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Abstract Within the Mediterranean realm, the Rhodopes

represent a nappe stack of oceanic and continental frag-

ments assembled along the Eurasian continental margin

during the Alpine orogeny. The timing of the high-pressure

(HP) metamorphism has long been ambiguous, lacking

detailed geochronological and geochemical control on

subduction-exhumation and nappe stacking processes. Here

we apply the Lu–Hf and Sm–Nd chronometers to a suite of

representative eclogite samples covering two different key

units of the Rhodopean nappe stack: (1) the Kimi Complex

(Upper Allochthon) and (2) the Middle Allochthon. In

addition to geochronology, we also determined whole rock

Hf and Nd isotope compositions as well as major and trace

element concentrations in order to constrain the nature of

the eclogite protoliths. Two HP metamorphic events were

revealed by Lu–Hf geochronology: (1) a Lower Cretaceous

event in the Upper Allochthon (126.0 ± 1.7 Ma) and (2)

an Eocene event in the Middle Allochthon (44.6 ± 0.7 Ma;

43.5 ± 0.4 Ma; 42.8 ± 0.5 Ma), at conditions of ca.

700�C/20–25 kbar. Our new data provide direct evidence

for multiple subduction events in the Rhodopes. Exhuma-

tion and subsequent thrusting of the Middle Allochthon on

the Lower Allochthon can be narrowed down to the time

span between 42 and 34 Ma. In a broader tectonic context,

the Eocene ages for the HP metamorphism support the view

that the Rhodopes represent a large-scale tectonic window,

exposing the deepest nappe units of the Hellenides.
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HP metamorphism � Rhodopes

Introduction

The convergence between Africa and the Eurasian conti-

nent since the Jurassic led to the closure of the Tethyan

realm in a protracted succession of subduction and colli-

sion events involving several microplates (Stampfli and

Borel 2002; van Hinsbergen et al. 2005). In this context,

rock units of both oceanic and continental affinity were

subducted and metamorphosed at high-pressure (HP) and

even ultra-high pressure (UHP) conditions (e.g., Gebauer

et al. 1997; Mposkos and Kostopoulos 2001), and subse-

quently they were exhumed and incorporated into the

evolving Alpine orogen. Constraining the exact timing of

these events as well as characterization of the protoliths

involved is crucial for reconstructing the geodynamic

evolution of the Eastern Mediterranean realm. The Rho-

dopes, which are exposed in southern Bulgaria and north-

ern Greece (Figs. 1, 2), are a key locality to understand the

succession of HP events in the eastern Mediterranean as

they represent the link between the Hellenic-Dinaric thrust

belt and the Eurasian continental margin.
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In the Rhodopes, evidence for the presence of deeply

subducted oceanic and continental fragments reaching up

to UHP conditions has been discovered in eclogites,

metapelites and mélange-zone rocks (Mposkos and Kos-

topoulos 2001; Perraki et al. 2006; Cornelius 2008;

Schmidt et al. 2010; Janák et al. 2011). However, only

limited geochronological and geochemical data for the

eclogite-facies rocks are available so far, and the results are

inconsistent. Based on zircon dating, Liati (2005) postu-

lated four episodes of HP to UHP metamorphism whereas

Krenn et al. (2010) argue that UHP metamorphism was

confined to ca. 180 Ma, followed by decompression.

In the last two decades, direct dating of HP meta-

morphic events in Alpine or older metamorphic rocks

has been improved by the application of the Lu–Hf (and

Sm–Nd) geochronometers to metamorphic garnet (e.g.,

Vance and O’Nions 1990; Duchêne et al. 1997; Amato

et al. 1999; Scherer et al. 1997, 2000; Blichert-Toft and

Frei 2001; Thöni 2002; Lapen et al. 2003; Lagos et al.

2007; Herwartz et al. 2008, 2011; Smit et al. 2010). The

major advantages of this approach are (1) high Lu/Hf

(and Sm/Nd) ratios in garnet, (2) the additional infor-

mation from initial Hf–Nd isotope compositions about

the nature of the protolith and (3) the fact that garnet

ages can be tied to specific P–T conditions. New ana-

lytical approaches (e.g., Lagos et al. 2007) also allow the

selective digestion of garnet, thus minimizing the effects

of inclusions that are in isotopic disequilibrium with the

host garnet.

In this study, we present Lu–Hf and Sm–Nd isotope data

for whole rocks and omphacite/garnet mineral separates for

four eclogite samples from two different tectonic units of

Fig. 1 Geological overview of the Bulgarian and Greek Rhodopes; modified after Tueckmantel et al. (2008) and Jahn-Awe et al. (2010). Marked

field illustrates map shown in Fig. 2
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the Bulgarian Rhodopes. These data are complemented by

element profiles of garnet obtained by LA-ICP-MS and

electron microprobe, whole rock major and trace element

analyses and are furthermore combined with petrological

observations and phase diagram calculations. The results

lead to a fundamental tectonic re-interpretation of the

Rhodopes as the most internal portion of the Hellenides

rather than an independent older orogen.

Geological overview

The Rhodopes are tectonically sandwiched between the

Hellenic-Dinaric thrust belt in the south-west and the

Eurasian continental margin, including the Balkanides, to

the north (Fig. 1). To the south, the Rhodopes extend into

Greece and are partially covered by the Aegean Sea. The

present study focuses on the Bulgarian part of the Rho-

dopes, which is built of several metamorphic thrust units

that were re-structured by intense extension in the Eocene

and Miocene (e.g., Burg et al. 1996; Kilias et al. 1999;

Krohe and Mposkos 2002; Bonev et al. 2006; Pleuger et al.

2011). The extensive nomenclature for individual, local

units so far lacks a consistent classification scheme. Here,

we follow the approach of Janák et al. (2011), referring to

four large superunits: the Lower, Middle, Upper and

Uppermost Allochthon (Figs. 1, 2). The nomenclature

introduced by Janák et al. (2011) also allows a direct tec-

tonic correlation between the Rhodopes in the strict sense

and the Serbo-Macedonian Massif further south-west. A

short description of the respective units along with the most

important available geochronological data is given in

Table 1.

The Lower Allochthon is exposed south of the Nestos

Shear Zone (‘‘Rhodope Metamorphic Core Complex’’ or

‘‘Pangaion–Pirin Complex’’; Dinter and Royden 1993;

Dinter 1998; Georgiev et al. 2010; Jahn-Awe et al. 2010) as

well as in three metamorphic core complexes (Arda–Byala

Reka/Kechros–Kesebir/Kardamos) that form extensive

domes in the eastern part of the Rhodopes (Figs. 1, 2). The

Lower Allochthon is composed of Variscan basement (e.g.,

Wawrzenitz and Mposkos 1997; Peytcheva et al. 2004;

Ovtcharova et al. 2004; Turpaud and Reischmann 2010)

and a metasedimentary sequence, reaching greenschist- to

amphibolite-facies metamorphism in the Pangaion–Pirin

complex and migmatization in the Arda, Byala Reka/

Kechros and Kesebir/Kardamos complexes. Migmatization

in the Arda dome took place at 37.8 ± 1.5 Ma (Cherneva

et al. 2002).

The Middle Allochthon corresponds to the Sidironero-

Mesta Unit in the broad sense and includes the Madan,

Arda 2, Starcevo, Borovica and Asenica Units in the

Central Rhodopes (Table 1; Figs. 1, 2). The Middle Al-

lochthon is equivalent to the ‘‘Rhodope Terrane’’ of Tur-

paud and Reischmann (2010) and Jahn-Awe et al. (2010)

and is a mixed unit of continental and oceanic affinity,

including orthogneisses derived from Jurassic to Early

Cretaceous arc granitoids, and intruded by Eocene grani-

toids (U–Pb on zircons; Ovtcharova et al. 2004; Turpaud

and Reischmann 2010; Jahn-Awe et al. 2010). The meta-

morphic grade reached up to eclogite facies (e.g., Kolčeva

et al. 1986; Liati and Mposkos 1990; Liati and Seidel

1996). Furthermore, mineral relics and mineral composi-

tions indicating UHP metamorphic conditions have been

reported from several different localities from the base of

the Middle Allochthon (microdiamond inclusions in garnet

of metapelites; Mposkos and Kostopoulos 2001; Perraki

et al. 2006; Schmidt et al. 2010). The timing for thrusting

of the Middle on the Lower Allochthon along the top-to-

the-south-west Nestos Shear Zone was recently confined

by Jahn-Awe et al. (2010) to 55–32 Ma. An Eocene

activity of the Nestos Shear Zone is also constrained by

ca. 42–38-Ma-old pegmatite veins affected by myloniti-

zation along the Nestos Shear Zone (Liati 2005; Bosse

et al. 2009).

The Upper Allochthon is composed of the Kardžali

Unit and the Kimi Complex in the Eastern Rhodopes and

the Vertiskos/Ograzhden Unit in the Serbo-Macedonian

Massif, which is regarded as the western continuation of

the Rhodopes (Table 1; Figs. 1, 2; Burg et al. 1996;

Ricou et al. 1998; Himmerkus et al. 2009a, b). The

Upper Allochthon is a composite unit made up of

metapelites, gneisses, amphibolites, marbles and boudins

of eclogites and ultramafic rocks. The latter have previ-

ously been interpreted as melting residues and cumulates

emplaced at the base of a thickened crust (Baziotis et al.

2008). A metamorphic grade of eclogite facies up to

UHP conditions has been documented for the Kimi

Complex (Mposkos and Kostopoulos 2001). Recently,

microdiamond inclusions in zircons were also reported

from the mélange zone at the base of the Upper

Allochthon by Cornelius (2008). So far, the timing of

UHP metamorphism in the Upper Allochthon could only

be constrained between 200 and 41 Ma and is still a

matter of debate for the Kimi Complex. Most recently an

Early Jurassic age (*180 Ma) was suggested by Krenn

et al. (2010).

The Uppermost Allochthon consists of the Circum-

Rhodope Belt as well as the Mandrica and Alexandropolis

greenschists. These units consist of low-grade metamor-

phic sedimentary and volcanic rocks, partly of oceanic

affinity and were thrust northwards over the Eurasian

margin in the Late Jurassic to Early Cretaceous (Bonev and

Stampfli 2003).
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Sample localities

Three eclogite samples (Rh-83, Rh-89 and Rh-197) were

taken from key localities in the Middle Allochthon and one

sample (Rh-210) from the Upper Allochthon (GPS coor-

dinates see Table 2). Rh-83 and Rh-197 were sampled near

to each other, within the same sub-unit (Starcevo Unit of

the Middle Allochthon; see Fig. 2).

Sample Rh-83 is of particular importance, in that it is a

sapphirine-bearing kyanite eclogite. It has been collected in a

small creek bed *300 m north-east of the town of Ardino,

located at the top of the Ardino Mélange (Fig. 2). This mél-

ange forms the basal part of the Starcevo Unit (Middle Al-

lochthon) and is characterized by ortho- and para-gneisses,

marbles, amphibolites and minor ultramafic rocks and

eclogites. On top of the mélange towards east follow mixed

gneisses of the Starcevo Unit proper. As sample Rh-83 was

part of a stream boulder, it is not clear whether its original

tectonic position was in the uppermost part of the mélange or

upstream in the hanging-wall of the mélange within the mixed

gneisses of the Starcevo Unit that also contain eclogites.

Eclogite Rh-197 has been collected *700 m to the

north-east of Sransko village (south-west of Ardino; Fig. 2).

It originates from lenses of amphibolite and eclogite

enclosed in migmatitic gneisses of the Starcevo Unit.

Fig. 2 Sample localities of the four studied eclogite samples: Rh-83, Rh-89 and Rh-197 from the Middle Allochthon (Starcevo Unit and

Chepelare suture) and Rh-210 from the Upper Allochthon (Kardzali Unit). Modified after Jahn-Awe et al. (2011)

Fig. 3 Results of the calculation of equilibrium phase diagrams for

the samples Rh-83, Rh-89 and Rh-197. a Equilibrium assemblage

diagram for the bulk composition of Rh-83 (Table 2) in an Si–Al-Ti–

Fe–Mn–Mg-Ca–Na–K system with excess H2O. Grey-shaded area

corresponds to the observed high-pressure assemblage. (1) Grt ?

Phe ? Cpx ? Ctd ? Lws ? Rt ? Qtz; (2) Grt ? Phe ? Cpx ?

Ctd ? Rt ? Qtz; (3) Grt ? Phe ? Cpx ? Ctd ? Am ? Rt ? Qtz;

(4) Grt ? Fsp ? Phe ? Am ? Rt ? Spn ? Qtz; (5) Grt ? Fsp ?

Phe ? Am ? Spn ? Qtz; (6) Grt ? Fsp ? Phe ? Cpx ? Am ?

Rt ? Qtz; (7) Grt ? Fsp ? Phe ? Cpx ? Rt ? Qtz; (8) Grt

? Fsp ? Bt ? Cpx ? Am ? Rt ? Qtz; (9) Grt ? Fsp ? Bt ?

Am ? Spn ? Qtz. b Equilibrium assemblage diagram for the

estimated composition of Al-rich coronae around decomposing

kyanite in Rh-83 (Table 2) in an Si–Al-Ti–Fe–Mg–Ca-Na system.

Grey-shaded area corresponds to the observed assemblage. (1)

Grt ? Fsp ? Spl ? Spr ? Rt ? Crn; (2) Fsp ? Spl ? Opx ? Spr ?

Rt ? Crn; (3) Fsp ? Spl ? Crd ? Spr ? Rt ? Crn; (A) Boundary of

stability field of Fsp ? Spl ? Spr ? Rt ? Crn with excess H2O.

c Equilibrium assemblage diagram for the bulk composition of Rh-89

(Table 2) in an Si–Al-Ti–Fe–Mn–Mg-Ca–Na–K system with excess

H2O. Grey-shaded area corresponds to the observed high-pressure

assemblage. d Pressure–temperature path for the exhumation of the

lower, eclogite-bearing part of the Middle Allochthon constrained by

the high-pressure assemblage (see a) and Al-rich coronae

(Pl ? Spl ? Rt ? Spr ? Crn; see b) observed in Rh-83, and Al-rich

coronae (Pl ? Ky ? Spl ? Spn ? Crn) observed in Rh-197. e Equi-

librium assemblage diagram for the bulk composition of Rh-210

(Table 2) in an Si–Al-Ti–Fe–Mn–Mg-Ca–Na–K system with excess

H2O. Grey-shaded area corresponds to the observed high-pressure

assemblage. (1) Grt ? Phe ? Cpx ? Am ? Rt ? Qtz; (2) Grt ?

Fsp ? Cpx ? Am ? Rt ? Spn; (3) Grt ? Fsp ? Cpx ? Am ? Rt

c
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Eclogite sample Rh-89 originates from the so-called

Čepelare Shear Zone (Fig. 2; Burg et al. 1990; Bosse et al.

2009; Gerdjikov et al. 2010), a mixed zone at the base of

the Arda 2 Unit (Middle Allochthon). The sample has been

collected *1 km south-east of Beden village. At this

locality, fine-grained eclogites and surrounding garnet-

amphibolites form a 25-m-long and 10-m-thick boudin

embedded in gneiss.

Eclogite sample Rh-210 originates from the Kardžali

Unit, which is part of the Upper Allochthon (see Table 1).

The sample has been collected *3 km WNW of Drangovo

village (Fig. 2). The sample originates from an eclogite

boudin hosted by garnet-micaschists. More eclogite out-

crops can be found towards north-north-east and south-

south-west in a thin band on top of a west-north-west-

dipping extensional shear zone.
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Analytical techniques

Sample preparation, separation and digestion

Four eclogite samples (Rh-83, Rh-89, Rh-197 and Rh-210)

were analysed for their whole rock major and trace element

concentrations as well as for Lu–Hf and Sm–Nd isotope

compositions. The results along with GPS coordinates of

sample localities are listed in Tables 2 and 3.

After removing the weathering crusts with a rock saw,

the samples (total weight ca. 2–3 kg) were crushed in a

steel mortar. A representative aliquot was then ground in

an agate mill and the powder was subsequently used for

bulk rock analyses. For trace element analyses, the sample

powder was digested in a 1:1 mixture of HNO3-HF in Parr

bombs for 3 days to ensure complete sample digestion and

was subsequently dried down with one mL of perchloric

acid. A second aliquot of the crushed sample was sieved,

and the fractions [63 lm were purified with a Frantz

magnet separator. In order to prevent a selective separation

of either garnet rim or core, the settings were adjusted to

remove non-magnetic minerals only. Subsequently, three

to five garnet separates per sample were hand-picked under

a binocular lens. Both visibly inclusion-free and inclusion-

bearing garnet fractions were separated in order to avoid

biasing the results towards either garnet rims or cores. For

sample Rh-210, an additional omphacite fraction was

separated. Nine to 120 mg of mineral fractions were used

for Lu–Hf and Sm–Nd measurements (see Table 3). Prior

to digestion, the whole rock powders and mineral separates

were spiked with mixed 176Lu-180Hf and 149Sm-150Nd

tracers. The digestion procedures employed for whole

rocks (bomb digestion) and mineral separates (tabletop

digestion) were described in detail by Lagos et al. (2007)

and Herwartz et al. (2008). The Lu–Hf separation as well

as an additional clean-up step for the Hf fraction was

carried out using the method of Münker et al. (2001).

Samarium-Nd separation was carried out using the REE-

rich matrix cut left over from the Hf separation, using

BioRad� AG50W-X8 cation resin (200–400 mesh) and

Eichrom Ln-spec resin (Pin and Zalduegui 1997). Proce-

dural blanks were less than 50 pg for both Hf and Nd.

Measurements

Major element whole rock analyses were carried out using a

PANalytical ProTrace XRF at Universität Bonn, Germany.

The whole rock trace element contents were determined by

quadrupole ICPMS using an Agilent 7500cs mass spec-

trometer at Universität Kiel, Germany. Analytical proce-

dures followed those of Garbe-Schönberg (1993). Lutetium,

Hf, Sm and Nd were measured using the Thermo-Finnigan

Neptune MC-ICP-MS at the Steinmann-Institut Bonn,

operated in static mode. Values of 143Nd/144Nd and
176Hf/177Hf were corrected for mass fractionation using

the exponential law and 146Nd/144Nd = 0.7219 and
179Hf/177Hf = 0.7325, respectively. Measured 143Nd/144Nd

and 176Hf/177Hf values of the samples are reported relative

to 143Nd/144Nd = 0.511859 for the La Jolla Nd standard

(measured value = 0.511836 ± 47 (2SE); n = 2) and
176Hf/177Hf = 0.282160 for the Münster Ames Hf standard

(measured value = 0.282161 ± 44 (2SE); n = 27) that is

isotopically identical to the JMC-475 standard.

Several garnet grains were also analysed in situ by laser

ablation mass spectrometry along line profiles (Fig. 5), in

order to measure their Mn and Lu abundances. Laser

ablation of these garnet grains was carried out using a

Resonetics M50-E ATL Excimer 193 nm laser system

coupled to a Thermo-Finnigan X-series 2 quadrupole ICP-

MS (Steinmann-Institut Bonn). Spot sizes were set between

33 and 75 lm depending on the size of the garnets ana-

lysed, as well as the amount of mineral inclusions found in

the cores of the individual grains. Laser fluence at the

sample surface was measured at 7 J/cm-2, and the laser

repetition rate was set to 15 Hz. Count rates were nor-

malized using 29Si as the internal standard and one external

standard (NIST-610 glass, Pearce et al. 1997). The isotopes
29Si, 43Ca, 57Fe, 55Mn and 175Lu were monitored. Data

reduction and evaluation were carried out following the

procedure laid out by Longerich et al. (1996). Electron

microprobe BSE images of the garnets before and after

LA-ICP-MS analyses are enclosed in the Electronic Sup-

plementary Material.

Mineral major element abundances were analysed by

spot analysis using a JEOL superprobe JXA-8900 micro-

probe (Universität zu Köln) and a JEOL superprobe JXA-

8200 microprobe (Steinmann-Institut Bonn) in wavelength

dispersive mode (WDS) employing 15 kV acceleration

voltage and 15 nA beam current. Calibrations for Mg, Al,

Si, Ti, Ca, Fe, Na, K, Cr and Mn were carried out on

andradite, rutile, basaltic glass (VG2–USNM 111240/52),

and Jadeite-Diopside synthetic glass. In addition, high-

resolution X-ray maps were made for selected garnet grains

of all four samples, in order to identify and characterize

their zonations with respect to Ca, Fe, Mg and Mn (see

Figs. 4, 5). X-ray maps were performed using a JEOL

superprobe JXA-8200 microprobe (Steinmann-Institut

Bonn), with 15 kV acceleration voltage and 100 nA beam

current over 24 h.

Petrography and equilibrium phase diagrams

Mineral compositions of garnet, omphacite, amphibole,

phengite, plagioclase and sapphirine were analysed by

electron microprobe, the results of which are listed in
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Tables 4 and 5. Using these data, we calculated equilib-

rium assemblage diagrams (Fig. 3) for the samples Rh-83,

Rh-89 and Rh-210 using the whole rock compositions

obtained by XRF (Table 2), the Domino-Theriak program

package (de Capitani and Petrakakis 2010) and a modified

JUN92 database (Berman 1988; upgrade 1992). The data-

base was modified with non-ideal solid solution models for

garnet (Berman 1990), phengite (Massonne and Szpurka

1997), and feldspar (Fuhrman and Lindsley 1988) and ideal

approximations for clinopyroxene (endmembers: diopside-

hedenbergite-jadeite), clinoamphibole (tremolite, pargasite,

Fe-pargasite, glaucophane, tschermakite), spinel (spinel-

hercynite), biotite (phlogopite-annite-Mn-biotite), chlorite

(chlinochlore-daphnite-Mn-chlorite) and sapphirine. For

Table 1 Compilation of geochronological data of the Rhodope thrust units

Lower Allochthon Middle Allochthon Upper Allochthon

Corresponds to Pangaion–Pirin complex [1]

Thracia terrane [2]

Sidironero-Mesta unit

Starcevo unit

Asenica unit

Madan unit

Borovica unit

Arda 2 unit

Kimi Complex (Eastern

Rhodopes)

Vertiskos/Ograzhden unit

(SMM) [12]

Kardžali unit

Exposure Metamorphic core complexes

South of Nestos Shear zone

North of Nestos Shear zone around core

complexes

Eastern Rhodopes around

core complexes

Western Rhodopes

Lithologies Composite unit

Variscan basement (orthogneisses)

metasedimentary sequence

Mixed unit (continental and oceanic)

intruded by arc granitoids

Composite unit

Metapelites, gneisses,

amphibolites

Ultramafics (dunites,

pyroxenites)

Marbles hosting eclogite

boudins

Metamorphic

grade

Greenschist to amphibolite facies Up to eclogite facies

Locally reaching UHP (microdiamonds)

Eclogite facies

Locally reaching UHP

(microdiamonds)

Felsic rocks/metapelites

Inherited

componentsa
3200–500–410–356 [2], [6], [14]

330–250 [2]

298 [7]

3000–2370–451–290 [7],

[10]

Protolith

crystallization

32 [1]; 334–266 [2], [3], [9], [13], 294 [4], [6]; 170–134 [1], [2], [13] 151 [10]; 232 [11]; 430 [12]

Metamorphism Eocene (?) [13] Eocene [4], [6], [1], [13], ? 145/148 (?)

[14], [6]

170–160 [7]

82–65 (amphibolite facies ?)

[7], [8]

Cooling–uplift–

extension

35–38–56 [3], [9], [13] 52.8–45–36–32 [4], [13], [15] 65–62 [8], [5]

Mafic rocks None reported

Protolith

crystallization

Min. 77.4 to max. 294 (245–294) [4], [6]

Inherited: 430 [6]

117.4 (?) [5]; 288–200 [7]

Metamorphism 42.2–51 [4], [6] 160 (HT) [7]

120–115 (HP) [7],[9]

82–73.5 (Low-grade) [7], [5]

Bold values represent recorded age information (in Ma)
a Mostly zircon cores in metapelites and gneisses, interpreted to be inherited from sedimentary precursor or from assimilated material

[1] Jahn-Awe et al. (2010); [2] Turpaud and Reischmann (2010); [3] Peytcheva et al. (2004); [4] Liati and Gebauer (1999); [5] Liati et al. (2002);

[6] Liati (2005); [7] Bauer et al. (2007); [8] Mposkos and Wawrzenitz (1995); [9] Wawrzenitz and Mposkos (1997); [10] Cornelius (2008); [11]

Himmerkus et al. (2009a); [12] Himmerkus et al. (2009b); [13] Ovtcharova et al. (2004); [14] Krenn et al. (2010); [15] Lips et al. (2000)
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Table 2 Major and trace

element concentrations of the

four studied eclogite samples

Sample ID
Unit
Sub-unit
UTM coordinates

Rh-83
Middle Allochthon
Starcevo unit
E345379
N4606164

Rh-89
Middle Allochthon
Chepelare suture
E290760
N4620157

Rh-197
Middle Allochthon
Starcevo unit
E341746
N4601344

Rh-210
Upper Allochthon
Kimi Complex
E349781
N4578464

Major elements (wt%)

SiO2 48.4 47.8 51.1 45.8

Al2O3 16.7 15.4 17.0 14.0

Fe2O3 10.3 12.4 9.2 14.0

MnO 0.17 0.21 0.18 0.25

MgO 8.32 7.84 6.71 7.43

CaO 10.2 9.34 9.86 12.9

Na2O 3.35 3.37 4.11 3.14

K2O 0.47 0.52 0.02 0.02

TiO2 1.63 2.38 1.18 2.29

P2O5 0.15 0.28 0.20 0.17

SO3 0.41 0.27 0.010 0.27

L.O.I. 0.00 0.19 0.00 0.00

Sum 100.2 100.2 99.6 99.9

Trace elements (ppm)

Li 8.72 17.2 4.02 17.1

Sc 40.2 37.9 36.0 52.5

V 221 285 203 395

Cr 320 286 264 182

Co 43.4 45.2 32.9 45.6

Ni 94.1 142 54.2 62.0

Cu 35.1 44.7 41.3 74.0

Zn 81.5 106 95.9 103

Ga 17.7 22.8 17.9 18.4

Rb 12.4 15.1 0.986 0.594

Sr 194 151 166 86.6

Y 29.0 47.8 26.5 45.1

Zr 152 200 113 123

Nb 3.37 5.43 5.83 3.54

Mo 0.692 0.858 0.249 0.266

Sn 1.23 2.14 3.07 1.45

Sb 0.0768 0.178 0.0939 0.0487

Cs 0.788 0.464 0.107 0.0176

Ba 94.4 106 6.18 9.36

La 8.57 10.1 19.1 0.894

Ce 22.7 27.4 40.4 3.33

Pr 3.36 4.23 5.22 0.701

Nd 15.7 21.0 21.8 4.73

Sm 4.24 6.34 5.18 2.86

Eu 1.52 2.07 1.58 1.31

Gd 4.91 7.76 5.16 5.61

Tb 0.826 1.33 0.773 1.14

Dy 5.32 8.67 4.70 7.91

Ho 1.10 1.80 0.989 1.69

Er 3.03 4.97 2.86 4.78

Tm 0.445 0.731 0.435 0.719

Yb 2.94 4.81 2.89 4.75

Lu 0.435 0.706 0.432 0.709

Hf 3.42 4.92 2.82 3.24

Ta 0.232 0.371 0.381 0.264

W 0.209 0.545 0.461 0.355

Tl 0.174 0.154 0.0201 0.024

Pb 2.63 1.94 5.32 0.727

Th 0.585 0.927 4.01 0.0573

U 0.132 0.195 0.914 0.194
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Table 5 Representative microprobe analyses of phases observed in Al-rich coronae in weight% and p.f.u

Rh-83

Spr

Sympl.

core

Rh-83

Spl

Sympl.

core

Rh-83

Pl

Sympl.

core

Rh-83

Pl

Sympl.

rim

Rh-197

Grt

Core

Rh-197

Amphibole

Rh-197

Spl

Sympl.

core

Rh-197

Ilm

Sympl.

core

Rh-197

Pl

Sympl.

core

Rh-197

Pl

Sympl.

rim

Proportion in corona
[%]

8 30 60 13.5 4.5 2 48

SiO2 10.7 0.04 57.5 64.1 38.6 39.9 0.05 0.53 55.7 61.7

TiO2 0.02 0.05 0.01 0.04 0.09 1.71 0.08 44.8 0.00 0.03

Al2O3 69.7 66.3 27.6 23.2 21.1 17.7 61.2 0.16 27.8 23.4

FeO 3.94 16.2 0.19 0.09 22.2 10.3 23.7 43.7 0.12 0.14

MnO 0.06 0.08 0.03 0.00 4.20 0.06 0.06 0.46 0.02 0.00

MgO 16.2 17.0 0.04 0.00 3.08 12.8 11.3 0.45 0.01 0.00

CaO 0.19 0.08 9.01 4.09 11.1 10.9 0.11 0.22 9.37 4.53

Na2O 0.09 0.00 6.37 8.68 0.03 3.29 0.00 0.08 5.94 8.72

K2O 0.00 0.00 0.08 0.19 0.00 0.20 0.00 0.02 0.02 0.06

Cr2O3 0.09 0.12 0.01 0.00 0.08 0.04 0.18 0.04 0.02 0.03

Total 101.0 99.8 100.9 100.3 100.5 96.9 96.6 90.5 99.0 98.6

Si 1.25 0.00 2.56 2.81 6.04 5.87 0.00 0.02 2.52 2.77

Ti 0.00 0.00 0.00 0.00 0.01 0.19 0.00 0.95 0.00 0.00

Al 9.58 2.00 1.45 1.20 3.90 3.07 1.99 0.01 1.49 1.24

Fe 0.35 0.35 0.01 0.00 2.91 1.26 0.55 1.03 0.01 0.01

Mn 0.01 0.00 0.00 0.00 0.56 0.01 0.00 0.01 0.00 0.00

Mg 2.82 0.65 0.00 0.00 0.72 2.81 0.46 0.02 0.00 0.00

Ca 0.02 0.00 0.43 0.19 1.86 1.71 0.00 0.01 0.46 0.22

Na 0.02 0.00 0.55 0.74 0.01 0.94 0.00 0.00 0.52 0.76

K 0.00 0.00 0.00 0.01 0.00 0.04 0.00 0.00 0.00 0.00

Cr 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00

Total 14.1 3.00 5.00 4.96 16.0 15.9 3.00 2.04 4.99 4.99

O 20 4 8 8 24 23 4 3 8 8

Rh-83

Corona

Rh-197

Corona

Si 26.9 38.6

Ti 1.81a 0.94

Al 46.4 43.8

Fe 4.72 3.05

Mn 0 0

Mg 10.1 3.18

Ca 4.42 5.24

Na 5.62 5.17

K 0 0

Cr 0 0

H 0 1.70b

Total 100 101.7

O 149.1 159.7

Estimated compositions of the coronae are used as input for calculation of equilibrium assemblage diagrams
a 2% TiO2 (Rutile) added to corona composition
b Assuming 2OH for the amphibole
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Fig. 4 a–d Major element distribution maps and cross-sections through representative garnets from the four eclogite samples obtained by

electron microprobe analyses
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Fig. 5 a–d Major element distribution map of the garnets analysed

by LA-ICP-MS as well as the element profiles obtained by LA-ICP-

MS for Lu and Mn. BSE images of the selected garnet grains before

and after laser ablation are enclosed in the Electronic Supplementary

Material. Note that ‘‘Res. Rim’’ in the Lu and Mn profiles of

c corresponds to resorbed garnet rim domains
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sapphirine, we chose Mg-sapphirine Mg3.5AL9Si1.5O20 and

Fe-sapphirine Fe3.5AL9Si1.5O20 as end-members, as these

are compositionally close to the sapphirine observed in

sample Rh-83. DfH0 and S0 of the sapphirine and daphnite

end-members were adopted from Holland and Powell

(1998) and slightly adjusted so that the internal consistency

of the database was maintained. The equilibrium assem-

blage diagrams were calculated for water-saturated Si–Al-

Ti–Fe–Mn–Mg-Ca–Na–K bulk rock compositions (see

Table 2). In order to constrain the retrograde P–T path, we

also calculated one diagram in a Si–Al-Ti–Fe–Mn–Mg-Ca–

Na–K system for a retrograde corona forming around

decomposing kyanite (sample Rh-83). The composition

was estimated from the proportions and compositions of

the minerals constituting the coronae (see Table 5).

Sample Rh-83 from the Middle Allochthon (Starcevo

Unit) is a sapphirine-bearing kyanite eclogite, from the

same unit as and similar to those described by Kolčeva

et al. (1986) and Liati and Seidel (1996). It contains the

high-pressure assemblage garnet-omphacite1 (Jd37–43)-

kyanite-quartz-rutile-zoisite-apatite, corresponding to

600-830�C/19–27.5 kbar in the equilibrium assemblage

diagram (Fig. 3a). Phengite was not observed, probably

because it was completely consumed during retrograde

growth of amphibole and biotite. Most of the omphacite

was replaced during several stages of retrograde overprint,

starting with the growth of pargasitic amphibole (mostly

around garnet) and omphacite2 (Jd17–26)-plagioclase sym-

plectites (mostly at the expense of omphacite1) that show

ambiguous textural relations with the pargasitic horn-

blende. Symplectites of plagioclase (Ab29–57An41–69), spi-

nel and sometimes rutile, sapphirine and/or corundum

formed around decomposing kyanite (see BSE images in

the Electronic Supplementary Material). Biotite is locally

pseudomorphic after amphibole and together with plagio-

clase forms patches after the sapphirine-bearing symplec-

tite coronae. Garnets in Rh-83 are several millimetre large,

corroded grains that display a complex chemical zonation

(Fig. 4a). A wide rim domain displays patches enriched in

Fe and Ca and depleted in Mg. The inclusion-rich core has

a composition similar to the outermost rim with respect to

Fe, Mg and Ca, but shows a higher Mn content than the rest

of the grain. This Mn-rich domain preserves an edgy

euhedral shape in some garnet grains (Fig. 4a) and a more

diffuse shape in others (Fig. 5a). We interpret this com-

positional pattern to result from partial resetting (resorp-

tion) of the garnet rims that also result in an increase in

abundance of trace elements like Lu in the resorbed rims

(Fig. 5a and discussion below).

Based on chemical and textural evidence, we propose

that the growth of the plagioclase-spinel-sapphirine sym-

plectites around kyanite was controlled by local chemical

equilibria. Therefore, we used a composition estimated as

described above (Table 5) as input for the calculation of

the equilibrium assemblage diagram (Fig. 3b). For a dry

composition, the observed assemblage plagioclase-spinel-

sapphirine-corundum-rutile is predicted to be stable in the

grey-shaded field of Fig. 3b, that is, above 610�C. Add-

ing excess water to the same composition leads to a shift of

the plagioclase-spinel-sapphirine-corundum-rutile stability

field to higher temperatures, that is, above 670�C.

The maximum pressure is constrained by the boundary of

the plagioclase-spinel-sapphirine-corundum-rutile stability

field towards garnet stability and increases from c. 8 kbar

at 710�C to c. 12.5 kbar at 900�C. It is therefore realistic to

assume that the sapphirine-bearing coronae formed at

temperatures around or even below 700�C, that is, roughly

at the same temperatures where the orthogneissic country

rocks underwent migmatization (Georgieva et al. 2002).

Likewise, if calculated for a broader compositional range,

the absence of garnet from the observed assemblage

requires pressures significantly below those of a high-

pressure granulite-facies overprint above 12 kbar, which

was previously postulated by various authors (Liati and

Seidel 1996, Carrigan et al. 2002).

The matrix assemblage of sample Rh-197 (Starcevo

Unit) is much more strongly affected by retrogression than

documented for sample Rh-83. However, large garnet

porphyroblasts are much better preserved, are euhedral and

clearly exhibit growth zonation (Figs. 4c, 5c). Manganese,

Ca and the Fe to (Fe?Mg) ratio show the classic bell-

shaped distribution. Zonations of Fe and particularly Mn

are edgy, discontinuous and parallel to the grain bound-

aries. Nevertheless, garnets in Rh-197 also display thin

channels, along which transport and some re-equilibration

might have occurred (Fig. 4c). However, Lu element pro-

files (Fig. 5c) strongly indicate that garnets in Rh-197

preserve their original trace element zonation displayed by

the high Lu concentration in the core and decreasing con-

centrations towards the rims (see also discussion below).

Clinopyroxene (Di62–79Hd6–23Acm5–15Jd1–4) is abundant in

symplectites with plagioclase. Pargasitic amphibole grew

along the rims of garnet and within the matrix. Rh-197 also

contains Al-rich symplectite patches comprising plagio-

clase (Ab46–57An43–53), kyanite, amphibole, spinel, ilmen-

ite and sometimes corundum (see BSE images in the

Electronic Supplementary Material). Unlike in Rh-83, we

did not observe specific mineral relicts within the sym-

plectite patches.

Sample Rh-89 contains the high-pressure assemblage

garnet-omphacite (Jd27–35)-quartz-phengite-rutile, corre-

sponding to the grey-shaded stability field in the phase

diagram (Fig. 3c). Garnets occur as slightly corroded,

euhedral grains and are much smaller than in the two

previous samples (Figs. 4b, 5b). They show distinct Ca-

poor and Fe- and Mg-rich rims. The Fe to (Fe?Mg) ratio
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is slightly elevated in the core. However, the distribution

of Mn is flat (Figs. 4b, 5b) and indicates resorption of

garnet. Altogether, the chemical zoning, at least of Fe,

Mg and Mn, appears to be strongly reset in sample Rh-89,

which is also documented by the enrichment of Lu in the

rim domains (Fig. 5b). Metamorphic retrogression caused

growth of pargasitic amphibole, plagioclase-clinopyroxene

(Di70–83Hd0–18Acm0–12Jd8–12) symplectites and biotite

together with plagioclase. Al-rich symplectites as in Rh-

83 and Rh-197 were not observed in Rh-89.

The overlapping stability fields of the high-pressure

assemblages in samples Rh-83 and Rh-89 and the Al-rich

symplectites in both Rh-83 and Rh-197 allow to roughly

constrain a pressure–temperature path for the exhumation

of the lower part of the Middle Allochthon (Fig. 3d).

The observed high-pressure assemblage in Rh-210 is

garnet-omphacite (Jd32–41)-amphibole-phengite-rutile. Mica

is scarce (\1%) due to the low potassium content of the

sample (0.02 wt%). Garnets are again large ([2 mm) and

show original growth zonation with humps of Ca, Mn and the

Fe to (Fe?Mg) ratio (Fig. 4d) and Lu (Fig. 5c) in the core. In

the equilibrium assemblage diagram (Fig. 3e), this assem-

blage is predicted to be stable under somewhat lower pres-

sures (15–19 kbar) than those estimated from the high-

pressure assemblages of the samples from the Middle

Allochthon (20–25 kbar). Sample Rh-210 exhibits little

evidence of retrogression other than the growth of chlorite

along isolated cracks.

Geochemical results

Major and trace elements

The major and trace element concentrations of all four

eclogite samples are given in Table 2. The four analysed

samples yield basaltic whole rock compositions (SiO2 =

45.8–51.1 wt. %; MgO = 6.71–8.32 wt. %; Al2O3 = 14.0–

17.0 wt. %), with both high Zr (113–200 ppm) and

compatible element contents (e.g., Cr = 182–320 ppm;

Ni = 54.2–142 ppm).

With the exception of sample Rh-210, all samples are

LREE-enriched (LaN/YbN = 1.4, 2.0, 4.5 for Rh-83, Rh-89

and Rh-197, respectively), but exhibit similar magnitudes

of HREE abundances as N-MORB (Fig. 6a). Sample Rh-

210 from the Upper Allochthon is characterized by a strong

LREE depletion and a slight enrichment of the HREE with

respect to N-MORB (LaN/YbN = 0.13). In the primitive

mantle-normalized trace element diagram (Fig. 6b), sam-

ple Rh-210 is depleted in Th and La, Ce and Nd and dis-

plays positive anomalies of high field strength elements

(HFSE) like Nb, Ta, Zr and Hf. In contrast, sample Rh-197

displays a striking negative Nb–Ta anomaly and Th-U

enrichment. Samples Rh-83 and Rh-89 are enriched with

respect to N-MORB (Fig. 6b), especially with regard to U

and Th. All four samples display similar Nb/Ta ranging

from 13.4 to 15.3 at high Zr/Hf (37.9–44.5), broadly

overlapping the range of values found in MORBs and

island-arc basalts (Büchl et al. 2002; Münker et al. 2004).

Lu–Hf and Sm–Nd geochronology

We analysed the four eclogite samples for their Lu–Hf and

Sm–Nd isotope compositions, using one whole rock aliquot

as well as three to five mineral separates per sample (gar-

nets and pyroxenes).

The results of the Lu–Hf and Sm–Nd measurements are

given in Table 3 and are illustrated in Fig. 7. Isochron

regressions were calculated using ISOPLOT v.2.49 (Lud-

wig 2001) and k 176Lu = 1.867 9 10-11 year-1 (Scherer

et al. 2001; Söderlund et al. 2004). The external reprodu-

cibilities of the isochron calculations were estimated by the

empirical relationship 2r external reproducibility & 4rm

(rm = standard error of a single analysis; Bizzarro et al.

2003).

The Hf contents of the whole rock samples range from

2.92 to 4.78 ppm and those of the garnets from 60 to

150 ppb. The 176Lu/177Hf of the garnets range from 1.60 to

3.78 and the pyroxenes from sample Rh-210 display a
176Lu/177Hf of 0.00124. For each sample, mineral separates

and whole rock aliquots define statistically significant is-

ochrons (MSWDs of 0.1–0.7; Fig. 7), also suggesting full

sample-spike equilibrium during tabletop digestion. The

Lu–Hf ages of the samples from the Middle Allochthon are

44.6 ± 0.7 Ma for Rh-83 (n = 6), 43.5 ± 0.4 Ma for Rh-

89 (n = 4) and 42.8 ± 0.5 Ma for Rh-197 (n = 5). The

sample from the Upper Allochthon (Rh-210) yields a Lu–

Hf age of 126.0 ± 0.7 Ma (n = 6).

The Nd contents of the whole rock samples range from

4.28 to 20.1 ppm with 147Sm/144Nd of 0.14–0.37. The

garnet (Gt-4) and the pyroxene (Px-1) fractions of sample

Rh-210 display Nd concentrations of 1.96 and 1.67 ppm

with 147Sm/144Nd of 0.726 and 0.440, respectively. The

Sm–Nd age determined for sample Rh-210 is

109 ± 11 Ma (n = 3). Samarium-Nd garnet analyses of

the other three samples were hampered by the presence of

inclusions with low Sm/Nd in garnet.

Discussion

Significance of the Lu–Hf geochronological results

In order to adequately interpret the age information from

the analysed garnet populations, several important issues

have to be addressed first. Two major points addressed here
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in detail are the representative sampling of garnet as well

as protracted metamorphism and garnet growth.

Representative sampling of bulk garnet and the problem

of inclusions

The mineral separation technique employed in this study

allows to test for any possible bias in the analysed garnet

separates. Pure garnet fractions (without visible inclusions;

Gt-1, Gt-4, Gt-5 of each sample) as well as garnet fractions

with a high density of inclusions were separated (Gt-2, Gt-

3; see also Figs. 4 and 5, garnet major element distribution

maps) and used for the Lu–Hf/Sm–Nd geochronological

study. As illustrated in Fig. 7, all garnet separates define

isochrons with considerably low MSWDs (\1.7).

Furthermore, inclusions in garnet may significantly

compromise the measured Hf isotope composition (e.g.,

Scherer et al. 2000). This issue is readily avoided by the

employed tabletop digestion technique, which prevents the

dissolution of Hf-rich phases like rutile or zircon (e.g.,

Scherer et al. 2000; Lagos et al. 2007). In contrast to the

Lu–Hf isotope system, the Sm–Nd system is very sensitive

to inclusions of apatite and monazite (Scherer et al. 2000)

that are abundant as inclusions in garnet in samples Rh-83,

Rh-89 and Rh-197, lowering the 147Sm/144Nd of the garnet

separates. Hence, no meaningful Sm–Nd age could be

determined for the samples from the Middle Allochthon.

Constraints on protracted metamorphism and garnet

growth

The good fit of all isochrons (MSWDs B 1.7) strongly

suggests that the Lu–Hf isotope system was not disturbed

at a later stage, that is, that garnets and whole rocks

remained closed systems after formation. This is especially

interesting for sample Rh-210 from the Upper Allochthon,

which yields a Lu–Hf age of 126 ± 0.7 Ma. Based on U–

Pb geochronology on zircons, Bauer et al. (2007) and Liati

et al. (2002) infer a metamorphic event at ca. 74–77 Ma for

the Kimi Complex, which supposedly reached amphibolite-

facies conditions (Bauer et al. 2007) or even eclogite- to

UHP metamorphic conditions (Liati et al. 2002). Consid-

ering the results of the Lu–Hf and Sm–Nd geochronology

of sample Rh-210 as well as similar results by Wawrzenitz

and Mposkos (1997; 117 ± 3.5 Ma; Sm–Nd of gt-cpx-

whole rock of a garnet-pyroxenite), it appears rather unli-

kely that a high-grade (eclogite- or UHP) post-Barremian

metamorphic event affected sample Rh-210. To a certain

degree, similar conclusions can be drawn with regard to

older metamorphic events affecting the rocks from the

Middle Allochthon as suggested from U–Pb zircon geo-

chronology (*148 Ma, for the Nestos Shear Zone; Liati

2005; Krenn et al. 2010). If garnet relicts from this Late

Jurassic high-grade event had been preserved in the studied

eclogite samples, then a mixture of old (radiogenic
176Hf/177Hf; = garnet cores) and young (unradiogenic
176Hf/177Hf; = garnet rims) garnet domains would be

expected. Such observations have recently been made by

Herwartz et al. (2011) for the Adula Nappe in the Central

Alps.

Consequently, the Lu–Hf isochrons defined by the

studied Rhodopean eclogites argue either (1) for a perva-

sive nature of both the Eocene and Cretaceous HP events in

the Starcevo Unit and the Kardžali Unit, respectively or (2)

for the absence of relictic garnet associated with previous

metamorphic events in the respective unit. Moreover, the

low MSWDs and the generally good fit between three (Rh-

83, Rh-89 and Rh-197) of the four Lu–Hf isochrons pro-

vide strong evidence for a relatively short duration of

garnet growth during the Eocene metamorphic cycle. This

is also in line with the phase diagrams (Fig. 3) that predict

garnet growth over a relatively small P–T interval just

before reaching peak pressure conditions, that is, only

above 500�C. If garnet grew over a period of several tens

of Myr, the data points would show a higher scatter, that

is., a higher MSWD (e.g., Kohn 2009).

Prograde growth ages versus cooling ages

During the nucleation and subsequent growth of garnets

along a prograde P–T path, minerals such as garnet develop

a growth zonation, which can be approximated by a Ray-

leigh process (or fractional crystallization and thermody-

namic equilibrium; after Kohn 2003). Of fundamental

interest here is the preservation of undisturbed distribution

patterns for Lu–Hf (and Sm–Nd) in the garnets. Especially

during the thermal peak of metamorphism diffusion of

these elements would get enhanced. These effects may

reset the Lu–Hf and Sm–Nd isotope systems, and the ages

defined by the isochrons may then reflect cooling ages.

Element diffusivity in garnet depends on a variety of other

factors in addition to temperature, for example, grain size,

peak temperature, garnet composition, matrix composition,

oxygen fugacity (f2), duration of prograde metamorphism,

cooling rate and ionic charge (e.g., Chakraborty and Rubie

1996; Ganguly et al. 1998; van Orman et al. 2002; Skora

et al. 2006, Caddick et al. 2010). A useful proxy to assess

the effects of diffusion is the major element zonation found

in garnets (Figs. 4, 5). As shown by experimental studies

(e.g., van Orman et al. 2002), the ionic charge of an ele-

ment exerts a major control on its diffusivity, where 2?

ions diffuse by orders of magnitude faster than 3? (e.g.,

Lu), and presumably 4? ions (e.g., Hf). Furthermore, it

appears that the Lu–Hf system is more resistant to diffusion

compared to the Sm–Nd system, as relatively higher
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closure temperatures have been proposed for Lu–Hf (e.g.,

Scherer et al. 2000; Lapen et al. 2003).

The bell-shaped distributions of Mn, Ca and Fe/

(Fe?Mg) in garnet in combination with elevated Lu con-

centrations in the garnet cores as it is shown for samples

Rh-197 (Figs. 4c, 5c) and Rh-210 (Figs. 4d, 5d) can

therefore be readily regarded as evidence for the preser-

vation of the prograde growth zonation patterns for Lu–Hf.

In these two cases, the Lu–Hf ages clearly reflect the time

of garnet growth (e.g., Lapen et al. 2003). Based on mass

balance arguments, however, Skora et al. (2009) pointed,

furthermore, out that the Lu–Hf ages reflect peak meta-

morphic conditions due to volumetrically higher abun-

dance of garnet rims relative to garnet cores.

The large garnets in sample Rh-83 show a certain degree

of garnet rim resorption (*30% of the garnet radius).

However, the very cores still show elevated Mn (and to a

certain degree also Lu) contents. Considering the near-

identical Lu–Hf age of Rh-83 (44.6 ± 0.7 Ma) with that of

Rh-197 (42.8 ± 0.5 Ma), it is evident that resorption of the

garnet rims is geochronologically barely resolvable and

must have occurred at near-peak metamorphic conditions.

Otherwise, the Lu that diffused back into the garnet rims

would have compromised the fit of the Lu–Hf isochron and

biased the isochron towards an apparently younger age (see

Kelly et al. 2011).

The more or less homogeneous major element compo-

sition of the small garnets in sample Rh-89 (Figs. 4b, 5b)

probably results from diffusive reequilibration of formerly

prograde zoned garnets. However, this feature may not

necessarily indicate a concurrent diffusive mobilization of

REEs, in line with findings by Dutch and Hand (2010),

who reported garnets with flat equilibrated major element

zonations but preserved primary REE zonations. Major

element distribution maps shown in Figs. 4b and 5b in

combination with the Lu concentration data obtained by

LA-ICP-MS (Fig. 5b), however, also suggest the diffusion

of Lu and resorption of large parts of the garnets. Con-

sidering the small garnet diameters of Rh-89 (less than

600 lm) compared to Rh-83 (2–3 mm), garnets in Rh-89

might have been more susceptible to complete resorption

and equilibration than the larger garnets in Rh-83. Fur-

thermore, as all three eclogites from the Middle Alloch-

thon (Rh-83, Rh-89 and Rh-197) display virtually identical

Lu–Hf ages, it seems likely that the same near-peak

metamorphism affecting sample Rh-83 also affected sam-

ple Rh-89.

Collectively, the Lu–Hf age of Rh-197 can be inter-

preted as closest representing the age of the peak meta-

morphic event affecting the Middle Allochthon. Samples

Rh-83 and Rh-89 were affected by different degrees of

garnet resorption close to the timing of the metamorphic

peak. The Lu–Hf age in sample Rh-210 furthermore can be

readily regarded as representative of the age of HP meta-

morphism in the Kardžali Unit. As mentioned above, the

Sm–Nd isotope system of sample Rh-210 has been affected

by element mobility during the metamorphic cycle.

Therefore, we interpret the Sm–Nd age of 109 ± 11 Ma as

only representing a minimum age for garnet growth.

Constraints on exhumation rates

Considering the Lu–Hf results discussed above, we can

now place a robust age constraint on the P–T path of the

investigated samples, in particular on the prograde flank

towards peak pressure conditions (Fig. 3). Combining

these results with published stratigraphic and geochrono-

logical data from the retrograde path allows to roughly

estimate the orders of magnitudes of the cooling and

exhumation rates. For the timing of prograde metamor-

phism, we use the Lu–Hf age of sample Rh-197

(42.8 ± 0.5 Ma), as it represents the youngest garnet

growth age and we therefore place minimum constraints on

the exhumation rate. The depth of formation inferred from

phase relationships corresponds to ca. 70 km. From Ar–Ar

geochronology carried out on rocks from nearby units of

the Middle Allochthon, the timing of cooling below

380–320�C is constrained by ages of 37.1 ± 2.4, and

36.1 ± 0.4 Ma (Lips et al. 2000), which might be con-

sidered as minimum ages due to a relatively low blocking

temperature applied by the authors (350 ± 30�C). Fol-

lowing Liati and Gebauer (1999), we assume a mean depth

of c. 10 km for this phase of retrograde cooling. Complete

exhumation of the Middle Allochthon to the surface is

robustly constrained by unmetamorphosed marine sedi-

ments of Priabonian age that are unconformably resting on

top of the Starcevo Unit north-east of Ardino (Yordanov

et al. 2007). Hence, vertical exhumation from 70 km depth

had to be accomplished within less than 8 Myr and exhu-

mation rates are therefore around 1 cm/year, similar to

values estimated for the exhumation of the Arda 1 and

Starcevo Unit by Pleuger et al. (2011). This is clearly a

minimum rate because the maximum subduction depths

were probably reached somewhat later than the determined

Lu–Hf age (\42.8 ± 0.5 Ma). Moreover, exhumation and

cooling in the study area may have occurred successively,

the lithologies may have been exhumed isothermally first

and then cooled (Fig. 3). Collectively, the actual exhuma-

tion may probably have occurred much faster, even before

cooling started. Independent of this uncertainty, our results

suggest higher exhumation rates than those proposed by

Liati and Gebauer (1999), in the order of 5.7–11.8 mm/

year (mean of 7.7 mm/year); nevertheless, the order of

magnitude is similar between both studies.
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Constraints on the magmatic protolith

In developing a palaeotectonic model for the Rhodopes, it

is essential to constrain the nature of the eclogite protoliths,

that is, the tectonic environment in which the eclogite

precursors formed. Of importance for the present study is

the distinction between a divergent (MORB), a convergent

(island-/continental- or back-arc), and an intra-plate setting

(e.g., OIB). In this regard, the whole rock trace element

budget as well as the Hf–Nd isotope compositions serve as

a valuable tool to identify the original composition of the

magmatic precursor (e.g., Becker et al. 2000; John et al.

2004; Zack and John 2007; Zhao et al. 2007).

The mobility/immobility of trace elements during

blueschist to eclogite transition has been the subject of

extensive research over the past years where, for example,

it has been shown that many trace elements are easily

mobilized from the slab to the overlying mantle wedge

during dehydration reactions (e.g., John et al. 2004, 2008;

Zack and John 2007; Beinlich et al. 2010). However, these

processes are likely limited to zones with a high fluid flux

(veins, channels and other fluid pathways). Other authors

proposed a decoupling of fluid and trace element flux

during subduction, that is, only very limited amounts of

trace elements are released from the subducting slab during

prograde metamorphism (Spandler et al. 2003; 2004;

2007). Considering these interpretations, the bulk trace

element patterns of the studied eclogite samples (Fig. 6a,

b) may mirror element-loss of a more LREE-enriched

precursor, like arc-related basalts or even OIBs, or may be

considered as representative of the original magmatic

protolith composition.

Sample Rh-210 from the Upper Allochthon appears to

be affected by a selective loss of LILE (Cs, Rb, Ba) and

LREE (La, Ce, Pr, Nd), leaving behind positive anomalies

of the HFSE and HREE (see Fig. 6a, b). Evidence for

either a dehydration- or partial melt-mediated dissipation

of Nd and Hf in sample Rh-210 is provided by increased
147Sm/144Nd (0.3664) and 176Lu/177Hf (0.03468) when

compared to the other three samples (see Fig. 8a). This

feature has also major implications for the interpretation of

the Sm–Nd age determined for Rh-210 (see below). In any

case, the consistently low 147Sm/144Nd and 176Lu/177Hf of

the samples Rh-83, Rh-89 and Rh-197 might provide some

evidence that these samples preserved their original mag-

matic REE and HFSE compositions.

A further tool to discriminate possible tectonic settings

of metamorphic protoliths are the HFSE, which are con-

sidered as relatively immobile during subduction-zone

metamorphism and subsequent retrograde overprint (e.g.,

Kogiso et al. 1997; Becker et al. 2000; Spandler et al. 2004;

Schmidt et al. 2009). Ratios like Nb/Ta and Zr/Hf

(13.4–15.3 and 37.9–44.5, respectively) of the four eclog-

ites broadly overlap the fields of N-MORB, OIB and sub-

duction-related basaltic rocks. The derivation of the

protoliths from an enriched OIB-type source however can

be excluded based on the high Zr/Nb (19.4–45.1) and low

Nb concentrations (\6 ppm), which would be expected to

be higher if an OIB-type protolith is considered (Pfänder

et al. 2007, Spandler et al. 2004). Furthermore, the negative

Nb–Ta anomaly in sample Rh-197 (and to a lesser degree

also in Rh-83 and Rh-89) are tentatively regarded as

reflecting the derivation from a source with an island-arc

setting.

Whole rock Hf (and to a lesser degree also the Nd)

isotope compositions can be highly useful to constrain the

nature of the eclogite protoliths due to the particular

robustness of the Lu–Hf isotope system with respect to

metamorphic overprints (e.g., Blichert-Toft et al. 1999;

Polat et al. 2003). However, for the studied eclogites this

approach is hampered by uncertainties in the protolith

formation age, which is required to calculate initial isotope
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Fig. 8 Constraints on the whole rocks of the four eclogites inferred

by Lu–Hf and Sm–Nd isotope systematics. a 176Lu/177Hf versus
147Sm/143Nd of the four eclogite samples, illustrating the effect of

fluid-induced LREE depletion as it is especially important for sample

Rh-210. After John et al. (2004). b eHf(t)–eNd(t) of the four samples

in comparison with a compilation of global OIB and MORB (MORB

after Pearce et al. 1999; Woodhead et al. 2001; Chauvel and Blichert-

Toft 2001; Kempton et al. 2002; OIB field after Nowell et al. 1998).

Each sample is shown with eHf-eNd at present day and also back-

calculated to t1 = 250 Ma and to t2 = 500 Ma
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compositions. Therefore, we assume a similar protolith

formation age as was determined for eclogites near Sid-

ironero by Liati (2005), reporting U–Pb SHRIMP ages for

zircons of *250 Ma (=t1). Furthermore, a second protolith

formation age (t2) of 500 Ma was employed as a maximum

estimate, as the presence of (possibly inherited) *430-Ma-

old zircon domains (Liati 2005) might indicate even older

formation ages. Independent of the protolith age assumed,

calculated eHf(t) and eNd(t) values for Rh-83 and Rh-197

are consistently low (see Fig. 8b), and they rather agree

with the characteristics of a more enriched magmatic

protolith than MORB. Conversely, initial values for Rh-89

well overlap the field for MORB. Due to the near-chon-

dritic 176Lu/177Hf of 0.03468, the whole rock eHf value of

sample Rh-210 (eHf (i) * ?10) is rather independent of

the protolith age and overlaps the lower limit of the MORB

field (Fig. 8b). However, back-calculated Hf and Nd iso-

topes of samples Rh-83 and Rh-197 unambiguously indi-

cate a more enriched protolith than MORB (Fig. 8b).

Collectively, our trace element and Hf–Nd isotope data

for the four eclogites indicate significant element loss for

sample Rh-210 and possibly preserved original magmatic

trace element signatures for samples Rh-83, Rh-89 and Rh-

197. We can furthermore confidently exclude an OIB-type

source for all four eclogites. The protoliths of samples Rh-

83, Rh-89 and Rh-197 most likely originate from an island-

arc setting based on the negative Nb–Ta anomalies and the

rather unradiogenic Hf–Nd isotope systematics that are

inconsistent with a MORB-setting. For sample Rh-210, we

propose that the modified trace element pattern (loss of

LREE, Th and also low K content) as well as the elevated
147Sm/144Nd and 176Lu/177Hf is the result of a partial

melting event affecting the protolith somewhat before the

closure of the Lu–Hf and Sm–Nd chronometers.

Implications for the tectonics of the Rhodopes

and Hellenides

Our results show that two subduction events of different

age are recorded in different structural levels of the Rho-

dopean nappe stack: Early Cretaceous in the Upper Al-

lochthon and Eocene in the basal part of the Middle

Allochthon. Such a distribution, older ages in the struc-

turally higher nappes and younger ages in the deeper lev-

els, is typical for collisional orogens and is also seen, for

example, in the Alps (e.g., Gebauer 1999) and the Nor-

wegian Caledonides (e.g., Brueckner and Van Roermund

2004). Our geochronological study confirms the results of

Liati and Gebauer (1999) and Liati (2005) from U–Pb

zircon dating, in that subduction-related metamorphism in

the Rhodopes occurred more than once. In earlier studies,

however, the geochronological results were rather assigned

to specific areas (e.g., Western Rhodopes, Central

Rhodopes—Liati 2005) and not to specific structural levels

in the Rhodopean nappe stack. In the present study, we

connect the results of the geochronology with the respec-

tive tectonostratigraphy, an approach that has emerged in

the last few years (Krohe and Mposkos 2002). It is also

important to emphasize that our data actually support two

metamorphic events (Early Cretaceous and Eocene), but do

not preclude the existence of other subduction events, for

example, in the Jurassic (Liati 2005; Bauer et al. 2007;

Krenn et al. 2010; Nagel et al. 2011), at a more regional

scale.

Significance of the Eocene ages from the Middle

Allochthon

According to the most widely accepted evolutionary

models for the Hellenic-Aegean orogenic system (van

Hinsbergen et al. 2005; Papanikolaou 2009; Jolivet and

Brun 2010), subduction and related metamorphism and

deformation migrated progressively southwards during the

Mesozoic and Cenozoic. These models have assumed that

Fig. 9 Schematic sketch illustrating the proposed palaeotectonic

reconstruction of the Rhodope nappe stack for a the Lower

Cretaceous and b the Eocene. Modified after Jahn-Awe et al. (2011)
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the stacking of the Rhodopean nappes is Cretaceous in age.

It has also been assumed that from the end of the Creta-

ceous onward, the Rhodopes were already in the hinterland

of the southward-retreating subduction zone (e.g., von

Quadt et al. 2005) and thus were only affected by HT

metamorphism, magmatism and exhumation. However,

this view cannot be maintained any longer. Instead, the

basal part of the Middle Allochthon records subduction in

the Eocene. Eocene ages for the peak pressure were already

determined by U–Pb zircon SHRIMP dating of kyanite-

eclogites from the area of Thermes in northern Greece

(42.2 ± 9 Ma; Liati and Gebauer 1999). The results pre-

sented in our study thus confirm the inferences of Liati and

Gebauer (1999). In the Nestos Shear Zone near Sidironero,

further west but still in the same structural level, Liati

(2005) dated the HP stage of an amphibolitized eclogite to

51.0 ± 1.0 Ma. Our new Eocene ages (44.6 ± 0.7 Ma,

43.5 ± 0.4 Ma, 42.8 ± 0.5 Ma) partially fill the gap

between the ages from Thermes and from Sidironero.

Hence, we assume that the ages from Thermes and Sid-

ironero do not represent different metamorphic events, as

suggested by Liati (2005), but rather point to protracted

subduction lasting at least between 51 and 42 Ma. During

the course of this subduction episode, different parts of the

Middle Allochthon appear to have reached their peak

pressure at different times.

Given the age constraints above, the question arises in

which subduction zone system, from a palaeogeographic

point of view, the Eocene eclogites of the Rhodopes

formed. All of the Eocene eclogites are from the lower part

of the Middle Allochthon. This tectonic unit disappears

beneath the Upper Allochthon towards the south-west. It is

unlikely that the Middle Allochthon re-emerges in the

ophiolite-bearing Vardar Zone, adjacent to the Rhodopes to

the SW, as no Eocene HP metamorphism is known from

that area. In the Cycladic Blueschist Unit, however, which

is derived from the more south-westerly located Pindos-

Cyclades Ocean, eclogite-facies metamorphism is also

Eocene in age (U–Pb zircon and Lu–Hf garnet ages from

50 to 52 Ma; Tomaschek et al. 2003; Lagos et al. 2007).

From stratigraphic evidence, ophiolites from the Pindos-

Cyclades ocean were emplaced towards south-west onto

continental crust of the Apulian continent during the

Middle to Late Eocene (Papanikolaou 2009). The

emplacement of the Middle on the Lower Allochthon of the

Rhodopes is also of Middle to Late Eocene age, as it

postdates ca. 43 Ma old eclogite-facies metamorphism in

the Middle Allochthon (this study, Nagel et al. 2011), and

predates granitoid intrusions at 32 Ma (Jahn-Awe et al.

2010). Therefore, we suggest that the base of the Middle

Allochthon in the Rhodopes represents the continuation of

the Pindos-Cyclades suture towards deeper levels. In con-

sequence, the underlying Lower Allochthon is correlated

with the continental crust of Apulia (External Hellenide

carbonate platform), as suggested by Dinter (1998), Krohe

and Mposkos (2002), Jahn-Awe et al. (2010), and as

illustrated in a palaeotectonic sketch map in Fig. 9b. The

Rhodopes are therefore interpreted as a large-scale tectonic

window, exposing in its core the deepest nappe units of the

Hellenides (see also Mposkos and Krohe 2000). The

sutures of both the Vardar and Pindos-Cyclades oceans are

rooted along the northern border of the Rhodopes, north of

the metamorphic domes (Arda).

Significance of the Early Cretaceous age from the Upper

Allochthon

The new 126.0 ± 0.7 Ma age for the eclogite from the

Upper Allochthon is similar to published ages from the

Kimi Complex (119.0 ± 3.5 Ma, Sm–Nd age for a garnet-

pyroxenite; Wawrzenitz and Mposkos 1997; and

117.4 ± 1.9, U–Pb zircon SHRIMP age for a garnet-rich

mafic rock; Liati et al. 2002) and indicates that the Upper

Allochthon in the Eastern Rhodopes was subducted during

the Early Cretaceous. We assume that the Upper Alloch-

thon represents the continental margin of Europe (Moesia),

which collided with a Jurassic arc formed above a south-

west-dipping subduction zone that consumed the Meliata

Ocean (Bonev and Stampfli 2008; Jahn-Awe et al. 2010;

see Fig. 9a). During and after this collision, the European

margin entered the subduction zone and was affected by

eclogite-facies metamorphism. Between the Lower Creta-

ceous and the Eocene HP metamorphism, a subduction

polarity switch occurred and the kinematic framework

changed fundamentally.

Conclusions

New combined petrological and geochronological data for

metamorphic rocks from the Bulgarian section of the

Rhodopes can place new constrains on the tectonic evo-

lution of the Eastern Mediterranean region. Lu–Hf garnet

geochronological results for four eclogites from the Middle

and Upper Allochthon reveal two high-pressure metamor-

phic events: (1) in the Lower Cretaceous (126 Ma) for the

Upper Allochthon and (2) in the Eocene (45–42 Ma) for

the Middle Allochthon. Geothermobarometry can place the

peak metamorphic conditions in the Middle Allochthon at

c. 700�C/20–25 kbar. Major and trace element analyses of

the whole rocks point to an island-arc origin of the samples

from the Middle Allochthon and clearly exclude OIB-like

protoliths. Our data furthermore support previous findings

that the Rhodopes represent a large-scale tectonic window,

emphasizing a key role of the Rhodopes to understand the

tectonic evolution of the Hellenides.
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