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Abstract
The Voltri Unit and adjacent Tertiary Piedmont Basin, Western Alps, preserve complementary bedrock and sedimentary 
archives of Alpine subduction and exhumation. Combined PT modeling and phengite Rb–Sr geochronology of bedrock and 
clast samples shows that Fe–Ti metagabbros and metasediments preserve a record of protracted high-pressure metamorphism, 
between ~ 50 and ~ 40 Ma. Bedrock and clast Fe–Ti metagabbros yield similar eclogite-facies peak conditions, between 23 and 
25 kbar, 510–530 °C; phengite, zoned in celadonite content, with cores > 3.5 Si c.p.f.u. and rims < 3.3 Si c.p.f.u., constrains 
the timing of exhumation between 24 and 20 kbar to 45–49 Ma. A single impure quartzite bedrock sample records peak-P 
conditions of 18–19 kbar, 450–470 °C; partial phengite equilibration in this sample occurred continuously between 19 and 
12 kbar, between ~ 45 and ~ 40 Ma. Exhumation-related recrystallization of high-pressure phengite to low-Si phengite in two 
metasedimentary samples occurred between ~ 33 and ~ 30 Ma, contemporaneous with the onset of deposition in the Tertiary 
Piedmont Basin and consistent with previous 40Ar–39Ar constraints on the timing of greenschist metamorphism. Combined 
with existing ages from the ophiolite, these data show that peak subduction-related high-pressure conditions, between ~ 18 
and ~ 25 kbar, were attained at different times across the Voltri Unit, between ~ 50 and ~ 40 Ma, implying that the Voltri Unit 
comprises an assembly of discrete lithotectonic units that were juxtaposed prior to erosion and deposition in the Tertiary 
Piedmont molasse basin. The PTt data reported here support a model in which individual sheets of high-pressure material 
were detached from the downgoing plate, partially exhumed from peak pressures to blueschist facies conditions, while 
subduction continued, and were stored for > 10 Myr until subduction ceased on arrival of the European continent into the 
orogenic wedge. As shear tractions on the plate interface are considered to exceed available buoyancy forces for exhumation, 
we suggest that syn-subduction exhumation occurred along the wedge-plate interface.
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Introduction

High-pressure (HP) metamorphic rocks are the only direct 
probes of the physical and chemical conditions deep within 
subduction zones. However, they are anomalous in that they 
have been returned to the Earth’s surface unlike the majority 
of subducted oceanic lithosphere. To accurately interpret the 
petrological information they record, it is, therefore, impor-
tant to understand how HP metamorphic rocks are detached 
from the downgoing slab and returned to the Earth’s surface.

Exhumation of HP metamorphic rocks requires either 
the removal of material that caused the high pressures, 
or tectonic transport of the HP rocks through the overly-
ing subduction complex. Erosion likely controls the final 
stages of exhumation, but additional processes are required 
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for exhumation from mantle-depths (e.g., Platt 1993); these 
include corner flow (e.g., Cloos and Shreve 1988; Gerya, 
et al. 2002; Shreve and Cloos 1986), buoyancy-driven ascent 
of metasedimentary and serpentinite-rich bodies (e.g., Eng-
land and Holland 1979; Hermann et al. 2000) and extension 
of the accretionary wedge (e.g., Jolivet et al. 2003). Analysis 
of Pressure–Temperature-time (PTt) data from HP metamor-
phic terranes shows that HP rocks are exhumed discontinu-
ously, in short-lived episodes (< 15 Myr), during subduction 
of oceanic lithosphere (e.g., Agard et al. 2009,2018). These 
observations raise the questions: does exhumation occur 
concurrently with active subduction, or, are accreted HP 
materials stored at depth while subduction continues?

Retrograde PTt paths derived from petrological investiga-
tions of exhumed HP terranes are considered to be accurate 
indicators of the timing of exhumation relative to subduc-
tion (Ernst 1988). Concurrent exhumation and subduction 
is expected to result in similar prograde and retrograde PTt 
paths due to continued underplating of cold oceanic litho-
sphere; examples of such a PT evolution are the blocks and 
coherent terranes of the Eastern Franciscan belt (Banno et al. 
2000; Kimura et al. 1996; Maruyama and Liou 1988) and 
the lawsonite metabasalts from the Sivrihisar Massif, Turkey 
(Davis and Whitney 2006). In contrast, exhumation follow-
ing the cessation, or pronounced deceleration of subduc-
tion, occurs through relaxing isotherms and is expected to 
result in near-isothermal retrograde PTt paths, as preserved 
by the Saih Hatat eclogite blocks, Oman (Warren and Waters 
2006), Eastern Alpine blueschists and eclogites (Smye et al. 
2011) and the Nevado-Filábride Complex, southern Spain 
(Sánchez‐Vizcaíno et al. 2001).

This paper presents the results of a petrochronologi-
cal investigation into the PTt evolution of blueschist- and 
eclogite-facies ophiolitic mafic rocks and metasediments of 
the Voltri HP Unit, Western Alps. Zoned phengite grains 
in a suite of HP samples record discrete intervals of PTt 
information that, collectively, constrain the tectonic his-
tory from Alpine subduction to exhumation and erosion. 
Constraints from phengite Rb–Sr geochronology and meta-
morphic phase equilibria show that eclogites and metasedi-
ments: (1) underwent HP metamorphism at depths between 
60 and 80 km, (2) were partially exhumed, accreted and 
stored within the Alpine orogenic wedge for > 10 Myr, and 
(3) were finally exhumed following the cessation of subduc-
tion. These findings demonstrate the potential importance 
of storage of slab-top materials under forearc conditions for 
understanding subduction zone mass transfer.

The Voltri Unit

The Voltri Unit is a dismembered metaophiolite suite, 
representing the remnants of the Alpine-Tethys oceanic 
realm located between the southernmost sector of the 
Western Alps and the northernmost sector of the Apen-
nines. Subduction and exhumation occurred during con-
vergence between the continental Europe and Adria (a 
promontory of the African continent) plates throughout 
the Cretaceous-Tertiary period (Polino et al. 1990; Vanossi 
et al. 1984). After Capponi et al. (2016), the Voltri Unit 
(Fig. 1) comprises: (1) high-pressure calcareous meta-
sediments and metavolcanics (the Voltri-Rossiglione Unit 

6˚ 7˚ 8˚ 9˚

44˚

45˚

46˚

5˚ 10˚ 15˚

40˚

45˚

Tertiary Piedmont
Basin (TPB)

Apennine Units

Sestri-Voltaggio Zone 

(a) Calcschists+metavolcanics (K?) 
(b) Ultramafics+metagabbros (J)

Palmaro-Caffarella Unit
(J-K) 

Montenotte Unit

Gneissic Basement
(Savona and Arenzano Units)

European accreted
continental units

Flexural foredeep
and graben fill

Adriatic accreted
continental units
Alpine Tethys

Voltri Unit

A

B

Varazze Unit

a
b

Voltri Unit

Tectonic boundary of the Voltri Massif

TPB basal unconformity

Sestri Voltaggio Line

Oceanic crust and mantle

Trench-related units

Other units

Genova

Savona

Arenzano

Voltri

Valosio

C. Parasi

Sassello

N

5 km

Ligurian Sea

Rossiglione

Voltaggio

VCSC1

ASL13-2B

CPCS-2

8˚30' 8˚36' 8˚42' 8˚48' 8˚54'

44˚18'

44˚24'

44˚30'

44˚36'

Vara

ASL13-21 ASL13-17

LPM 09-2
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Auct.) associated with high-pressure serpentinites hosting 
eclogites, metarodingites, metagabbros and metabasalts 
(the Beigua Unit Auct.), and (2) variably-serpentinized 
oceanic mantle peridotite (the Erro-Tobbio Unit Auct.) 
that underwent Alpine subduction and eclogitization 
(Scambelluri et al. 1995). Combined, all these lithologies 
are interpreted to represent portions of the sedimentary 
cover, crust and mantle lithosphere of subducted and sub-
sequently exhumed Tethyan oceanic lithosphere.

The Voltri Unit is overlain to the north by the Tertiary 
Piedmont basin that contains molasse deposits with Oligo-
Miocene stratigraphic ages (Gelati et al. 1998; Lorenz 1969), 
including blueschist and eclogite clasts in the basal units. 
These clasts have been interpreted to derive from the Voltri 
Unit during denudation of pre-existing Alpine topography 
(e.g., Federico et al. 2005). To the west, the Unit is juxta-
posed against Hercynian basement (the Savona and Aren-
zano Units), and to the east the high-pressure ophiolitic 
sequence of the Palmaro-Caffarella Unit (blueschist-facies) 
and of the Sestri-Voltaggio Zone (pumpellyite-actinolite 
facies) separates the Voltri Unit from the low-grade flysch 
of the Northern Apennines.

Bedrock eclogites in the central portion of the Voltri Unit 
(Vara region, Fig. 1) outcrop as meter-to-decameter-scale 
pods in a metamorphosed serpentinite matrix. On the basis 
of major element and REE compositions, the eclogites are 
similar to modern-day Fe–Ti gabbros (Morten, et al. 1979). 
Textural characteristics have been used to define two groups 
of eclogites: (1) massive eclogites containing coarse-grained 
sodic clinopyroxene rimmed by fine-grained coronas of gar-
net and rutile; and (ii) foliated eclogites with euhedral garnet 
embedded in a fine-grained matrix of glaucophane, ompha-
cite and rutile.

Petrologic investigations have shown that the Voltri eclog-
ites experienced peak metamorphic conditions of 18–25 kbar 
and 450 °C–550 °C, followed by a polyphase retrograde evo-
lution through the blueschist, amphibolite, and greenschist 
facies (Brouwer et al. 2002; Cimmino and Messiga 1979; 
Ernst 1981; Federico et al. 2007a, b; Liou et al. 1998; Messiga 
1987; Messiga and Scambelluri 1991; Messiga et al. 1995; 
Starr et al. 2020; Vignaroli et al. 2005). Of particular note 
is the uniformity of recent estimates of peak ecogite-facies 
conditions, ~ 500–525 °C and 23–25 kbar, recorded by Fe–Ti 
metagabbros across the Voltri Unit (Starr et al. 2020). Simi-
lar peak conditions have been documented in eclogite-facies 
lherzolites of the Erro-Tobbio Unit Auct. (Scambelluri et al. 
1991), whereas PT constraints from the Voltri metasediments 
are loosely constrained due to pervasive, exhumation-related 
retrogression. Polyphase retrogression during decompression 
is evidenced by the occurrence of chloritoid, albite, chlorite, 
titanite and lower-Si phengite assemblages (e.g., Cimmino and 
Messiga 1979; Federico et al. 2005).

The tectonic evolution of the Voltri Unit is constrained by 
a variety of geochronological constraints derived from mul-
tiple radiogenic decay systems and from samples pertaining 
to both bedrock of the Voltri Unit and clasts of the adjacent 
Tertiary Piedmont Basin (TPB). Combined, these data con-
strain the timing of peak eclogite-facies conditions across the 
Voltri Unit to ~ 50–38 Ma. Using bulk garnet Sm–Nd geochro-
nology, Starr et al. (2020) showed that HP conditions were 
first attained in the northwestern portion of the Voltri Unit 
at ~ 50 Ma, followed by peak metamorphism in the Voltri 
metasediments around ~ 47–44 Ma, and ~ 41–38 Ma in Fe–Ti 
metagabbros in the central portion of the Voltri Unit. These 
direct constraints on the timing of eclogite-facies metamor-
phism are supported by 40Ar–39Ar ages of zoned high-Si 
phengite, interpreted by Federico et al., (2005) to represent 
peak HP conditions at ~ 49 Ma, followed by blueschist and 
greenschist retrogression at 43–40 and 33 Ma, respectively. 
Phengite 40Ar–39Ar dates obtained from eclogite blocks from 
the Cascine Parasi Mélange unit are consistent with younger 
attainment of the eclogite-facies peak at ~ 43 Ma, followed by 
blueschist facies retrogression at 43–40 Ma. However, these 
dates are difficult to reconcile with a U–Pb (SHRIMP) bad-
delyite age of 33.6 ± 1.0 Ma, interpreted to record the timing 
of eclogite-facies metamorphism in Ti‐clinohumite-bearing, 
altered Fe–Ti gabbros of the Beigua Unit (Rubatto and Scam-
belluri 2003).

The stratigraphy of the TPB provides additional constraints 
on the tectonic evolution of the Voltri Massif. Basal horizons, 
characterized by continental-to-transitional and shallow 
marine sediments of the Molare Formation, have an Early 
Oligocene age of deposition (Blow 1969; Gelati and Gnac-
colini 1982; Turco et al. 1994) and contain detrital phengite 
grains that yield two clusters of 40Ar–39Ar dates (Barbieri et al. 
2003; Carrapa et al. 2003). The oldest population comprises 
dates of ~ 45–48 Ma that overlaps the timing of peak HP meta-
morphism preserved in bedrock units, whereas the younger 
population is defined by dates of ~ 32–34 Ma, spanning the first 
depositional stage of the TPB. Apatite (U‐Th)/He and fission 
track thermochronology dates derived from both Oligo‐Mio-
cene deposits and the Voltri Unit, demonstrate that the basin 
was exhumed above 4 km by ∼26 Ma (Vignaroli et al. 2010). 
Combined, these highly dispersed data demonstrate that the 
age and duration of HP conditions, and rates of subsequent 
exhumation are spatially variable across the Voltri Unit.

Sample petrography

Samples in this study comprise white mica-bearing eclog-
ites and metasediments collected from bedrock (LPM 09-2, 
ASL13-2B, VCSC1 and CPSC-2) and basal conglomerates 
of the TPB (ASL13-17 and ASL13-21). Sample locations are 
shown in Fig. 1, petrographic characteristics are discussed 
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and representative photomicrographs are presented in Fig. 2. 
In the text beneath, we refer to phengite as the solid solution 
series between muscovite, aluminoceladonite and celadon-
ite (Rieder et al. 1998); all mineral abbreviations are after 
Whitney and Evans (2010). 

Bedrock samples

Sample LPM 09-2 is a mafic eclogite sampled from a meter-
scale block in the northwestern sector of the Voltri Unit, 
along the Erro River, ca. 10 km north of Sassello (Fig. 1; La 
Pesca locality described by Scambelluri et al. 2016; 44° 33′ 
23.15″ N; 8° 26′ 47.22″ E). It contains garnet, glaucophane, 
omphacite, phengite, rutile, epidote and quartz. Garnet 
forms mm-scale poikiloblasts with inclusion-rich cores and 
is wrapped by a penetrative foliation defined by blue amphi-
bole and omphacite; epidote, rutile, quartz and blue amphi-
bole are common as included phases. Multiphase mineral 
inclusions within the garnet cores consist of block-shaped 
aggregates of epidote, plagioclase and paragonite that are 
interpreted to derive from breakdown of former lawsonite. 
Idiomorphic phengite displays sharp grain boundaries and 
equilibrium microtextures with cogenetic garnet, omphacite 
and Na-rich amphibole (Fig. 2a). This sample was collected 
from the same location as Fe–Ti metagabbro V18-S617C01 
reported by Starr et al. (2020).

Sample VCSC1 is a variably-retrogressed micaschist 
sampled from the central Voltri Unit (44° 28′ 34.48″ N; 8° 
42′ 41.58″ E). It contains quartz, white-mica and plagioclase 
as major phases and carbonate, rutile, chlorite and tourma-
line as accessory phases. Two generations of phengite are 
observed; one predates the penetrative foliation, whereas the 
other generation cross-cuts microlithons of recrystallized 
quartz (Fig. 2b). In each case, mica grains are between 100 
and 200 μm long.

Sample ASL13-2B (44° 28′ 13.2″ N; 8° 36′ 50.7″ E) is a 
strongly foliated quartz-mica schist collected from the Vara 
region of the central Voltri Unit. It contains syntectonic 
quartz, phengite, carbonate and minor rutile, tourmaline 
and graphite. Phengite flakes exhibit kink bands and, along 
with graphite seams, define an S-C fabric; individual mica 
grains range from 50 to 500 μm length. Quartz grains have 
undergone recrystallization, show undulose extinction and 
form aggregates that define microlithons (Fig. 2c).

Sample CPSC-2 (44° 32′ 35″ N, 8° 28′ 56″ E) is a quartz-
mica schist collected from the Cascine Parasi mélange 
(Federico et al. 2007a) and contains quartz, phengite, Na-
amphibole, rutile, titanite, allanite-epidote and minor gar-
net. Phengite wraps euhedral poikiloblasts of zoned Na-
amphibole and epidote; garnet is present as small idioblasts 
(< 1 mm diameter) that occur both within the matrix and as 
inclusions within Na-amphibole (Fig. 2d).

Clast samples from the Tertiary Piedmont Basin

Sample ASL13-17 is a retrogressed eclogite clast collected 
from the base of the TPB (44° 37′ 11″ N; 8° 43′ 30″ E) and 
contains, in order of decreasing abundance glaucophane, 
epidote, garnet, rutile, phengite and quartz (Fig. 2e). Garnet 
porphyroblasts are disaggregated and heavily retrogressed 
to chlorite. Straight grain boundaries between relict garnet 
and glaucophane blasts indicate that these two phases were 
a part of the peak assemblage. The conspicuous absence 
of omphacite implies post-peak retrogression that involved 
the consumption of clinopyroxene and (re-) equilibration of 
glaucophane and epidote on exhumation through blueschist 
facies conditions.

ASL13-21 is a calcschist clast sampled from the base of 
the TPB (44° 36′ 11″ N; 8° 36′ 15″ E). It is characterized by 
the high-variance mineral assemblage: phengite, quartz and 
carbonate; rutile, graphite, chlorite and tourmaline are each 
present as accessory phases. Phengite is present as flakes 
(200–500 μm length) that define a dominant foliation that 
wraps aggregates of quartz and carbonate. Clots of chlorite 
are interpreted to have formed from the retrogression of pre-
cursor garnet (Fig. 2f).

Analytical techniques

Whole‑rock and mineral compositions

Major element compositions of rock-forming mineral phases 
were determined using a Cameca SX-5 electron microprobe 
at the Materials Characterization Laboratory, Penn State. 
The instrument is equipped with four wavelength-disper-
sive spectrometers; operating conditions comprised a 20 kV 
accelerating voltage and a 20 nA beam current. The spot 
size was 2 μm for all analyses and on-peak counting time 
was 20 s for all elements. Natural and synthetic oxides were 
used for calibration standards.

Bulk rock major element analysis of selected bedrock and 
clast samples were performed at the Department of Earth 
and Environmental Sciences, Franklin and Marshall Col-
lege, utilizing a PANalytical 2404 X-ray fluorescence (XRF) 
spectrometer and the methods presented in Boyd and Mertz-
man (1987).

White‑mica Rb–Sr geochronology

Whole-rock samples were crushed using a roller mill and 
washed with deionized water to remove fine particles. After 
passing through a 1 mm sieve, a Frantz isodynamic sepa-
rator was employed to concentrate mica, garnet, and other 
mineral fractions. An agate mill was then used to reduce 
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09-2. Red circles draw attention to straight grain boundaries between 
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conditions. Note the limited extent of retrograde chlorite growth at 
the expense of garnet. Panel (b): cross polarized light (XPL) image 
of phengite flakes in micaschist sample VCSC1. Abbreviations ph1 
and ph2 refer to phengite generations that are aligned sub-parallel 
with and cross-cut the penetrative foliation, respectively. Panel (c): 
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2B. Note the prominent S-C fabric defined by phengite flakes. Panel 
(d): XPL image of Na-amphibole- and garnet-bearing micaschist 
sample, CPCS-2. Phengite wraps idioblastic garnet and porphyrob-
lasts of zoned Na-amphibole. Panel (e): XPL image of retrogressed 
mafic blueschist sample, ASL13-17. Garnet is disaggregated into 
chlorite and phengite. Straight grain boundaries between relict garnet 
and amphibole blasts (red circle) imply that these two phases were a 
part of the peak assemblage; note the absence of clinopyroxene. Panel 
(f): image (XPL) shows aggregates of phengite in calcschist sample 
ASL13-21. For all panels, mineral abbreviations are after Whitney & 
Evans (2010)
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the mineral fraction size. Prior to digestion in a HF-HNO3 
solution, mineral fractions were spiked with a mixed 87Rb-
84Sr tracer. Spike isotope concentrations were calibrated 
using NISTSRM984, RbCl, and NISTSRM987, SrCO3, 
gravimetric solutions and checked against the established 
Rb–Sr standard, NISTSRM607, K-Feldspar (Compston et al. 
1969; Nebel and Mezger 2006). Following dissolution, Sr 
was isolated using the automated Prepfast-MC Sr-Ca sepa-
ration method (Romaniello et al. 2015); the Prepfast-MC 
system was also utilized to separate Rb using a 2 mL col-
umn filled with AG50Wx8 resin. For samples, ASL13-21, 
and 17, both Sr and Rb were analyzed on a ThermoFisher 
Triton Plus TIMS at Pennsylvania State University. The Rb 
fractionation factor was determined by concurrent analysis 
of NISTSRM984 assuming an 87Rb/85Rb = 0.3857. All other 
Rb measurements were made using MC-ICP-MS (Ther-
moFisher Neptune, Metal Isotopes Laboratory, Penn State) 
and correcting for mass bias using concurrent analyses of 
Zr (Waight, et al. 2002). A nominal uncertainty of 1% (1σ) 
was assigned to 87Rb/86Sr values based on the variability 
of NISTSRM607, measured concurrently. The instrument 
mean 87Sr/86Sr for NISTSRM987 was 0.71025 ± 0.00004 
between June 2017 and July 2018. An uncertainty of 
0.01% was assigned to 87Sr/86Sr determinations based on 
the propagated uncertainty of sample 87Rb/86Sr, typically 
0.05%. Isochron parameters were calculated using IsoplotR 

(Vermeesch 2018) and the 87Rb decay constant of Nebel and 
Mezger (2011).

Mineral chemistry

Major element compositions of white mica were col-
lected for each sample that was dated by Rb–Sr geochro-
nology; the compositions of other rock-forming minerals 
in samples LPM 09-2, ASL13-17 and CPCS-2 were also 
collected to support phase equilibria calculations. Mica, 
amphibole and garnet chemistry and compositional pro-
files are presented in Figs. 3, 4, 5, respectively. Repre-
sentative mineral compositions are presented in Table 1.

Phengite is present in each of the samples; Si contents 
vary from 3.2 to 3.7 c.p.f.u. Mica grains in samples LPM 
09-2, VCSC1, ASL13-2B and ASL13-21 are zoned in 
celadonite content with decreasing inverted tschermak 
substitution (MgSiAl-2) from core to rim. Phengite cores 
generally exceed 3.4 c.p.f.u. Si, whereas rims are char-
acterized by < 3.3 c.p.f.u. Si (Fig. 3), implying that mica 
grains partially re-equilibrated during decompression. 
Paragonite is present as a minor alteration product around 
the rims of phengite grains in sample ASL13-17.

Zoned amphibole grains are present in samples LPM 09-2, 
ASL13-17 and CPCS-2. Microstructural evidence allows the 
distinction of three generations of amphibole in sample LPM 
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09-2: (1) mineral core domains of glaucophane-to-Mg-rie-
beckite composition (NaB > 1.5, (Na + K)A < 0.5, XMg > 0.5, 
where XMg = Mg/(Mg + Fe2+)) with minor substitution along 
edenite and tschermakite vectors (Fig. 4d); these regions 
exhibit patchy, irregular zonation in XMg (values between 
0.5 and 0.6; Fig. 4f), visible in BSE (Fig. 4a); (2) mantles 
of Fe-richterite-to-richerite (NaB = 1.0–1.5, (Na + K)A > 0.5, 
XMg 0.4–0.5; Fig. 4g), and (3) narrow (< 50 μm), outermost 
rims composed of Fe-hornblende or barroisite (NaB < 1.0, 
(Na + K)A < 0.5, XMg 0.4–0.5, Si 7–7.5 c.p.f.u.; Fig. 4h). 
Amphibole in sample ASL13-17 exhibits progressive zona-
tion from Mg-riebeckite-to-glaucophane cores to Fe-glau-
cophane rims; several analyses of richterite were collected 
from growth zones proximal to glaucophane core domains. 
These zoned HP amphibole cores are overgrown by discrete, 
narrow rims (< 50 μm) of Fe- to Mg-hornblende composi-
tion (Fig. 4h). Finally, sample CPCS-2 exhibits two genera-
tions of Na amphibole: a central glaucophane core phase 
overgrown by euhedral rims of Mg-riebeckite (Fig. 4f). The 
main similarity in amphibole chemistry between each of the 
samples is the glaucophane-riebeckite cores, interpreted to 
represent high-pressure conditions. The two mafic samples, 

LPM 09-2 and ASL13-17, exhibit similar magnitudes of ret-
rograde tschermakite and edenite substitution in hornblende 
rim domains, consistent with formation during or following 
decompression from eclogite or blueschist facies conditions. 
However, it is worth noting that the continuous nature of 
the core-to-rim zonation observed in sample ASL13-17 is 
markedly different from the discrete overgrowths observed 
in sample LPM 09-2 and CPCS-2.

Zoned garnet is present in samples LPM 09-2, ASL13-
17 and CPCS-2. Example chemical traverses and maps are 
presented in Fig. 5, and example chemical analyses are pre-
sented in Table 1. Garnet porphyroblasts in sample LPM 
09-2 are almandine-rich solid solutions (Xalm > 50 molar 
%) and preserve at least two distinct growth zones (Fig. 5a, 
d). The internal zone dominates the volume of each garnet 
grain analyzed and is characterized by bell-shaped core-
rim Mn zonation, implying prograde sequestration of ele-
ments according to Raleigh fractionation (yellow shading, 
Fig. 5d; core composition: Alm55-67Grs24-27Prp24-27Sps5-20). 
Chemical maps of Mn zonation reveal an external growth 
zone that spans the outermost ~ 100 μm radial distance and 
is characterized by low-Mn and Ca concentrations and an 
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absence of internal zonation (deep purple shading, Fig. 5d; 
outermost rim composition: Alm73-80Grs15-20Prp5-10Sps0-1). 
A tortuous boundary between the internal and external 
growth zones is consistent with some degree of resorption 
following growth of the internal zone; however, the bound-
ary is marked by a sharp (< 100 μm) change in spessartine 
concentration implying short length scales of diffusive modi-
fication. Garnet in sample ASL13-17 has a similar compo-
sitional range to LPM 09-2 and also has at least two growth 
zones (Fig. 5b, c), comprising a bell-shaped Mn-rich internal 
zone (hot shading, lower panel Fig. 5c; core composition: 
Alm55-65Grs20-26Prp24-27Sps5-15) surrounded by a Mn-poor 
external zone (cold shading, lower panel Fig. 5c; rim compo-
sition: Alm73-81Grs14-16Prp9-12Sps0-2). The boundary between 
these growth zones is defined by a step-like discontinuity 
in Xsps content that occurs over a length scale of < 100 μm. 
Garnet in sample CPCS-2 is spessartine-rich and occurs as 
small (< 100 μm diameter), euhedral and inclusion-free por-
phyroblasts. Atoll-shaped Mn zonation defines core domains 
(core composition: Alm8-12Grs9-11Prp1-4Sps71-79) which are 
surrounded by narrow rim domains (< 20 μm; rim compo-
sition: Alm15-19Grs4-9Prp3-6Sps65-73) with little discernable 
internal zonation (Fig. 5e).

Sodic clinopyroxene is present in sample LPM 09-2 as 
matrix blasts after primary igneous clinopyroxene with an 
omphacitic composition (~ Jd25Ag20Di55). No discernable 

core-to-rim chemical zonation was observed in EPMA 
analyses.

Phengite Rb–Sr geochronology

Statistically valid isochrons were obtained for six of twelve 
samples initially analyzed (Fig. 6; Table 2); the remaining 
samples yielded low Rb–Sr ratios (< 1), unsuitable for age 
determination. Bedrock samples yield Rb–Sr whole rock-
phengite isochron dates of 47.37 ± 0.41 (LPM 09-2; n = 5, 
MSWD = 9), 44.57 ± 1.68 (VCSC-1; n = 4, MSWD = 1.2), 
35.76 ± 0.54 (CPCS-2; n = 3, MSWD = 22) and 30.45 ± 0.45 
(ASL13-2B; n = 6, MSWD = 0.48). Clast samples yield 
whole rock-phengite isochron dates of 45.18 ± 0.33 (ASL13-
17; n = 4, MSWD = 4.8) and 32.46 ± 0.32 (ASL13-21; n = 4, 
MSWD = 11). Results of two-point isochron calculations are 
presented in Table S1.

PT modeling

A suite of PTX pseudosections were calculated to constrain 
prograde PT paths and peak PT conditions for two mafic 
samples (LPM 09-2 and ASL13-17) and one impure quartz 
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micaschist sample (CPCS-2). We focused on these samples 
due to their well-constrained Rb–Sr phengite ages and ame-
nable phase assemblages to constrain the PT conditions of 
phengite equilibration. All calculations were performed in 

the simplified (MnO–)Na2O–CaO–K2O–FeO–MgO–A​l2​O​
3–SiO2–H2O–TiO2​–F​e2​O3 ​((M​n–)​NCKFMASHTO) chemi-
cal system using Gibbs free energy minimization as imple-
mented in the Theriak-Domino program (de Capitani and 
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Petrakakis 2010; version 11.03.2020). MnO was considered 
for the impure quartzite (CPCS-2) and for modeling the 
growth of garnet-core domains in the two mafic samples. All 
calculations were performed with H2O as a saturated compo-
nent based on: (1) the presence of prograde pseudomorphs 
after lawsonite (sample LPM 09-2); (2) the prevalence of 
glaucophane in peak mineral assemblages; (3) the presence 
of idiomorphic white-mica aligned with peak-P mineral fab-
rics samples, and (4) elevated XRF Loss On Ignition (LOI) 
values for samples LPM 09-2 and ASL13-17 (Table 3). It is 
likely, however, that some fraction of the LOI value reflects 
post-peak addition of H2O during exhumation.

All calculations were performed with the internally con-
sistent thermodynamic database of Holland and Powell 
(1998; version ds5.5) and the following activity-composition 
(a–X) models: garnet, biotite (White et al. 2007), plagioclase 
(Holland and Powell 2003), chlorite, epidote, talc (Holland 
and Powell 1998), white mica (Coggon and Holland 2002), 
ilmenite (White et al. 2005), magnetite (White et al. 2002), 
clinoamphibole and clinopyroxene (Diener and Powell 
2012). Quartz/coesite, aluminosilicate, albite, rutile, sphene, 
zoisite and lawsonite were all treated as pure phases; since 
we excluded CO2 from consideration, the fluid phase was 
also treated as pure H2O. The Holland and Powell (1998) 
ds5.5 thermodynamic database and derivative a–X models 
were preferred over the more recent ds6.2 database (Holland 
and Powell 2011) for the following reasons: (1) calculations 
initially performed with the ds6.2 database and the updated 
amphibole and clinopyroxene models of Green et al (2016) 
yielded unreasonably high peak pressure estimates for garnet 
rim compositions (> 28 kbar), within the coesite stability 

field, for which there is no supporting petrographical evi-
dence; (2) the consideration of K2O and TiO2 components 
in Na and Na-Ca amphibole results in negligible differences 
in phase relations under the PT conditions of interest, and 
(3) the ds5.5 database and models accurately predict the 
stability of lawsonite in garnet core assemblages and yield 
similar garnet compositions to those observed under non-
UHP conditions.

Estimated bulk compositions were based on whole-rock 
XRF analyses for each of the samples (Table 3). Values 
of XFe3+  = 0.30 and 0.66 (XFe3+  = Fe3+/(Fe3+ + Fe2+) in 
molar proportions) were assumed for the two mafic sam-
ples (Fe2O3 = 2.11, and 2 mol%, garnet core and rim com-
positions, sample LPM09-2; Fe2O3 = 2.24 and 1.73 mol%, 
sample LPM09-2) and the impure quartzite sample 
(Fe2O3 = 1.3 mol%, sample CPCS-2), respectively. These 
estimates were determined by comparison of ferric iron 
titration measurements—that tend to overestimate XFe3+—
and estimates of ferric iron concentrations derived by min-
eral modes and EPMA analyses. We note that a value of 
XFe3+  = 0.3 is agreeable with values reported for altered 
oceanic crust (e.g., XFe3+  = 0.1 – 0.5, Dungan et al. 1978) 
as well as for other massive Fe–Ti metagabbros from the 
Voltri massif (e.g., XFe3+  = 0.21 – 0.37, Starr et al. 2020).

Growth of porphyroblastic phases, such as garnet, at 
temperatures lower than required for grain-scale volume 
diffusion can modify the reactive bulk composition and 
subsequent prograde phase relations (e.g.,Evans 2004; Kon-
rad-Schmolke et al. 2008; Marmo et al. 2002; Tinkham and 
Ghent 2005; Zeh 2006). To account for this in our calcula-
tions, we followed the approach presented by Evans et al. 
(2004) that applies a Rayleigh fractionation model based 
on the measured Mn content of garnet to derive the vec-
tors of crystal fractionation. We applied this approach to 
samples LPM09-2 and ASL13-17 in which garnet is zoned 
in almandine, pyrope, grossular and spessartine compo-
nents and is volumetrically abundant (> 10 vol%); garnet 
in sample CPCS-2 is present as a minor phase and any such 
fractionation is assumed to have had a negligible effect on 
the reactive bulk composition. For both samples, core-rim 
EPMA traverses were screened to identify the most primitive 
Mn-rich core compositions, reducing the risk of using an ali-
ased, non-central chemical profile. Core-to-rim Mn transects 
exhibit classic bell-shaped zonation (Fig. 5), consistent with 
prograde formation during Rayleigh fractionation. Pseudo-
sections for the formation of garnet cores were constructed 
using measured XRF bulk-rock compositions, whereas phase 
relations pertaining to equilibration of garnet rim domains 
were calculated using fractionated bulk compositions. All 
bulk compositions are presented in Table 3. Estimates of 
the PT conditions of equilibration for garnet rims and cores 
were constrained by linearly-independent combinations of 
isopleths of almandine, pyrope, grossular and spessartine.

Table 3   Bulk-rock XRF compositions used for pseudosection calcu-
lations (mole %)

a XFe3+ = Fe3+/(Fe3+ + Fe2+)
b LOI = loss on ignition

LPM09-2 ASL13-17 CPCS-2

Core Rims Core Rims

SiO2 48.99 49.13 47.19 47.73 68.56
TiO2 4.93 5.13 3.82 4.08 0.87
Al2O3 6.28 5.91 7.72 7.34 8.03
Fe2O3 2.11 2.00 2.24 1.73 1.30
FeO 9.63 9.31 10.29 8.23 1.33
MnO 0.25 0.20 1.45
MgO 9.61 9.96 9.59 10.05 4.69
CaO 6.43 6.23 5.48 5.32 3.14
Na2O 4.25 4.42 3.71 3.96 0.68
K2O 0.23 0.24 0.30 0.31 2.59
Total 92.71 92.33 90.54 88.75 92.64
aXFe3+ 0.30 0.30 0.30 0.30 0.66
bLOI 7.29 7.59 9.46 10.11 7.35
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Sample LPM 09‑2 (bedrock mafic schist)

The PT phase diagram calculated using the garnet core com-
position (Fig. 7a) is dominated by amphibole- and ompha-
cite-bearing tri- and quadravariant assemblages. Garnet 
core compositions (composition used to constrain PT coor-
dinates of isopleth intersection: Alm54-55Grs26-28Sps19-21; 
Table 1) are calculated to be stable between 17–23 kbar and 
460–510 °C in the phase assemblage field: grt-chl-omp-gln-
lws-qz-(rt-ph-H2O), in broad agreement with the presence 
of paragonite + clinozoisite pseudomorphs after lawsonite 
in garnet poikiloblasts (Fig. 5d). The ~ 5 kilobar pressure 
range obtained for garnet core growth reflects the poor level 
of fit between garnet isopleths. Conditions of outermost 
garnet rim equilibration (Fig. 7b; Alm73-75Grs14-16Prp8-11; 
Table 1) are estimated to have occurred at higher pressures 
to core growth, around 24–25 kbar and 510–530 °C in the 
grt-omp-gln-tlc-qz-(rt-ph-lws-H2O) assemblage field. This 
assemblage generally agrees with the observed mineral par-
agenesis with the notable exception that lawsonite is not 
preserved. It is plausible that lawsonite was indeed a con-
stituent of the peak assemblage and underwent decomposi-
tion during retrograde, exhumation-related metamorphism. 
Support for this contention is provided by the presence of 
pseudomorphs in garnet rim domains of sample LPM09-2 
(Fig. 5d). An alternative explanation is that the rock was 
undersaturated in H2O under peak metamorphic conditions 
and that the lawsonite stability field calculated assuming 
H2O saturation in Fig. 7b does not accurately reflect the 
metamorphic system. Fig. S1 displays TX phase relations 
for bulk compositions containing 2 to 20 mol percent H2O 
between 500 and 600 °C at 24.5 kbar. Inspection of the plot 
reveals that bulk-rock H2O concentrations of < 3 mol percent 
are required to stabilize lawsonite-absent equilibria and that 
under such H2O-undersaturated conditions, garnet isopleths 
are strongly dependent on bulk-rock H2O and shift to lower-
T with decreasing mole percent H2O.

The observed range of Si-in-phengite (3.4–3.6 c.p.f.u..) 
corresponds to pressures < 23–24 kbar at peak temperatures 
of garnet rim equilibration (light blue lines, Fig. 7b), imply-
ing that phengite equilibrated during decompression from 
peak pressures.

Sample ASL13‑17 (retrogressed eclogite clast)

The topology of the garnet core PT pseudosection calcu-
lated for sample ASL13-17 is characterized by expansive 
tri- and pentavariant amphibole- and chlorite-bearing 
assemblages (Fig. 7c). Garnet core compositions (Fig. 7c; 
Alm58-60Grs24-26Sps8-10; Table 1) correspond to a region 
of PT space between 17 and 19 kbar, and 480 and 510 °C 
spanning the low-P limit of clinopyroxene stability in the 
grt-omp-chl-ep-gln-lws-qz(-rt-ph-H2O) assemblage field. 

The garnet rim PT pseudosection (Fig. 7d) shares a similar 
topology to bedrock sample LPM09-2 (Fig. 7b), character-
ized by quadra- and pentavariant amphibole- and omphacite-
bearing stability fields. Conditions of garnet rim equilibra-
tion are tightly constrained by measured garnet compositions 
(Alm73-74Grs14-16Prp8-11; Table 1) to between 23–25 kbar and 
515–530 °C, in the grt-omp-gln-lws-qz(-rt-ph-H2O) assem-
blage stability field. The observed peak mineral assemblage 
(gln-ep-grt-ph-rt-qz) is notably devoid of clinopyroxene and 
lawsonite, both of which are predicted to be stable under 
peak PT conditions (~ 5 and ~ 15 vol.% omphacite and 
lawsonite, respectively, at 24 kbar and 525 °C). Epidote is 
predicted to be stable at pressures less than ~ 20 kbar, form-
ing as a product of lawsonite and omphacite breakdown 
(e.g., Fig. 7d) and implying that the relict peak assemblage 
contained both of these phases and was similar to sample 
LPM09-2. Finally, the observed range of peak Si-in-phengite 
values (3.4–3.6 c.p.f.u.) occurs between ~ 20 and ~ 24 kbar 
at the peak temperature obtained from garnet rim isopleths, 
implying that phengite analyses with Si contents close to 3.6 
c.p.f.u. preserve a record of peak-P conditions.

Sample CPCS‑2 (bedrock metasediment)

The PT pseudosection calculated for impure quartz-mica 
schist CPCS-2 is dominated by tri- and quadravariant gar-
net- and amphibole-bearing assemblages (Fig. 7e). Due to 
the Mn-rich bulk composition (MnO, 1.45 mol.%; Table 3), 
garnet stability is predicted to extend to low-grade condi-
tions < 5 kbar and < 400  °C. Garnet core compositions 
(Alm10-11, XMg = 0.17 – 0.18; Table 1) correspond to PT con-
ditions of 430–450 °C and 12–14 kbar, in the g-gl-chl-sph-
ru-hem(-ep-ph-q-H2O) stability field, whereas rim composi-
tions (Alm17-18, XMg = 0.21 – 0.22; Table 1) occur at higher 
pressures, between 18 and 19 kbar, at 450–470 °C, in the 
grt-gln-chl-rt-ilm(-ep-ph-qz-H2O) stability field. The peak 
assemblage of grt-gln-rt-ep-ph-qz-H2O is in broad agree-
ment with the predicted phase assemblage with the excep-
tion that chlorite was not identified in thin section. These 
peak PT conditions are in good agreement with observed 
Si-in-phengite values (3.4–3.6 c.p.f.u.), demonstrating that 
phengite with the highest Si contents equilibrated at pres-
sures around 18–19 kbar; conversely, the lowest Si-content 
phengite corresponds to ~ 12 kbar at peak temperatures, 
similar to the pressures at which the observed replacement 
of rutile by sphene is predicted to occur.
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Interpretation of Rb–Sr white‑mica dates

Combined, the PT modeling and Rb–Sr white-mica dates 
constrain segments of the prograde, peak and early-retro-
grade PTt paths for three samples. However, as four of the 
six samples analyzed here contain zoned phengite grains and 
the whole-grain Rb–Sr technique produces a volume-average 
of intracrystalline isotopic zonations, it is important to first 
consider the effect of intragranular chemical, and thus tem-
poral, zonation on Rb–Sr isochron statistics.

Figure  8 shows a suite of isochrons calculated with 
synthetic Rb–Sr isotopic data that reflect different mix-
tures of high- and low-Si phengite (X = volume fraction 
high-Si phengite). The data were generated assuming uni-
form distributions of equilibration ages between 45 and 
50 Ma for phengite cores and 30–34 Ma for low-Si phen-
gite overgrowths, as shown by 40Ar–39Ar data from Voltri 
white micas (Federico et al. 2005). The calculations also 
assume that 87Rb/86Sr varies between 10 and 40 for both 
mica generations and an initial 87Sr/86Sr value of 0.70970; 
these parameters were chosen to reflect the range in Rb–Sr 
isotopic compositions determined for the metasedimentary 
samples analyzed (VCSC1, CPCS-2, ASL13-2B, ASL13-
21; Table 2), which exhibit evidence for low-Si phengite 
overgrowth on high-Si phengite cores.

Two principal conclusions can be drawn from the calcu-
lations. First, the computed isochron MSWD values exhibit 
a strong positive correlation with the volume fraction of 
low-Si phengite overgrowth, demonstrating that MSWD is 
potentially a useful indicator for the degree of isotopic heter-
ogeneity in the analyzed mica population (e.g., Glodny et al. 
2008; McIntyre et al. 1966; Wendt 1993). Second, for mix-
tures dominated by high-Si phengite (i.e., X > 0.5), isochron 
dates represent minimum estimates of the true age of high-Si 
phengite equilibration and conversely for mixtures domi-
nated by low-Si phengite (X < 0.5), isochron dates represent 
maximum dates of the lower-P equilibration. Of course, 
these calculations are simplified and do not account for fur-
ther complications associated with variations in 87Sr/86Sri 
between mica generations and progressive overgrowth of 

low-Si phengite. Nevertheless, these principles provide a 
qualitative framework for the interpretation of the Voltri 
white-mica Rb–Sr. In addition to the complete multi-point 
Rb–Sr isochrons shown in Fig. 6, two-point isochrons con-
necting individual white-mica analyses with the whole rock 
fraction were calculated and are shown in Table S1. These 
two-point isochrons provide further constraints on the effect 
of mixing multiple mica generations on Rb–Sr isochron sys-
tematics and the timing of HP phengite growth.

White mica in the bedrock eclogite sample, LPM 09-2, is 
dominated by phengite and individual grains exhibit minor 
Si zonation, between 3.6 and 3.4 c.p.f.u., from core to rim 
domains. The pseudosection calculations (Fig. 7a, b) show 
that these phengite compositions correspond to a P differ-
ence of ~ 4 kbar recorded within individual mica grains, 
at temperatures corresponding to maximum metamorphic 
pressures (510–530 °C). Although the observed phengite Si 
contents are also calculated to be stable during a plausible 
prograde PT trajectory (Fig. 7b), the observation that phen-
gite grains share straight grain boundaries with peak mineral 
phases, garnet, glaucophane and omphacite (Fig. 2a), sup-
ports the interpretation that phengite equilibrated close to 
peak PT conditions (24–25 kbar), likely during the initial 
stages of decompression at < 23 kbar. The elevated MSWD 
of the full Rb–Sr isochron (47.37 ± 0.41 Ma; MSWD = 9) 
and the presence of minor near-rim paragonite on some 
phengite grains implies that this date represents an estimate 
of the minimum age of HP metamorphism. Accordingly, 
we interpret the pair of two-point, whole rock-white mica, 
isochron dates that yield dates of ~ 48 ± 1 Ma as the best 
constraint on the age of HP phengite growth (Table S1).

White mica from the retrogressed eclogite clast ASL13-
17 also exhibits minor variations in Si content, between 3.4 
and 3.6 c.p.f.u., corresponding to an absolute P range of 
4–5 kbar (Fig. 7d). Microtextural relations show that phen-
gite equilibrated with chlorite during decompression-related 
consumption of garnet (Fig. 2e); this is consistent with phen-
gite equilibration between ~ 20 and 24 kbar during the early 
stages of exhumation from peak PT conditions (23–25 kbar 
and 515–530 °C), notably similar to the interpretation pro-
posed for bedrock mafic eclogite LPM09-2. The low MSWD 
(4.8) of the full Rb–Sr isochron (45.18 ± 0.33 Ma) supports 
the interpretation that this age is minimally impacted by 
retrograde white mica generations and represents the tim-
ing of HP phengite growth. We thus interpret that the sam-
ple underwent early decompression from peak conditions 
around ~ 45 Ma, consistent with the oldest two point isoch-
ron date of 45.86 ± 0.92 Ma (Table S1).

In contrast to the other metasediment samples investi-
gated, phengite from micaschist CPCS-2 appears to pre-
serve a restricted range in Si contents, between 3.4 and 3.6 
c.p.f.u, overlapping the range of Si contents observed in 
phengite from the mafic samples. Phengite is present as a 

Fig. 7   Phase equilibria modeling for samples LPM09-2 (panels a–b), 
ASL13-17 (c–d) and CPCS-2 (e–f). Pressure–temperature fields are 
shaded according to assemblage variance. Dashed lines correspond 
to observed ranges of garnet (mol fractions of almandine, pyrope, 
grossular and spessartine) and phengite (c.p.f.u. Si) compositions as 
determined by EPMA analyses. Beige polygons reflect best-fit condi-
tions of garnet core and rim equilibration determined by intersection 
of isopleths. For samples LPM09-2 and ASL13-17 phase diagrams on 
the left (a and c) were calculated using bulk rock XRF compositions 
to model garnet core growth, whereas diagrams on the right (b and d) 
correspond to conditions of garnet rim growth. For sample CPCS-2 
garnet core fractionation was not considered and panels e and f show 
phase relations and isopleths calculated using the bulk rock XRF 
composition, respectively. See text for discussion

◂
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matrix phase and wraps porphyroblasts of garnet and Na-
amphibole (Fig. 2d), implying that high-Si phengite was 
reoriented and underwent partial chemical equilibration 
(to Si 3.4 c.p.f.u.) during exhumation-related deforma-
tion. Pseudosection calculations show that the observed 
range in Si contents corresponds to a range of pressures 
between ~ 12 and 19 kbar at peak metamorphic temperatures 
of 450–470 °C. These PT conditions are in broad agree-
ment with the wide range of peak PT conditions (~ 15–20 
kbar and ~ 400–550 °C) reported by Federico et al (2007a, 
b) for mafic and metasedimentary blocks at the same local-
ity. The elevated MSWD (22) of the Rb–Sr isochron for 
this sample is at odds with the limited range of phengite 
Si contents observed and implies that the phengite EPMA 
analysis did not fully characterize the diversity of phengite 

chemistry present in the sample. Thus, we interpret that the 
full isochron age (35.76 ± 0.54 Ma) reflects the analysis of 
phengite fractions with significant retrograde components 
and we, therefore, consider the oldest two-point isochron 
date (42.93 ± 2.65 Ma, Table S1) as a minimum age con-
straint on the timing of phengite growth under retrograde 
blueschist facies conditions.

Quantitative PT constraints for the remaining three 
metasediments, ASL13-2B, ASL13-21 and VCSC1 were 
not derived due to their high variance mineral assemblages. 
However, each of these samples preserve relict high-Si phen-
gite cores, overgrown to various extents by low-Si phengite 
rims (Fig. 3), and a broad positive correlation exists between 
Rb–Sr white mica date and the minimum mica Si-content 
observed (Fig. 9). This correlation, combined with the low 
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MSWD of each of the isochrons (< 11), enables qualitative 
interpretations of the Rb–Sr phengite dates. The well-pre-
served high-Si phengite cores in sample VCSC1 (Fig. 3) are 
consistent with the interpretation that this sample records 
HP conditions at 44.57 ± 1.68 Ma. In contrast, samples 
ASL13-2B and ASL13-21 exhibit a greater volume fraction 
of phengite grains with a progressive spread in Si contents 
between ~ 3.6 and 3 c.p.f.u., indicating that the Rb–Sr isoch-
rons are likely dominated by low-Si phengite and represent 
upper bounds to the timing of white mica equilibration dur-
ing exhumation, between 30 and 33 Ma.

In summary, the analyzed samples constrain the tim-
ing of phengite equilibration under eclogite and blueschist 
facies conditions to between ~ 49 and ~ 40 Ma. This age 
range is derived from: (1) the upper bound to the two-point 
isochron date for sample LPM09-2 (48 ± 1 Ma), and (2) the 
lower bound to the two-point isochron for sample CPCS-2 
(42.93 ± 2.65 Ma); excluding uncertainties reduces the range 
to ~ 48–43 Ma. Recrystallization of HP phengite to low-Si 
phengite occurred between ~ 33 and ~ 30 Ma. These dates 
overlap both the range of phengite 40Ar–39Ar dates reported 
by Federico et al (2005), who obtained eclogite and blue-
schist facies phengite dates between 40 and 49 Ma, and a 
greenschist facies overprint between 32 and 34 Ma, and the 
Sm–Nd garnet dates from Starr et al (2020) who reported 
ages of ~ 40 Ma and ~ 50 Ma from the central and northwest-
ern Voltri Unit, respectively.

Tectonic evolution of the Voltri Unit

Diachronous HP metamorphism

Combined with existing datasets, the PTt data presented 
here allow for discrimination between competing structural 
models for the metamorphic evolution of the Voltri Unit. 
Contiguous PTt histories from across the unit would suggest 
that the Voltri Unit behaved as a single, coherent terrane 
during subduction and exhumation; rather, disparate and 
diachronous PTt histories would suggest an amalgamation 
of discrete subunits.

Following Starr et al (2020), a compilation of available 
geochronological data for the Voltri Unit is presented in 
Fig. 10. Inspection of the data shows a diachronous distri-
bution of HP mineral dates across the Voltri Unit. Peak HP 
metamorphism is oldest in the northwest Voltri Unit, where 
eclogite facies conditions were attained ~ 50 Ma as evinced 
by similar Sm–Nd garnet (sample V18-S617C01, Starr et al 
(2020)) and high-Si phengite Rb–Sr dates (sample LPM-09-
2, 47.37 ± 0.41 Ma, this study). Eclogitic and metasedimen-
tary blocks from the Cascine Parasi mélange structure yield 
distinctly younger 40Ar–39Ar and Rb–Sr phengite dates, 
between ~ 45 and 40 Ma (Federico et al., (2007a, b) and 
the oldest two-point isochron date, 42.93 ± 2.65 Ma, sam-
ple CPCS-2, this study). Together with the disparate range 
of exotic HP-LT blocks preserved in the mélange, these 
dates imply a different origin and/or tectonic evolution to 
the central and northwestern portions of the Voltri Unit. In 
contrast to the northwest Voltri Unit, Sm–Nd garnet dates 
from the central portion of the Voltri Unit (Vara region) 
indicate that peak conditions (23–25 kbar, 500–525 °C) were 
attained ~ 10–12 Myr later, between 41 and 38 Ma (Starr 
et al. 2020). These garnet dates indicate that the U–Pb bad-
deleyite age of 33.6 ± 1 Ma obtained from a Ti-clinohu-
mite vein in the Vara region by Rubatto and Scambelluri 
(2003) most likely represents post-peak crystallization and 
not HP conditions as originally interpreted. Peak condi-
tions in metasediments of the central and eastern portion 
of the Voltri Unit occurred between 47 and 44 Ma (sample 
VCSC-1, this study; sample FL34 of Federico et al (2005), 
estimated PT conditions of > 15–16 kbar and 400–500 °C), 
implying that such metasediments experienced a distinct 
PTt evolution relative to neighboring metagabbros in the 
Vara region of the central Voltri massif. In agreement with 
previous investigations (Federico et al. 2005, 2007b; Starr 
et al. 2020), these data collectively show that peak HP con-
ditions, between ~ 18 and ~ 25 kbar (~ 60–90 km; ρ = 2.9 g/
cc), were attained at different times across the Voltri Unit, 
between ~ 50 and ~ 38 Ma, consistent with previous interpre-
tations that the Voltri Unit comprises a sequence of discrete 
lithotectonic units as opposed to a structurally coherent unit. 
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It is worth noting, however, that the current density of PTt 
sampling across the terrane precludes precise identification 
of the position and nature of the inferred tectonic boundaries 
that must separate the various sub-units.

Despite the ~ 12 Myr difference in age of HP metamor-
phism between the northwest and central Voltri Unit, the PT 
conditions of HP metamorphism define a restricted range of 
thermal gradients, between ~ 6 and ~ 8 °C/km (ρ = 2.9 g/cc). 
This observation implies that an active subduction regime 
was operating from the Early Eocene to the Eocene/Oligo-
cene boundary.

The geochronological compilation also shows that the 
Rb–Sr white-mica dates presented here span a similar date 
range to 40Ar–39Ar white-mica dates reported previously 
for both clasts and bedrock samples that range from ~ 32 
to ~ 65 Ma (Barbieri et al. 2003; Carrapa et al. 2003; Fed-
erico et al. 2005, 2007b). This similarity between datasets 
is expected if extraneous 40Ar contamination is negligible. 
Furthermore, there is no systematic difference in the distri-
bution of 40Ar–39Ar and Rb–Sr white mica dates for bedrock 
and clast samples, implying that the HP units of the Voltri 
Unit were juxtaposed prior to surface exposure and the tim-
ing of basal deposition in the adjacent TPB. The timing of 
basal sedimentation in the TPB (34–30 Ma) is also contem-
poraneous with several exhumation-related 40Ar–39Ar and 
Rb–Sr white mica dates (~ 30–33 Ma, samples ASL13-2B 
and ASL13-21, this study). This implies that (1) greenschist 
facies metamorphism was concomitant with erosion and sed-
imentation, and (2) at least the final stages of exhumation of 
HP units involved significant erosion at rapid rates.

Exhumation of the Voltri Unit

Preservation of a protracted history of subduction in the Vol-
tri Unit raises the question: was exhumation continuous over 
this time interval? As a precedent to the ensuing discussion, 
two end-member tectonic scenarios for the exhumation of 
the Voltri Unit are introduced: (1) exhumation occurred con-
currently with subduction resulting in the continuous return 
of HP material to shallow crustal depths (e.g., Shreve and 
Cloos 1986), or (2) HP slices were accreted to the forearc 
under blueschist and eclogite facies conditions before abrupt 
exhumation and juxtaposition during the cessation of sub-
duction (e.g., Bayet et al. 2018).

Using the conditions and timing of HP metamorphism 
and the onset of basal deposition in the TPB as constraints, 
time-averaged rates of exhumation are between 0.4 and 
0.54 cm/year for the northwest Voltri Unit (calculated using 
durations of 16–20 Myr, P between 23 and 25 kbar and 
ρ = 2.9 g/cc) and between 0.73 and 1.74 cm/year in central 
Voltri Unit, respectively (durations of 5–11 Myr). In suf-
ficient PT data are available to calculate exhumation rates 
for the eastern metasediments (e.g., sample VCSC-1). Such 
time-averaged rates are comparable to exhumation rates 
derived from other Alpine oceanic HP units, including the 
Schistes Lustres (e.g.,Agard et al. 2002) and the Gran Para-
diso massif (e.g.,Manzotti et al. 2018). While affording a 
constraint on the total duration over which exhumation may 
have operated, these time-averaged exhumation rates do not 
account for: (1) potential storage of the tectonic slices that 
comprise the Voltri Unit during on-going subduction, and 
(2) the differential exhumation that must have occurred to 
facilitate tectonic juxtaposition prior to erosion as a coherent 

Fig. 10   Geochronology of the 
Voltri Unit. Compilation of 
available geochronological data. 
Horizontal bars correspond to 
2σ errors. Data sources: U–Pb 
titanite and zircon (Vignaroli 
et al. 2010); U–Pb baddeley-
ite (Rubatto and Scambelluri 
2003); 40Ar–39Ar mica (Barbieri 
et al. 2003; Federico et al. 
2005); Sm–Nd garnet, (Starr 
et al. 2020), and Rb–Sr white-
mica, this study. Age of onset of 
TPB sedimentation from Turco 
et al (1994) and Gelati and 
Gnaccolini (1998)
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package that explains the mixture of HP detritus preserved 
in the TPB.

In the northwestern sector of the Voltri Unit, garnet 
Sm–Nd and phengite Rb–Sr ages constrain peak pressure 
conditions to ~ 50 Ma (Starr et al. 2020), followed by phen-
gite growth ~ 2–3 Myr later (this study; sample LPM 09–2, 
49–47 Ma). This observation implies that exhumation ini-
tiated within 1–3 Myr of the attainment of peak eclogite-
facies conditions, while subduction remained active. Assum-
ing, (1) pressure differences between 1 and 4 kbar, and (2) 
a duration of between 1 and 3 Myr separate the conditions 
of garnet-rim and phengite equilibration results in rates of 
0.12–1.40 cm/year (ρ = 2.9 g/cc) for this early stage of syn-
subduction exhumation.

Several previous investigations have documented post-
peak HP metamorphic overprints of the Voltri Unit that 
support the interpretation that a phase of HP exhumation 
occurred contemporaneous with active subduction. These 
include: (1) development of a post-eclogitic assemblage 
comprising Na-amphibole, phengite and garnet (Federico 
et al. 2005); (2) coexisting glaucophane and winchite idi-
oblasts that cross-cut eclogite-facies foliations (Messiga 
and Scambelluri 1991), (3) formation of lower-pressure 
syn-tectonic blueschist facies assemblages (Vignaroli et al. 
2005), and (4) reported retrograde blueschist-facies phen-
gite growth at 8–15 kbar and 400–500 °C in eclogite clasts 
from the TPB at 45.2–41.8 Ma (Federico et al. 2005). Col-
lectively, these constraints, when combined with the Rb–Sr 
phengite data, are consistent with the interpretation that indi-
vidual sheets of HP material were detached from the down-
going plate, partially exhumed from peak pressures into 
the blueschist-facies (~ 8–20 kbar) and stored for durations 
between ~ 10 (central Voltri Unit) and ~ 15 Myr (northwest 
Voltri Unit) within the Alpine orogenic wedge. Final exhu-
mation was likely facilitated by the cessation of subduction 
that accompanied arrival of the European continent into the 
subduction zone, ~ 32–34 Ma (e.g., Rubatto and Hermann 
2001).

Comparison with circum‑Alpine HP units

The metamorphic history of the Voltri Unit shares common 
features with several of the circum-Alpine HP terranes. In 
particular, the Zermatt-Saas and Monviso ophiolites of the 
Western Alps represent coherent slices of Tethyan oceanic 
lithosphere that preserve a diachronous record of HP meta-
morphism that is remarkably similar to the Voltri Unit. In 
the Zermatt-Saas ophiolite, constraints on timing of eclog-
ite-facies conditions span two ranges, the first between c. 
52–46 Ma, interpreted to date prograde and peak metamor-
phism in the uppermost structural levels of the ophiolite, and 
the second, between 42 and 39 Ma, derived from samples 
in the Saas Fee and St. Jacques regions (Amato et al. 1999; 

de Meyer et al. 2014; Lapen et al. 2003; Skora et al. 2015). 
In the case of the Monviso ophiolite, peak eclogite-facies 
conditions were attained between 51 and 45 Ma in the upper, 
Lago Superiore Unit, in contrast to the speculative ~ 40 Ma 
age proposed for the underlying Monviso unit (Angiboust 
and Glodny 2020; Duchêne et al. 1997; Garber et al. 2020; 
Rubatto and Angiboust 2015; Rubatto and Hermann 2003). 
The shared diachronous nature of these Alpine ophiolite 
units implies that they comprise an amalgamation of tec-
tonic slices that underwent distinct PTt evolutions prior to 
juxtaposition.

Several of the circum-Alpine HP units also exhibit evi-
dence for an initial phase of exhumation that occurred, 
while subduction was active. In the Eastern Alps, the Tau-
ern Eclogite Zone underwent peak HP metamorphic con-
ditions, 24–28 kbar, ~ 560 °C, at ~ 34 Ma (Glodny et al. 
2005; Smye et al. 2011), followed by a retrograde epidote 
blueschist facies overprint at 400–450 °C, 10–15 kbar that 
occurred prior to collision and underplating of the leading 
edge of the European margin at ~ 30 Ma (e.g., Gleissner et al. 
2007; Glodny et al. 2005). In the Western and Northwest-
ern Alps, the Zermatt-Saas, Rocciavre and Monviso ophi-
olitic terranes also preserve evidence for overprinting of 
eclogite-facies peak assemblages under epidote blueschist 
conditions at 10–15 kbar and 400–450 °C (Angiboust et al. 
2012; Schwartz et al. 2000); this retrograde event occurred 
between 39 and 35 Ma (Angiboust and Glodny 2020) con-
temporaneous with, or just preceding, deep subduction of 
the Internal Crystalline Massifs, such as the Dora Maira 
UHP continental slice (36–33 Ma) (e.g., Duchêne et al. 
1997; Gebauer et al. 1997; Rubatto and Hermann 2001). 
This orogen-wide sequence of metamorphic events requires 
exhumation from depths of ~ 70–90 km to ~ 40–60 km, while 
subduction was active and before entry of continental base-
ment into the Alpine subduction zone. As noted by Angi-
boust and Glodny (2020), this implies that additional forces, 
aside from the positive buoyancy force exerted by burial 
of continental crystalline material, are required to facilitate 
deep exhumation of the Alpine HP units.

Implications for exhumation dynamics

Whereas shallow exhumation following continental colli-
sion can plausibly be driven by denudation of overburden 
(e.g., Platt 1993), the mechanisms responsible for deep 
exhumation during, or shortly after the cessation of active 
subduction are less certain. In the absence of return flow, 
two principal forces act on material along the subduction 
interface: shear stresses that operate along the interface and 
body forces resulting from the density contrast between slab-
top and adjacent crustal or mantle rocks. Subduction occurs 
if shear forces exceed buoyancy forces. Constrained by 
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forearc heat-flow measurements, estimates of shear stresses 
at the maximum depth of thrust-faulting earthquakes along 
the plate-plate interface of modern subduction zones vary 
from ~ 20 to ~ 125 MPa (e.g., England 2018; Gao and Wang 
2014). These estimates are consistent with the magnitudes 
of shear stress required to support topography above plate-
plate interfaces (e.g., Davis et al. 1983; Lamb 2006; Suppe 
2007). Along the plate-wedge interface estimates of the 
magnitude of shear stresses are typically < 20 MPa. These 
lower values of shear stress satisfy the requirement that the 
interface be strong enough to drive corner flow beneath the 
mantle wedge (Kelemen et al. 2003; McKenzie 1979) and 
paleo-piezometric estimates from exhumed HP rocks (e.g., 
Platt et al. 2018; Stöckhert et al. 1997).

Following England and Holland (1979), the magnitude 
of the buoyancy force ( hΔ�gsin� , where h is interface 
width, Δ� is density contrast, g is gravitational accelera-
tion and � is slab dip) relevant to typical slab-top materials 
is 1–5 MPa (assuming a slab dip of 20°, a density contrast 
of 300 kg/m3 and an interface width of 1–3 km). Figure 11 
shows the magnitude of the buoyancy force calculated for 
a wide range of parameters plotted against the estimates of 
interface shear stress described above. Shear stresses signifi-
cantly exceed buoyancy forces along the plate-plate interface 
for reasonable values of interface width (< 10 km; Abers 
2005), whereas along the plate-wedge interface, shear and 
buoyancy forces are of comparable magnitude (< 20 MPa). 
Given that the strengths of typical slab-top minerals, includ-
ing antigorite (e.g., Hilairet et al. 2007), exceed the strength 

of the interface required to facilitate subduction (< 2 MPa 
for interface widths of 1–5 km; England and Holland 1979), 
this simplified analysis indicates that: (1) exhumation by 
buoyancy forces alone during active subduction is unlikely 
along the plate-plate interface, and (2) that buoyancy-driven 
exhumation along the wedge-plate interface is plausible dur-
ing subduction when shear stresses are < 10 MPa and chan-
nel widths are < 10 km.

Whether the Voltri HP rocks were exhumed from the 
wedge-plate interface is unclear, but inferences can be 
made from the fact that the maximum depth of thrust fault-
ing earthquakes in active subduction zones is between 30 
and 70 km (England 2018). Assuming that the maximum 
depth of thrust faulting earthquakes constrains the depth of 
the plate-plate-to-wedge-plate transition, it is plausible that 
some of the Voltri HP rocks were exhumed from the wedge-
plate interface in response to low shear stresses.

The arguments developed in the preceding sections 
demonstrate that slab-top HP materials of the Voltri Unit 
were initially exhumed from > 70 km, potentially along the 
wedge-plate interface, then stored and refrigerated at depths 
of 30–70 km for > 10 Myr, while subduction was ongoing, 
before final exhumation on cessation of subduction. Several 
other studies provide supporting evidence for protracted 
forearc storage of HP rocks during active subduction. Bayet 
et al (2018) reported that a 4–5 km-thick package of clas-
tic sediment, exposed in the southern Tianshan, underwent 
accretion and storage at ~ 80 km and ~ 540 °C for at least 
2–5 million years. Eclogites from the Franciscan terrane 
preserve a record of ~ 7 Myr storage under blueschist facies 
conditions (Anczkiewicz et al. 2004; Mulcahy et al. 2009) 
and xenoliths from the Colorado Plateau yield zircon dates 
from 81 to 33 Ma, consistent with storage for ~ 50 Myr (Usui 
et al. 2003). Similar scenarios have also been proposed for 
protracted (> 40 Ma) storage of HP metamorphic rocks in 
Caribbean serpentinite mélanges (e.g., Blanco-Quintero 
et al. 2011; Krebs et al. 2008; Lázaro et al. 2009).

Conclusions

1.	 Phengitic white-mica hosted in bedrock metasediments 
and metagabbros of the Voltri Unit and detrital clasts of 
the adjacent Tertiary Piedmont Basin is zoned in Si-con-
tent. Mineral core domains in phengite from six samples 
exceed Si 3.5 c.p.f.u., whereas rims are characterized by 
significantly lower values, Si < 3.3 c.p.f.u., implying that 
phengite grains partially re-equilibrated during decom-
pression from HP conditions.

2.	 PT pseudosection calculations for bedrock and clast Fe–
Ti metagabbros yield remarkably similar conditions for 
garnet-rim equilibration: 23–25 kbar and 510–530 °C. 
Phengite cores equilibrated during the early stages of 
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exhumation, ~ 20 and ~ 24 kbar. An impure quartzite 
bedrock sample preserves a record of lower-grade HP 
metamorphism with garnet-rim equilibration at 18–19 
kbar and 450–470 °C. Core-to-rim celadonite contents 
in phengite corresponds to pressures between 19 and 12 
kbar, respectively.

3.	 Interpreted as mixtures of high- and low-Si phengite, 
Rb–Sr phengite-whole-rock dates from the two eclog-
itic metagabbros constrain the timing of HP exhuma-
tion to between ~ 45 and ~ 50 Ma, marginally older than 
the age of HP phengite equilibration in the impure 
quartzite, 42.93 ± 2.65 Ma and a bedrock micaschist, 
44.57 ± 1.68 Ma.

4.	 Exhumation-related recrystallization of HP phengite 
to low-Si phengite in two metasedimentary samples 
occurred between ~ 33 and ~ 30 Ma, contemporaneous 
with the onset of deposition in the TPB and consistent 
with previous 40Ar−39Ar constraints on the timing of 
greenschist metamorphism.

5.	 These PTt data collectively show that peak HP con-
ditions, between ~ 18 and ~ 25 kbar were attained at 
different times across the Voltri Unit, between ~ 50 
and ~ 40 Ma, consistent with the interpretation that the 
Voltri Unit comprises an assembly of discrete lithotec-
tonic units that were juxtaposed prior to erosion and 
deposition in the TPB molasse basin.

6.	 Combined with existing garnet Sm–Nd and phengite 
40Ar–39Ar mineral dates and reported metamorphic min-
eral textures, the Rb–Sr phengite PTt data reported here 
support a model in which individual sheets of HP mate-
rial were detached from the downgoing plate, partially 
exhumed from peak pressures to 8–20 kbar, and stored 
for > 10 Myr within the Alpine orogenic wedge, until 
subduction ceased on arrival of the European continent 
into the subduction zone.
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