magmas relative to tholeiitic and calc-alkaline arc lavas 
with lower  TiO2 contents and less Fe-Ti oxide (Deng et al. 
2019; Zhao et al. 2020; Hoare et al. 2020, 2022). Addition-
ally, recent studies by Storck et al. (2023) and Johnson et al. 
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(2023) have demonstrated that the relative Ti fractions in 
crystallized minerals (silicate minerals such as amphibole 
or pyroxene vs. Fe-Ti oxides) can also influence Ti stable 
isotope fractionation in magmatic systems. As outlined in 
Johnson et al. (2023), this effect might be an indirect result 
of the elevated  Fe3+/Fe2+ ratio in calc-alkaline systems.

Conclusions

This study explores the Ti isotope fractionation behavior 
during the differentiation of St Helena alkaline magma. 
Important conclusions include:

(1) The δ49/47Ti range of St. Helena Group 1 and Group 
2 samples (MgO > 5 wt.%) is quite narrow (− 0.02 
to 0.05‰). The absence of systematic correlations 
between δ49/47Ti and the chemical indicators of mag-
matic differentiation (e.g.,  SiO2, MgO,  TiO2 and 
 Na2O +  K2O contents) indicate that accumulation or 
crystallization of olivine and clinopyroxene have neg-
ligible influence of the δ49/47Ti variation of St. Helena 
Group 1 and Group 2 samples.

(2) Significant Ti isotopic variations (δ49/47Ti =  − 0.02 
to 1.96‰) are observed for St. Helena Group 3 sam-
ples (MgO < 5 wt.%), and there are clear correlations 
between δ49/47Ti and  SiO2, MgO,  TiO2 and total-alkali 
contents, which are the result of fractional crystalliza-
tion of isotopically light ulvöspinel-rich titanomagnet-
ite. This is reinforced by the measured lower δ49/47Ti 
values for ulvöspinel-rich titanomagnetite relative to 
whole rock (Δ49/47TiTmag-whole rock = − 0.68 to − 0.22‰) 
of the St. Helena Group 3 samples. Quantitative geo-
chemical modeling also support crystallization and 
removal of isotopically light ulvöspinel-rich titanomag-
netite resulting in isotopically heavy St. Helena Group 
3 samples.

(3) Our study further confirms that the Ti isotopic frac-
tionation trends observed in different magmatic systems 
(alkaline, tholeiitic and calc-alkaline series) could be 
the result of crystallization of different Fe-Ti oxides 
(Titanomagnetite, ilmenite, magnetite) with distinct 
light Ti isotopic compositions depending on the differ-
ent melt  TiO2 composition, oxygen fugacity and water 
activity.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00410- 023- 02085-x.
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