
Vol.:(0123456789)1 3

Contrib Mineral Petrol (2017) 172:30 
DOI 10.1007/s00410-017-1351-3

ORIGINAL PAPER

Rapid pre-eruptive thermal rejuvenation in a large silicic 
magma body: the case of the Masonic Park Tuff, Southern Rocky 
Mountain volcanic field, CO, USA

J. T. Sliwinski1 · O. Bachmann1 · M. A. Dungan2 · C. Huber3 · C. D. Deering4 · 
P. W. Lipman5 · L. H. J. Martin1 · C. Liebske1 

Received: 16 November 2016 / Accepted: 10 March 2017 / Published online: 11 April 2017 
© Springer-Verlag Berlin Heidelberg 2017

feldspar melting and concurrent, but limited, mass addi-
tion provided by the recharge, likely in the form of a melt-
gas mixture. The larger Fish Canyon Tuff, which erupted 
from the same location ~0.7 m.y. later, also underwent pre-
eruptive reheating and partial melting of quartz, titanite, 
and feldspars in a long-lived upper crustal mush following 
the underplating of hotter magma. The Fish Canyon Tuff, 
however, records cooler pre-eruptive temperatures (~710–
760 °C) and a mineral assemblage indicative of higher 
magmatic water contents (abundant resorbed sanidine and 
quartz, euhedral amphibole and titanite, and absence of 
pyroxene). These similar pre-eruptive mush-reactivation 
histories, despite differing mineral assemblages and pre-
eruptive temperatures, indicate that thermal rejuvenation is 
a key step in the eruption of crystal-rich silicic volcanics 
over a wide range of conditions.

Keywords Silicic magma · Ignimbrite · Plagioclase 
zoning · Self-mixing · Rejuvenation · Zircon

Introduction

Understanding the eruption mechanism(s) for large silicic 
magma bodies (>100 km3) with crystallinities close to the 
rheological locking point (~50 vol%, e.g., Marsh 1981) is 
a long-standing problem, as the high effective viscosities 
of such magmas appear to make them nearly uneruptible 
(Marsh 1981; Scaillet et  al. 1998; e.g.; Gottsmann et  al. 
2009). Magmas with such high crystallinities have been 
described as: “a mixture of crystals and silicate liquid 
whose mobility, and hence eruptibility, is inhibited by a 
high fraction of solid particles” (Miller and Wark 2008). A 
potential mechanism for creating the necessary conditions 
for the eruption of massive volumes of crystal-rich magma 

Abstract Determining the mechanisms involved in 
generating large-volume eruptions (>100  km3) of silicic 
magma with crystallinities approaching rheological lock-
up (~50 vol% crystals) remains a challenge for volcanolo-
gists. The Cenozoic Southern Rocky Mountain volcanic 
field, in Colorado and northernmost New Mexico, USA, 
produced ten such crystal-rich ignimbrites within 3  m.y. 
This work focuses on the 28.7  Ma Masonic Park Tuff, a 
dacitic (~62–65  wt%  SiO2) ignimbrite with an estimated 
erupted volume of ~500 km3 and an average of ~45 vol% 
crystals. Near-absence of quartz, titanite, and sanidine, pro-
nounced An-rich spikes near the rims of plagioclase, and 
reverse zoning in clinopyroxene record the reheating (from 
~750 to >800 °C) of an upper crustal mush in response 
to hotter recharge from below. Zircon U–Pb ages suggest 
prolonged magmatic residence, while Yb/Dy vs tempera-
ture trends indicate co-crystallization with titanite which 
was later resorbed. High Sr, Ba, and Ti concentrations in 
plagioclase microlites and phenocryst rims require in-situ 
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is reheating and partial melting of shallow-seated crystal 
mushes, which makes them less viscous and increases the 
internal overpressure of the reservoir (e.g., “Mush defrost-
ing” of Mahood 1990; see also Murphy et al. 2000; Bach-
mann et al. 2002; Huber et al. 2012; Klemetti and Clynne 
2014; Kaiser et al. 2016; Bachmann and Huber 2016). Such 
models require that significant volumes of hotter recharge 
occur periodically, while large (100’s to 1000’s  km3) 
mushes remain above their solidi, potentially for long peri-
ods of time (>thousands of years). Effects of recharge and 
longevity of mushes remain controversial, both on the basis 
of thermal models (Annen 2009; Huber et al. 2009, 2011; 
Gelman et al. 2013; Gutierrez et al. 2013) and geochrono-
logical studies (e.g., Reid et al. 1997; Brown and Fletcher 
1999; Schmitt et al. 2003; Vazquez and Reid 2004; Char-
lier et al. 2005; Bachmann et al. 2007; Crowley et al. 2007; 
Walker et  al. 2007; Simon et  al. 2008; Claiborne et  al. 
2010; Tappa et al. 2011; Schoene et al. 2012; Storm et al. 
2012; Zimmerer and McIntosh 2012; Cooper and Kent 
2014; Barboni et  al. 2016). Hence, further testing of the 
mush rejuvenation model under different conditions and 
settings is important for elucidating the thermo-mechanical 
behavior of magmas in large upper crustal reservoirs.

This paper focuses on compositional variations, mineral 
textures, and mineral chemistry of the ~500 km3 Masonic 
Park Tuff (MPT), a “monotonous intermediate” (unzoned, 
crystal-rich dacitic ignimbrite; Hildreth 1981) that was 
erupted ~28.7  Ma in the Southern Rocky Mountain vol-
canic field (SRMVF). Textural manifestations of disequi-
librium in most minerals, in combination with complex 
mineral zoning patterns, are consistent with magma injec-
tion and mixing prior to eruption and a role for recharge in 
triggering the eruption. The MPT is compared to the arche-
typal monotonous intermediate that erupted in the same 
area—the 28.02-Ma Fish Canyon Tuff (FCT, all previously 
published ages adjusted to this age), which also was ther-
mally rejuvenated prior to eruption (Bachmann and Dun-
gan 2002; Bachmann et al. 2002). We highlight the many 
similarities and striking differences between these units 
as a means of constraining the range of conditions neces-
sary for eruption of voluminous, crystal-rich magmas from 
upper crustal reservoirs.

Geological setting

The SRMVF, a large-volume continental-arc province in 
Colorado and northern New Mexico, is the source of 28 
large caldera-forming ignimbrites in Colorado and north-
ern New Mexico and a manifestation of subduction along 
the North American margin in the Cenozoic (Fig. 1; Lip-
man et  al. 1978; Lipman 2000, 2007; Lipman and Bach-
mann 2015). The SRMVF and, more specifically, its largest 

erosional remnant preserved in the San Juan Mountains 
represent an exceptional natural laboratory for understand-
ing the processes responsible for the generation of large 
quantities of diverse evolved magmas. Mountainous terrain 
and variable erosion provide three-dimensional exposures 
of most units. Meanwhile, recurrent caldera sources are 
spatially clustered, and repose times between large erup-
tions of magmas generated from the same crustal column 
are relatively brief.

Initial volcanism in the San Juan region 
(~34.5–30.1  Ma), the Conejos Formation (e.g., Zielin-
sky and Lipman 1976; Colucci et al. 1991; Lipman 2007), 
was dominantly andesitic and primarily constructed large 
stratovolcanoes. More silicic magmas (dacite to rhyolite) 
began to erupt as large ignimbrites and associated calde-
ras (reviewed by Lipman 2000, 2007) at about 30.1  Ma. 
The loci of ignimbrite-forming eruptions migrated from 
the southeast and west towards the central San Juan cal-
dera cluster about 28.7 Ma (Steven and Lipman 1976), and 
this cluster became the primary locus of activity. Andesitic 
lavas continued to erupt within and around the peripheries 
of many of these calderas throughout the period of ignim-
brite generation. This was the dominant mode of regional 
volcanism until the decline of subduction-related activity 
at ~26.5 Ma (mid-Tertiary ignimbrite flare-up; see Lipman 
and McIntosh 2008).

The extremely productive central San Juan caldera clus-
ter (Lipman 2006) erupted nine large ignimbrites in less 
than 2  Myr  (Lipman and McIntosh 2008); four are com-
positionally zoned (crystal-poor rhyolite to crystal-rich 
dacite), and five are homogeneous crystal-rich dacites. 
The oldest of these, the Masonic Park Tuff (MPT), is the 
focus of this study. Its erupted volume is roughly estimated 
at ~500 km3, sufficiently large that a caldera source seems 
required. Its eruption age is 28.7  Ma based on 40Ar/39Ar 
biotite and sanidine ages of bracketing tuffs (Lipman and 
McIntosh 2008; Lipman and Bachmann 2015). This ignim-
brite overlies intermediate-composition lavas of the Cone-
jos Formation and the 28.75-Ma South Fork Tuff (Platoro 
caldera; Lipman et  al. 1996); it is overlain by the 28.58-
Ma Chiquito Peak Tuff within a narrow areal overlap zone 
along paleo-drainages proximal to present-day South Fork, 
CO. MPT exposures are limited to the proximal periph-
ery of the southern La Garita caldera, the source of the far 
more voluminous FCT, suggesting that the MPT caldera 
source lies buried within the central San Juan cluster.

West of South Fork, MPT is widely overlain by FCT, 
except in a zone adjacent to the southeast margin of the La 
Garita caldera, where lavas of Sheep Mountain Andesite 
(SMA) intervene between the MPT and FCT. The SMA 
(Lipman et  al. 1996; Lipman 2000) is relatively thin in 
these presumably distal remnants and its vent region is 
inferred to have been in the MPT source within the southern 
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La Garita caldera. Its original eruptive volume was likely 
more substantial than the preserved volume. The close tim-
ing of the SMA and MPT eruptions is documented by the 
locally overlying Chiquito Peak Tuff (28.58 Ma). The SMA 
is one of many postcaldera intermediate lava sequences in 

the San Juan region that demonstrates a quasi-continuous 
caldera-centric input of magma that was hotter and less 
evolved than the tuffs erupted during caldera-forming 
events; e.g., post-FCT Huerto Andesite (Parat et al. 2005; 
Lipman 2007).
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Fig. 1  Simplified map of the Southern Rocky Mountain volcanic 
field (gray shaded areas), showing location of the San Juan erosional 
remnant. Black box, central San Juan caldera cluster. Map modi-
fied from Lipman (2007). Triangles denote MPT sampling locations 

from this study and previous studies (see Appendix); orange squares 
denote Sheep Mountain Andesite sampling locations from previous 
studies. For more detailed map, see Lipman (2006)
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Sampling and analytical methods

Thirteen MPT samples were analyzed for whole-rock (4) or 
mineral chemistry (9). Whole-rock and petrographic data 
for ten additional samples from previous studies are also 
tabulated and plotted (Table 1, S1; Fig. 2). Samples were 
collected from a number of localities near South Fork, CO 
and Saddle Mountain (Fig. 1).

Major and trace-element data were obtained with a 
Philips PW2400 WD-XRF at UC Berkeley. Major elements 
were determined on 0.5 g of sample mixed with 3.5 g of 
lithium tetraborate flux that was fused into a glass disc. 
Trace-element concentrations were determined by press-
ing 3 g of homogenized sample powder into a pill for XRF 
analysis. Electron probe microanalysis (EPMA) analy-
ses were done at the University of Washington with a 733 
SuperProbe using an accelerating voltage of 15  kV and 
beam currents and spot sizes appropriate for each phase 
(Supplementary Appendix). Traverses in pyroxenes were 
measured at ETHZ using a Jeol 8200 EPMA at similar 
conditions also using wavelength dispersive X-ray spectros-
copy. Backscattered electron (BSE) images were taken on 
the EPMA at the University of Washington as well as with 
a scanning electron microscope (Jeol 6390 LA) at ETHZ.

Trace-element concentrations in plagioclase crystals 
were measured by laser ablation ICP-MS at the Washing-
ton State University Geoanalytical Lab. Samples were ana-
lyzed on a Finnigan Element 2 HR-ICP-MS with a New 
Wave UP-213 laser using a ~120 µm raster and 10 micron 
spot size for 60 s on the following elements: Mg, Si, Ca, Ti, 
Rb, Sr, Y, Cs, Ba, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, and Pb 

(Fe was measured by EPMA). NIST 612 glass and Si-29 
were used as external and internal standards, respectively. 
The variability of  SiO2 in each zone was accounted for in 
the error of the internal standard by treating the EPMA 
 SiO2 analyses across the raster area as a population. When 
variability in  SiO2 was less than the error of the aforemen-
tioned analyses, the  SiO2 value with the largest error in 
a raster zone was used to maximize error. Measurements 
were taken in microlites as well as inboard and outboard of 
the anorthite spikes near the rims of plagioclase crystals. 
Values were recalculated using the Pepita algorithm (Dunkl 
et al. 2008).

Phase maps for MPT and FCT samples were obtained 
using the SEM-EDS systems at ETHZ and Colorado 
School of Mines. At ETHZ, the phase maps were gener-
ated from thin sections using spectral imaging (SI) data sets 
recorded on a Thermo Fisher Solid State Detector (SSD) 
EDS system (running NORAN NSS7 software) attached to 
a Jeol JSM-6390 LA scanning electron microscope oper-
ating at 15 kV acceleration voltage and a beam current of 
7.5 nA. The phase maps are assembled from up to 40 indi-
vidually measured spectral images; each with a dimension 
of 256 × 192 pixels and a spatial resolution of 10 µm/pixel. 
Pixel-to-phase assignments were carried out using the open 
source package iSpectra written for the data analysis soft-
ware Igor Pro (Liebske 2015).

At the Colorado School of Mines, the QEMSCAN 
analyses were also conducted on carbon-coated thin sec-
tions using a Zeiss EVO 50 scanning electron micro-
scope (SEM) equipped with four Bruker X275HR silicon 
drift X-ray detectors. All data are processed using the 

Fig. 2  Silica variation 
diagrams (data from Askren 
et al. 1991; Riciputi 1991; this 
study; Lipman et al. 1996) for 
the MPT and Sheep Mountain 
Andesite (SMA). The MPT 
sample at ~68%  SiO2 (Lipman 
et al. 1996) is from the upper 
part of the MPT and has likely 
accumulated ash leading to a 
higher silica content than other 
analyzed samples
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iMeasure-iDiscover® software suite produced by FEI Inc. 
Instrument calibration (beam alignment, beam focusing, 
and beam current optimization, backscatter electron range 
calibration, and X-ray detector calibration) was performed 
prior to each analysis. Full thin section scans were con-
ducted on all samples using a 25  µm beam step size. All 
analyses were conducted in Field Image mode. Four energy 
dispersive X-ray (EDS) spectrometers acquired spectra 
from each point along the beam stepping interval with an 
acceleration voltage of 25 kV, a beam current of 5 nA, and 
a beam size of roughly 1 µm. 1000 total X-ray counts were 
acquired for each spectrum. The EDS spectra and backscat-
ter electron signal intensity were compared to mineral and 
amorphous phase definitions within a species identification 
protocol (SIP) list. Based on this first fit comparison, each 
acquisition point was assigned a composition from the SIP 
list. This assignment does not distinguish between amor-
phous phases, mineral interfaces, and different polymorphs 
with the same composition. Verification of correct species 
assignment was confirmed by transmitted and reflected 
light microscopy. The SIP list was reduced by grouping 
appropriate definitions together for each scan, and colors 
were assigned to each group in order to produce the false-
color mineral maps.

Zircon crystals were separated, chemically abraded 
(Mattinson 2005), mounted using the standard labora-
tory procedures, and imaged by cathodoluminescence 
(CL) to help in avoiding xenocrystic cores during analysis. 
CL images were obtained using an FEI Quanta 200 FEG 
equipped with a GATAN MiniCL detector at the Scientific 
Center for Optical and Electron Microscopy (ScopeM) at 
ETHZ. U–Pb ages and trace-element analyses were done 
via laser ablation-inductively-coupled-plasma mass spec-
trometry (LA-ICP-MS) at ETH using an ASI Resolu-
tion 155 model 193  nm ArF excimer laser connected to 
a Thermo Element XR sector field ICP-MS. Spot anal-
yses measured 30  µm at 5  Hz and ~2.5  J  cm−2 and con-
sisted of three cleaning pulses followed by 17  s washout, 
29  s background measurement and 40  s ablation time. 
Analyses were standardized using the GJ-1 standard refer-
ence zircon (Jackson et  al. 2004) with a reference age of 
601.9 Ma (Horstwood et  al. 2016) for U–Pb age determi-
nations. Secondary reference zircon Temora2 (Black et al. 
2004) was used for quality control. NIST-610 was used for 
trace-element analyses, and to obtain the best possible ages 
and trace-element analyses, the two methods were run indi-
vidually on separate days on the same zircons. Data reduc-
tion was carried out in Iolite v2.5 (Paton et al. 2011) using 
the VizualAge (Petrus and Kamber 2012) and Trace_Ele-
ments IS (Paton et al. 2011) data reduction schemes. Decay 
constants of Jaffey et  al. (1971) were used for age deter-
mination, and ages were Th-corrected using the method of 
Schärer (1984) and a Th/Umagma of 3.

Bulk-rock chemistry

The MPT, while relatively homogeneous at outcrop and 
thin section scales (at least modally), displays some varia-
bility in whole-rock composition (Fig. 2; Table 1; Lipman 
et  al. 1996). Most chemical analyses are from bulk tuff 
samples; pumice fragments are typically too small to ana-
lyze as whole-rock samples. Whole-rock  SiO2 concentra-
tions of bulk tuff samples range from 62 to 68 wt% (Fig. 2; 
Table 1; Lipman et al. 1996), but cluster between 63 and 
65  wt%  SiO2. Some of the observed chemical variations 
are due to eruption and emplacement processes, such as 
crystal-ash fractionation during transport (e.g., “ash elu-
triation”; Lipman 1967; Walker 1972). For example, the 
analyzed sample with the highest silica (Fig. 2; ~68 wt% 
 SiO2) is from the ash-rich top of the MPT (Lipman et al. 
1996), while other bulk samples (Fig. S6) have higher 
crystallinities (up to 55  vol%). For comparison, bulk 
rock analyses of SMA lavas (likely derived from multiple 
vents), overlying the MPT, are also plotted in Fig. 2. Note 
that variability in elemental concentrations within these 
two units cannot be explained by simple mixing.

Crystal contents in pumices average 45% by volume 
(including vesicles), and range from 39 to 51% in the few 
bulk samples measured (Table 2; Fig. 3, S6–S7). The main 
phenocrysts are plagioclase, biotite, clinopyroxene, and 
Fe–Ti oxides with minor apatite and zircon. Quartz, while 
modally abundant (2–7%), is only present as devitrification 
microlites and does not form phenocrysts. Minor plagioclase 
microlites are also present in the devitrified shard matrix. 
The matrix is mostly too devitrified to analyze by EPMA; 
rare glassy samples suggest high-SiO2 rhyolite with variable 
Ba contents (74–78 wt%  SiO2; 230–3800 ppm Ba; Table 3). 
Secondary alteration of this glass (as demonstrated by the 
presence of clay minerals in thin section; Fig. 3, S6–S7) is 
unlikely to have strongly affected the Ba content.

Mineral textures and phase chemistry composition

Plagioclase

Plagioclase is the most abundant mineral in the MPT 
(~26–40 modal %, present both as phenocrysts and 

Table 2  Mineral proportions of representative MPT bulk ignimbrite 
samples in modal percent

Sample Number Glass Plagioclase Biotite Oxides Pyroxene

86MD-187MP 54 40 5 1.3 0.5
86MD-203MP 49 37 9 2.3 2.3
MPT08-7 51 35 8.5 3 2.8
MPT08-1a 61 27 6.5 2.5 2.9



Contrib Mineral Petrol (2017) 172:30 

1 3

Page 7 of 20 30

microlites; see Table  2, S2; Fig.  3, S6–S7). Phenocrysts 
are 0.3–4 mm in size; most are tabular to rectangular. Most 
crystals have low-An oscillatory-zoned interiors (average 
 An36) that are circumscribed by distinctive dissolution sur-
faces that are overgrown by An-rich rims (to  An60; Figs. 4, 
5, 6, 7). These calcic zones revert outward to more normal 
values (~An40). Such textures are similar to those in the 
1991 deposits at Pinatubo (Fig. 6H of Pallister et al. 1996). 
The truncation surfaces and surrounding rims were an ini-
tial motivation for investigating the evolution of the MPT 
magma. Microlites tend to have An-contents that are simi-
lar to the high-An portions of post-resorption phenocryst 

rims  (An40−60; Figs. 5, 6). A few phenocrysts have small, 
corroded, high-An cores (>An70, not shown in figures).

Trace-element concentrations vary significantly between 
the low-An interiors vs high-An phenocryst rims and 
microlites (Fig.  6). As trace-element concentrations in 
plagioclase are strongly dependent on the An-content and 
temperature of crystallization, we recalculated trace-ele-
ment contents in the silicate melt in equilibrium with the 
analyzed plagioclase compositions (inboard of high-An 
rims) using the method of Bindeman et al. (1998), assum-
ing a temperature of 750 °C (see thermobarometric results 
below). Calculated Ba and Sr concentrations in the melt 
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Fig. 3  Phase map for sample MPT08-1c and BSE images of quartz microlites with corroded rims. The BSE topo image indicates a depression 
presumably due to the weathering/alteration of volcanic glass to clay minerals
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range, respectively, from ~300 to ~1600 ppm and ~100 to 
360 ppm from low- to high-An regions of plagioclase crys-
tals (Fig.  7). Increasing the temperature to 850 °C for the 
high-An plagioclase does not change the general trend, 
but it does increase calculated trace-element concentra-
tions in the melt. For example, in  An60 plagioclase, a tem-
perature change of 100 °C, from 750 to 850 °C, leads to 
an increase in Sr of 37 ppm as well as a decrease in Ba of 
277 ppm in the equilibrated melt. Both Ti and Rb contents 

are also elevated in high-An rims and microlites (Rb up to 
300–400  ppm, Ti reaches >8000  ppm in calculated melt 
composition; Fig. 7).

Biotite

Biotite (1–9 modal %, Table  2, S3; Figs.  3, 8, S6–S7) is 
the most abundant ferromagnesian phase in MPT. Crys-
tals are mostly tabular to rectangular, 0.5 to 4 mm in size. 
Inclusions of Fe-Ti oxides and apatite are common. Most 
crystals are only weakly zoned, the Mg# varying from 0.40 
to 0.46 (Mg # calculated as  Mg2+/(Mg2++Fe2+) and  K2O 
from 8.5 to 10.1  wt%. Fluorine concentration increases 
from <0.5 in mineral cores to ~2 wt% in the outer 50–100 
microns of many crystal rims (Fig.  8; Table  S3). These 
near-rim F-gradients do not correlate with variations in Fe 
and Mg.

Clinopyroxene

Clinopyroxene phenocrysts are present in all samples 
(<2–3 modal %, Table 2, S4; Fig. 3, S6–S7). Crystals range 
in size from 0.2 to >1 mm. Many grains appear euhedral, 
although some corrosion features are visible at the rims of 
crystals (Fig. 9). Complex, albeit limited, oscillatory zon-
ing patterns are typical; Fe, Mg, and Al concentrations vary 
throughout crystals, and many display small, but analyti-
cally robust, increases in MgO contents near rims (Fig. 9). 
Clinopyroxene crystals commonly contain inclusions of 

Table 3  Representative glass analyses

All analyses normalized to 100% anhydrous
Ba in ppm; all other elements in wt%

Label G12 G1.1 G1 G3
Sample MPT08-4 MPT08-1a MPT09-03 MPT08-5

SiO2 76.38 74.52 77.50 77.20
TiO2 0.20 0.25 0.18 0.19
Al2O3 12.44 13.79 12.79 12.07
FeO 0.34 0.42 0.53 0.54
MgO 0.00 0.02 0.15 0.05
CaO 0.13 0.68 0.83 0.29
BaO 0.43 0.12 0.12 0.03
SrO 0.00 0.10 0.00 0.00
Na2O 2.08 3.18 3.44 2.27
K2O 8.00 6.91 4.47 7.36
Total 100.00 100.00 100.00 100.00
Ba 3829 1084 1003 232

Fig. 4  Representative pla-
gioclase textures and zoning 
patterns as both a, b Normarski 
and c, d backscatter electron 
images with EPMA traverses 
(arrows indicate the direction 
and length of traverse). Resorp-
tion textures (indicated by 
black arrows) are common near 
euhedral overgrowth rims; some 
larger crystals display multiple 
resorption surfaces
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apatite, Fe–Ti oxides, and rare biotite. Compositions of 
clinopyroxene in the lavas of Sheep Mountain Andesite, 
which overlies the MPT, are significantly more Fe rich and 
Ca poor (Fig. 10).

Quartz

Quartz forms only microlites in the studied samples (Fig. 3, 
S6–S7); matrix melt zones that are rich in  SiO2 also sur-
round mafic minerals and glomerocrysts. Such small cor-
roded quartz phenocrysts and  SiO2-rich zones sum to at 
most ~1–2% of thin section area. Additional fine-grain 
quartz (up  to several % of area) is scattered in the matrix 
and is likely produced by devitrification or vapor-phase 
crystallization.

Zircon

Abundant zircons in heavy mineral separates display 
typical oscillatory (occasionally sector) zoning in CL. A 
minority of zircons have xenocrystic cores that were not 
analyzed. U varies between ~100–1000  ppm (~300  ppm 
average); Th/U ratios are ~0.4 (Table S5). Total REE con-
tent is ~2000–5000  ppm, while Ti concentrations vary 
between 2 and 15  ppm. Crystallization temperatures of 
650–800 °C were determined using the calibration of 
Ferry and Watson (2007). Yb/Dy is typically in the range 
of 2–11 and varies inversely with temperature (Fig.  11). 
Newly determined LA-ICP-MS U-Pb ages range from 
~27.5–31.9 Ma (Fig. 12, Table S5) with a weighted mean 
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of 29.05 ± 0.30 Ma and a typical 2σ of ~0.8 Ma (2.7%). A 
mean square weighted deviates (MSWD) value of 4.4 sug-
gests that either errors were underestimated or the data 
are over-dispersed (non-Gaussian). Because the MSWDs 
for the AusZ7-1 and 91,500 zircon standards were 0.9 
(n = 34) and 1.5 (n = 32), respectively, we propose that error 
propagation was accurate and that the data record a pro-
longed crystallization duration. One analysis fall below the 
40Ar/39Ar ages of the Masonic Park, indicating some bias 
in age determination that cannot be attributed to Pb loss in 
these chemically abraded zircons.

Accessory and alteration minerals

Other accessory phases include Fe–Ti oxides (ilmenite, 
magnetite) and apatite (Fig. 3, S6–S7) but, importantly, no 
titanite or amphibole. These phases are typically less than 
~2% modal, but appear in the phase maps. Fe–Ti oxides are 
often resorbed and out of chemical equilibrium (see next 
paragraph). Apatite forms common inclusions in other 
phases, particularly biotite. Zones that are coated with clay 
material form small depressions in the thin sections, as 
indicated in topographic BSE images (Fig. S6); these likely 
resulted from weathering or vapor-phase crystallization.

Fig. 7  MPT trace-element con-
centrations for coexisting melts 
calculated using An-sensitive 
plagioclase-melt partition coef-
ficients (Bindeman et al. 1998). 
Open symbols were calculated 
with variable temperatures (e.g., 
higher temperatures for higher 
An-content plagioclase); closed 
symbols were calculated with 
a fixed temperature (750 °C). 
High Sr and Ba concentrations 
in An-rich crystals suggest 
that feldspar may have been 
resorbed during the evolution of 
the MPT melt compositions
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Fig. 9  a–e Examples of clinopyroxene textures (BSE images) and 
EPMA traverses (MgO wt% displayed) in the MPT. White regions 
in BSE images are others phases (mostly inclusions of Fe–Ti oxides, 

apatite, or plagioclase). Distance in traverses increases in the direc-
tion of the arrowheads in BSE images. Note that there is a tendency 
for MgO content to increase toward the rims
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Discussion

Pre-eruptive magma chamber conditions

Pre-eruptive magma chamber conditions are difficult to 
constrain for MPT. Ilmenite and magnetite are strongly 
exsolved and largely in Mg–Mn disequilibrium, likely due 

to slow cooling in thick welded ash-flow deposits (Lipman 
et al. 1996). A few Fe–Ti oxide pairs, even though in appar-
ent Mg-Mn equilibrium, yield calculated temperatures 
below the solidus (~300 °C; Ghiorso and Evans 2008). 
Thermometry and barometry for clinopyroxene-melt pairs 
were calculated according to the methods of Putirka (2008), 
assuming a values of ~4 wt%  H2O (a reasonable value for 
an arc dacite containing biotite and pyroxene but little to 
no hornblende; Costa et al. 2004) and the bulk-rock com-
position from sample MPT08-2AE. Equilibrium conditions 
were obtained at a  Fe2+/Fe3+ ratio of 0.65, indicating that 
the melt was fairly oxidized. Temperature estimates (eq. 34 
of Putirka 2008) indicate that pyroxenes would crystallize 
from the hydrous melt at ~970–980 °C, consistent with our 
MELTS model (Fig. S8), where pyroxene is the near-liqui-
dus phase. Pressures estimated using any version of eq. 32 
from Putirka (2008) resulted in variable values (above 
10 kb for eq. 32a, between −0.5 to nearly 4 kb for eq. 32b, 
and all negative for eq.  32c). Hence, we consider these 
pressure estimates unreliable for the Masonic Park Tuff.

The lack of sanidine and quartz in the MPT implies tem-
peratures above ~825 °C for water-rich magma at upper 
crustal conditions, based on experimental work (Johnson 
and Rutherford 1989; Costa et al. 2004). Using PhasePlot 
2.0 (Gualda et al. 2012) for the MPT bulk rock composition 
(MPT08-2EA) at NNO and 4  wt%  H2O, phase equilibria 
computed by Rhyolite-MELTS agree well with the natural 
mineral assemblage at ~170  MPa and slightly lower tem-
perature (~780 °C). Rhyolite-MELTS at these conditions 
(dacitic initial composition, upper crustal pressure, 4 wt% 
 H2O) yields nearly fully crystalline magma with more than 
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20 modal % of both sanidine and quartz at ~740 °C (Fig. 
S8).

Although titanite is absent from the MPT mineral assem-
blage, Yb/Dy ratios and temperature relations indicate that 
it co-crystallized with zircon. Calculated zircon crystalliza-
tion temperatures, using the method of Ferry and Watson 
(2007), assuming aSiO2 at unity and aTiO2 = 0.7 ± 0.1 (1σ) to 
account for probable variations in titania activity (Ghiorso 
and Gualda 2013), suggest a range (~650–800 °C). These 
correlate negatively with Yb/Dy ratios, albeit with large 
errors corresponding to uncertainties in aTiO2 (Fig.  11). 
Wotzlaw et  al. (2013) demonstrated that increasing Yb/
Dy in the FCT results from titanite crystallization at lower 
temperatures. The low-temperature MPT zircons, with high 
Yb/Dy ratios comparable to the FCT, suggest that titanite 
co-crystallized with zircon, and its absence in the current 
mineral assemblage requires that it, as well as quartz and 
sanidine, was resorbed during reactivation of the magma 
(discussed in the following).

The origin of textural and geochemical heterogeneities 
in the MPT mush

Petrographic and chemical evidence indicate that the 
mineral-melt disequilibrium in MPT is related to reheat-
ing of the crystal mush shortly before eruption. Evidence 
includes: (1) widespread and pronounced dissolution sur-
faces near the edges of plagioclase crystals, followed by the 
growth of high-An rims and microlites; (2) reverse zoning 
(increased MgO near rims) in clinopyroxene phenocrysts; 
(3) dissolution of sanidine, as inferred by trace-element 
data in plagioclase rims and microlites; (4) dissolution of 
quartz, as shown by Si-rich zones and small, resorbed micr-
olites; (5) dissolution of titanite, inferred from the titanite-
fractionating signature preserved in zircon and the absence 
of titanite in the mineral assemblage; and (6) increased F 
independent of the Fe/Mg ratio at the rims of biotite, sug-
gesting a rise in temperature and/or HF in the melt (Munoz 
1984) or alternatively, vapor-phase alteration.

Reheating of the MPT magma body may have occurred 
shortly before eruption, as the high-An and high-MgO rims 
that grew on plagioclase and clinopyroxene phenocrysts, 
respectively, are only a few microns thick (assuming no 
time lag between dissolution and recrystallization in the 
case of plagioclase). The presence of andesites stratigraphi-
cally above and below MPT (Sheep Mountain Andesite, 
Conejos Formation) suggests that andesitic recharge likely 
carried the heat for the late-stage thermal perturbation of 
the upper crustal MPT reservoir.

Potential end-member mechanisms for such a reheating 
event are: (1) physical bulk mixing and mingling of a hot-
ter, more mafic magma (probably andesite) with the upper 
crustal silicic magma (highly crystalline rhyodacite or 

rhyolite mush), or (2) thermally-activated self-mixing of an 
upper crustal dacitic mush following magmatic underplat-
ing (Bachmann and Bergantz 2003; Burgisser and Bergantz 
2011; Huber et al. 2011). This second end-member requires 
little or no physical mixing between the two magma bod-
ies, apart from an influx of heat, minor melt, and volatiles 
from the underlying intrusion. Recharge from a near-liq-
uidus (hence hotter) dacitic magma that ascended rapidly 
from the lower crust could also be envisaged (e.g., Crabtree 
and Lange 2011), but would be difficult to distinguish from 
self-mixing.

A comparison of the MPT whole-rock and mineral data 
to those of the post-MPT Sheep Mountain Andesite (SMA) 
suggests that bulk mixing with significant mass addition 
from a more mafic end-member (option 1) is unlikely. The 
reasons are as follows:

1. Most whole-rock major and trace elements do not 
approximate any mixing trends that would result from 
such a process (Fig. 2), even when accounting for some 
ash elutriation during MPT transport.

2. If silicic and mafic end-members had mixed, more 
clinopyroxene and plagioclase would be inherited from 
the mafic magma: for example, clearly mixed systems, 
such as Mt. Unzen (Browne et  al. 2006), Montserrat 
(Murphy et  al. 2000), or Volcán Quizapu (Ruprecht 
and Bachmann 2010; Ruprecht et al. 2012). However, 
clinopyroxene from MPT is chemically distinct from 
that in andesites from the same area (Fig. 10), and lit-
tle high-An plagioclase could have been derived from 
andesitic sources (Fig.  6). High-An (>An50) plagio-
clase occurs only as rare resorbed cores of large phe-
nocrysts (mostly  An35−40) and in some microlites.

3. Trace-element concentrations in plagioclase do 
not record simple mixing with a more mafic melt. 
Although high-An plagioclase rims and microlites 
contain higher concentrations of some compatible ele-
ments (e.g., Sr and Ti), they also have high concentra-
tions of elements that typically are incompatible (e.g., 
Rb and Ba; Fig.  6) and would not increase following 
mixing with a more mafic magma. For example, typi-
cal SRMVF andesites and dacites average ≤900  ppm 
Ba, but the high-An plagioclase crystallized from a 
melt with calculated Ba contents up to 1200–1600 ppm 
(Fig. 7). Hence, no plausible mixing end-member can 
explain the trace-element concentrations in the high-
An plagioclase microlites and phenocryst rims.

Therefore, we interpret the compositions of MPT phe-
nocrysts as recording significant reheating, melting of low-
temperature sanidine, and late self-mixing, accompanied 
by limited mass addition from the underplated magma. 
The observed variations of Ba and Sr concentrations as a 
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function of An-content in plagioclase require co-crystal-
lization of sanidine and plagioclase followed by partial 
remelting of these two phases during reheating. The low 
Ba concentrations in the evolved (low-An) MPT plagio-
clase phenocrysts (which translates into <300  ppm Ba in 
the melt using partition coefficients from Bindeman et  al. 
(1998); Fig. 7) can be attained only if subsequently melted 
plagioclase and sanidine were co-crystallizing as the 
magma reached its highest crystallinity. This can be shown 
by quantitatively tracing the Ba evolution in the melt during 
fractional crystallization using phase proportions that can 
be estimated either: (1) with MELTS (Ghiorso and Sack 
1995), which  tends to overestimate clinopyroxene over 
biotite, or (2) with the clinopyroxene-biotite ratio fixed to 
that observed in MPT (Fig. 13). In the absence of sanidine 
(but including biotite), Ba melt concentrations remain high, 
inconsistent with the low Ba content of evolved plagioclase 
compositions. Ba decreases rapidly in silicic melt during 
sanidine crystallization, leading to Ba concentrations of 

<300 ppm after only 5.4–9% sanidine crystallization (total 
crystallinity ~50–58  vol%; Fig.  13). Conversely, the high 
Ba and Sr concentrations in microlites and phenocryst rims 
(higher than any plausible magmatic liquids in the area) are 
best explained by melting of sanidine (±biotite) + low-An 
plagioclase, followed by the crystallization of high-An pla-
gioclase from a melt enriched in these two elements.

The higher concentrations of Fe and Ti-in plagioclase 
microlites and phenocryst rims indicate that either (1) 
Fe–Ti oxides partly dissolved during the reheating, as evi-
denced by their dominantly resorbed outlines and/or (2) 
some mass addition from a less-evolved melt + bubble mix-
ture played a role. Given that no added crystalline mass was 
detected (e.g., clinopyroxene compositions are dramatically 
different from those in the inferred recharge; see Fig. 10), 
we postulate that the first mechanism was sufficient to gen-
erate the observed Fe- and Ti-rich microlites. We therefore 
infer that elevated concentrations of these two elements in 
microlites and phenocryst rims are in part the result of an 
increase in temperature following recharge and plagioclase 
resorption (Bindeman et  al. 1998; Sugawara 2001), while 
noting that Fe concentration in plagioclase is sensitive to 
oxygen fugacity (Sugawara 2001).

Kinetic effects during the rapid crystallization of plagio-
clase microlites and rims are unlikely to have been signifi-
cant in generating the observed zoning profiles. A bound-
ary layer enriched in incompatible elements and depleted in 
compatible trace elements may develop at the crystal-melt 
interface at high growth rates (e.g., Albarede and Bottinga 
1972; Bouvet; De Maisonneuve et al. 2013; Zellmer et al. 
2016). However, if disequilibrium growth were dominant, 
compatible elements, such as Sr, would be depleted in 
rapidly crystallizing feldspar compared to those that grew 
under equilibrium conditions, whereas Ba would be only 
slightly enriched, because the Ba partition coefficient is 
close to unity. As Sr and Ba concentrations are higher in 
microlites and phenocryst rims, we conclude that disequi-
librium growth was not a major factor in the trace-element 
partitioning in MPT plagioclase.

In light of the observations above, the textural and com-
positional characteristics of MPT are most likely the result 
of a rejuvenation event, triggered by the injection of hotter 
magmas from below. These injections led to limited mass 
addition of less-evolved melt and self-mixing during par-
tial resorption of the crystalline mush (e.g., Huber et  al. 
2011; Wolff et al. 2015). These processes were followed by 
the late crystallization of high-An plagioclase, and slightly 
more Mg-rich rims in pyroxenes.

Time scales and mechanics of reactivation

Constraining the timescale associated with the pre-erup-
tive reactivation of MPT magma body is fundamental to 

Ba concentration in MPT glass in equilibrium with 
An50-60 plagioclase is > 1000 ppm
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Fig. 13  Model of Ba evolution in the MPT as a function of crystal-
lization. Partition coefficients are in Appendix A3. Barium is sensi-
tive to the crystallization of both sanidine and biotite. An average 
sanidine partition coefficient (12) and a high biotite partition coef-
ficient (8.7) were used to minimize estimates of sanidine resorption; 
a lower biotite coefficient would imply greater sanidine participation 
in controlling the concentration of Ba in the melt. Due to pervasive 
mineral zoning, an equilibrium-step model was used to calculate in 
which material from the previous steps cannot react with the material 
crystallized in a future step. Model runs with phase proportions cal-
culated using the thermodynamic software MELTS-Rhyolite (Gualda 
et al. 2012). Average whole-rock compositions are marked “MELTS,” 
(e.g., MELTS no San), while those with the proportion of biotite and 
clinopyroxene adjusted to match ratios in MPT samples are marked 
“Observed Mode”. Models were run with and without sanidine sta-
ble. The line at 285 ppm Ba denotes the concentration of Ba in the 
melt in equilibrium with the lowest Ba contents measured in MPT 
plagioclase phenocrysts (Fig. 7)
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determine how quickly large magmas can erupt following 
thermal perturbations (e.g., Druitt et  al. 2012; Matthews 
et  al. 2012). The evidence for melting of MPT crystals 
suggests that crystallinity reduction following a magma 
recharge played an important role in this reactivation, as 
suggested for other units (e.g., Murphy et al. 2000; Bach-
mann et  al. 2002; Molloy et  al. 2008; Bachmann 2010; 
Cooper and Kent 2014; Klemetti and Clynne 2014). It is 
difficult to quantify how much crystalline mass melted, 
but the calculated Ba concentrations in the liquid (Fig. 7) 
roughly constrain a reduction of crystal mass at > ~5 vol% 
during reactivation. This value is based on the ~1000 ppm 
increase of Ba in the melt, largely due to sanidine resorp-
tion, assuming a maximum ~20,000 ppm in sanidine (e.g., 
Bachmann et al. 2014). The ~5 vol% melting of the crys-
talline mass is a minimum, as 20,000 ppm Ba is likely an 
overestimate, and quartz, low-An plagioclase, Fe–Ti oxides 
were also resorbed. Such a reduction in crystal content is 
slightly less than and has been suggested for the thermal 
rejuvenation of the Fish Canyon magma body based on 
trace elements in titanite (Wotzlaw et al. 2013).

We utilize the petrological and geochemical con-
straints described above for the MPT to apply a quantita-
tive thermo-mechanical model, as originally developed by 
Huber et  al., (2011). The key ingredients to evaluate the 
reactivation scenario are:

1. A minimum of ~5  vol% of the crystalline mass in 
a 500  km3 magma was subjected to a phase change 
(melting).

2. A lack of pervasive mixing between mafic recharge and 
host magmas.

3. Phenocryst phases (plagioclase, clinopyroxene, biotite) 
display zoning patterns with relatively sharp, up-tem-
perature changes in composition near their rims.

Melting of phenocrysts is associated with a decreased 
in density (increase in volume), which in turn leads to 
mechanical work (pressure increases within the partially 
melted mush layer in contact with the recharge). Because 
the lowermost portion of the mush, in contact with the 
reactivation front, is barely rigid, the overpressure build-up 
can mechanically destabilize a relatively thin layer (meter 
scale) of mush. Small fragments of mush that are located 
immediately above the reactivated portion of the mush are 
likely to be assimilated during this process. Huber et  al. 
(2011) argue that this thermo-mechanical reactivation is 
energetically more efficient and rapid than melting alone, 
but the timescale for reactivation is strongly controlled by 
the thickness of the mush that must be reactivated. For 
magma bodies with volumes similar to MPT (~500 km3), 
timescales are projected to be a few hundreds to a few 
thousands of years (Huber et  al. 2012), depending on the 

size and frequency of recharge inputs during this process. 
This thermo-mechanical reactivation involves crystallinity 
reduction (final crystallinity around 40–45 vol%, a few per-
cent below the mechanical locking point) and is, therefore, 
consistent with the minimum 5 vol% decrease in crystallin-
ity estimated for MPT.

Diffusion speedometry is widely used to measure reac-
tivation timescales (e.g., Zellmer et  al. 1999; Costa and 
Chakraborty 2004; Charlier et al. 2007; Turner and Costa 
2007; Martin et al. 2008; Druitt et al. 2012; Matthews et al. 
2012; Chamberlain et  al. 2014), but this method is prob-
lematic for MPT. As described above, plagioclase and 
pyroxene display significant chemical zoning, but most 
zoning profiles are complex sawtooth patterns that are not 
easily amenable to diffusion modeling. Both phases display 
relatively sharp interfaces between zones close to the rims, 
without discernable diffusion profiles. In addition, vari-
able zoning morphologies suggest that crystals responded 
in diverse ways to reheating, while other factors, includ-
ing the location of the crystals in the magma chamber at 
the onset of reactivation and the amount of recharge events 
experienced, impacted their final individual texture, mak-
ing the interpretation of diffusional timescales challenging. 
Furthermore, even detailed studies on smaller systems such 
as Montserrat may yield reactivation timescales that vary 
across three orders of magnitude (Zellmer et al. 2003). We 
therefore conclude that the best time estimate for reactiva-
tion of the MPT mush is likely at least several hundreds of 
years, as estimated from thermo-mechanical models for 
comparably large magma volumes (Huber et al. 2011). The 
time required to reach homogenization (as observed at hand 
sample scale) by mixing will be at least two orders of mag-
nitude shorter (years to tens of years; Huber et  al. 2012). 
This short mixing time is consistent with numerical simula-
tions of rapid gas-driven overturn in high-viscosity systems 
(Ruprecht et al. 2008).

Comparison with FCT

Eruption of the FCT followed MPT by ~700,000 years, and 
with a volume ten times greater, it completely buried the 
MPT source caldera. Although these two ignimbrites are 
both crystal-rich calc-alkaline dacites, they differ in mineral 
assemblages: the FCT contains conspicuous phenocrysts of 
quartz. Amphibole and titanite appear in thin section, but 
the assemblage lacks clinopyroxene, and is devoid of plagi-
oclase microlites. The FCT is also slightly more  SiO2- and 
 K2O rich than the MPT (average composition of 68  wt% 
 SiO2, 4.1 wt%  K2O vs 62.7 wt%  SiO2, 3.5 wt%  K2O, respec-
tively) and erupted at a lower temperature (~710–760 °C, 
Bachmann and Dungan 2002, vs 800–850 °C for the MPT). 
However, similar Ti-in zircon temperatures and ample evi-
dence for more vigorous rejuvenation in the case of the 
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MPT suggest that the two may have indeed evolved to a 
similar temperature (assuming similar aSiO2 and aTiO2). 
The presence of multiple hydrous phases in FCT and its 
lower eruption temperature than the MPT suggest that FCT 
magma evolved under slightly more water-rich conditions, 
although precise estimates of water content differences are 
difficult to obtain. Application of the plagioclase-liquid 
hygrometer of Waters and Lange (2015) to plagioclase 
rims (assuming 800–850 °C) yields water concentrations 
of ~13% in the MPT, comparable to those obtained from 
the FCT using temperatures from plagioclase-sanidine 
pairs (Bachmann et  al. 2002). Nonetheless, the observa-
tion of amphibole presence in the FCT vs clinopyroxene 
in the MPT seemingly suggests a difference in water activ-
ity. However, since we cannot rule out that amphibole may 
have resorbed in the MPT (along with sanidine, quartz and 
titanite), we cannot say with certainty how the two differed 
with respect to water activity.

Despite their different volumes, mineralogy, and possi-
bly water contents, the upper crustal FCT and MPT magma 
bodies or mush zones both were reheated and mechani-
cally reactivated prior to eruption as indicated by: (1) 
highly resorbed (FCT) sanidine and quartz or totally dis-
solved (MPT) sanidine, titanite, and quartz and (2) reverse 
zoning in phenocrysts, most obvious in plagioclase, sani-
dine, and amphibole for the FCT (Bachmann and Dungan 
2002; Bachmann et al. 2002) and in plagioclase and pyrox-
ene in the MPT (this study). The presence of scarce mafic 
enclaves in late-erupted FCT (and perhaps in MPT) indi-
cate that the rejuvenation event was likely triggered by a 
mafic recharge event that brought heat, volatiles, and some 
melt (but no crystalline debris) to these upper crustal crys-
tal mushes (Bachmann and Bergantz 2003, 2006). Alterna-
tively, the recharge could have been more evolved magmas, 
in which case mass addition would be very difficult to rule 
out given the similarities in composition with the main 
body of magma.

The difference in plagioclase compositional profiles 
between the MPT and FCT (i.e., presence of ubiquitous 
sharp An-rich spikes at the rims of most plagioclase phe-
nocrysts in MPT in comparison with the more gradual rim-
ward An increase in the FCT plagioclase) suggests that the 
rejuvenation event was shorter and more intense for MPT. 
In comparison, FCT underwent a progressive increase 
in temperature over an extended period, estimated to be 
~200,000 years based on zircon geochronology and zircon 
trace-element chemistry (Wotzlaw et  al. 2013). A more 
sudden reawakening of MPT is consistent with its smaller 
size, allowing a typical lower-crustal recharge event to have 
more impact on temperature and crystallinity of the dacitic 
mush than for the gigantic FCT. It is also possible that the 
highest crystallinity reached by the MPT at the coldest 
point of its evolution was less than that of FCT (estimated 

at ~75 vol% crystals; Wotzlaw et al. 2013), making it ener-
getically less costly to rejuvenate.

Conclusions

MPT deposits have textural and chemical characteristics of 
a magmatic system that was substantially out of thermal and 
chemical equilibrium at the time of eruption. Extensively 
resorbed plagioclase, absence of sanidine, titanite, and only 
sparse corroded quartz microlites, along with inverse zon-
ing in phenocrysts (plagioclase and clinopyroxene), indi-
cate that the magma reservoir was reheated and reactivated 
shortly before eruption. Major and trace-element variations 
among whole-rock samples and crystals do not support 
simple mixing with a more mafic recharge as a mechanism 
for delivering the necessary heat. While a reheating event 
is evident given the chemical variation in thermally sensi-
tive MPT phases (An in plagioclase, increased MgO con-
centrations in pyroxene rims), any model must account for 
this thermal rejuvenation with little mass addition of more 
mafic magma (crystalline debris is not observed).

We propose a model similar to that developed for FCT 
(Bachmann et  al. 2002). The interaction of the Masonic 
Park Tuff reservoir with recharge magma has the follow-
ing characteristics: (1) thermal reactivation due to ini-
tial heating and limited melt + gas addition following the 
underplating of a hot recharge magma; (2) resorption of 
low-temperature phases (e.g., sanidine, quartz, titanite, and 
low-An plagioclase) causing the crystalline framework to 
disaggregate, thereby leading to density instabilities that 
drive convective self-mixing; and (3) stirring of the crystal-
rich magma by convective currents, leading to the observed 
textural and compositional homogeneity at hand-sample 
(and larger) scale. The similar rejuvenation signatures in 
two ignimbrites with different mineralogies, volumes, and 
pre-eruptive temperatures that were erupted from the same 
crustal site indicates that such a remobilization process 
may be a common precursor to the evacuation of crystal-
rich dacitic mushes residing in the upper crust, even among 
eruptive volumes that differ by an order of magnitude.
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