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Abstract
Airway nerves regulate vital airway functions including bronchoconstriction, cough, and control of respiration. Dysregulation 
of airway nerves underlies the development and manifestations of airway diseases such as chronic cough, where sensitization 
of neural pathways leads to excessive cough triggering. Nerves are heterogeneous in both expression and function. Recent 
advances in confocal imaging and in targeted genetic manipulation of airway nerves have expanded our ability to visualize 
neural organization, study neuro-immune interactions, and selectively modulate nerve activation. As a result, we have an 
unprecedented ability to quantitatively assess neural remodeling and its role in the development of airway disease. This 
review highlights our existing understanding of neural heterogeneity and how advances in methodology have illuminated 
airway nerve morphology and function in health and disease.
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Introduction

Airway nerves serve critical functions in the upper and lower 
respiratory tract including regulation of breathing and con-
trol of bronchoconstriction and cough. Both afferent and 
efferent fibers contribute to these functions and represent 
numerous neuronal subsets, each contributing discrete input 
to the regulation of airway functions. Numerous methods 
for classifying airway nerve subtypes have been proposed 
based on neuronal structure, expression, or function, yet 
no single classification scheme fully encapsulates airway 
neuronal diversity. Single-cell RNA sequencing techniques 
have highlighted this diversity by identifying  at least 18 
unique transcriptomic subtypes of sensory nerves alone [1]. 
Nerve subtypes frequently exhibit overlapping expression 
of receptors, neurotransmitters, and neuropeptides, further 
underscoring the challenge of creating a unifying classifica-
tion scheme [2]. However, recent technological innovations 

in confocal microscopy and advances in genetic manipu-
lation have provided new opportunities for studying nerve 
structure, expression, and function for both common and 
rare neuronal subtypes in the lungs. Here, we describe recent 
insights derived from studies using novel methods, with a 
focus on airway neural organization in healthy lungs and 
the role of neural remodeling in the pathogenesis of chronic 
cough.

Neurologic Origins of Chronic Cough

Cough is a protective response that clears pathogens and 
mucus from airways and is regulated by airway sensory 
nerves [3]. To produce an effective cough, sensory input 
must be integrated in the brainstem to evoke responses in 
skeletal nerves and efferent airway nerves produce a deep 
inspiration followed by forced exhalation against a closed 
glottis [4]. The necessity of effective coughing to lung health 
is underscored by the increased frequency of pneumonia in 
conditions where cough is impaired [5].

Unlike protective cough, chronic cough represents a path-
ologic state that no longer serves a physiologic role. Chronic 
cough is a central feature that develops in a myriad of lung 
diseases [3]. That chronic cough is shared by diseases with 
disparate pathologies, such as asthma (an inflammatory air-
way disease) and idiopathic pulmonary fibrosis (an alveolar 
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fibrosing disease), highlights the significant role that dys-
regulated airway nerves play in the clinical manifestations of 
lung disease. Patients with chronic cough frequently report 
an urge to cough coupled with an irritation or “itch” sensa-
tion in the throat and a heightened sensitivity to environmen-
tal triggers such as cold air or perfumes. These symptoms, 
which have been termed “cough hypersensitivity,” develop 
due to sensitization of neuronal pathways that govern cough 
and contribute to excessive cough triggering [6].

Cough challenge studies suggest that neuronal sensi-
tization is a heterogeneous process that results in distinct 
neurophenotypes, as reflected by differing cough responses 
to inhaled stimuli between airway diseases [7]. For exam-
ple, cough sensitivity to inhaled capsaicin (an agonist of 
neuronal transient receptor potential (TRP) V1 was similar 
between patients with chronic obstructive pulmonary disease 
and chronic idiopathic cough, while sensitivity to inhaled 
prostaglandin E2 was significantly different. These unique 
cough neurophenotypes are predicted to result from differ-
ent mediators and mechanisms driving development of each  
disease.

Organization of Airway Innervation 
in Healthy Lungs

Sensory Afferent Innervation of the Larynx 
and Lower Airway

Sensory innervation of the lower airways, extending from 
the larynx proximally to the distal terminal bronchioles, 
is provided primarily by fibers contained with the vagus 
nerves, with minor contributions provided by sensory neu-
rons from the thoracic dorsal root ganglia [2, 8, 9]. Vagal 
sensory nerve cell bodies are contained within the jugular 
(superior) and the nodose (inferior) ganglia, collectively 
termed the vagal ganglia, located at the base of the skull 
[10]. These ganglia have distinct embryological origins and 
targets. Jugular nerves are derived from neural crest cells and 
primarily innervate  the trachea and large airways, whereas 
nodose nerves are derived from epibranchial placodes and 
provide innervation to distal airways and lungs [11]. Sensory 
axons terminate within all major compartments of the air-
ways including the epithelium, subepithelium, and smooth 
muscle, while also providing discrete innervation to airway 
mucus glands, autonomic ganglia, alveolar capillary beds, 
and other airway structures [12–14].

Sensory nerves can be broadly classified as mechano-
receptors or chemoreceptors based on their responsiveness 
to mechanical or chemical stimuli. Mechanoreceptors are 
typically larger myelinated fibers that are highly sensitive 
to touch, whereas chemoreceptors (also termed nocicep-
tors or C fibers) are typically small-diameter, unmyelinated 

fibers that express a wide array of receptors and ion channels 
capable of detecting inhaled and endogenous noxious com-
pounds, and changes in pH, temperature, and osmolarity [10, 
15–18]. Receptors with specific relevance to cough (both to 
cough triggering and in the pathogenesis and potential treat-
ment of chronic cough) include P2X3 purinergic receptors, 
voltage-gated sodium channels (NaV), bradykinin recep-
tors, and TRP channels (discussed  below) [19, 20]. Mecha-
noreceptors can be further subclassified as slowly adapting 
and rapidly adapting based on their speed of adaptation to 
sustained stimuli and their ability to modulate respiratory 
patterns and cough responses. Sensory nerve input is trans-
mitted to the paratrigeminal nucleus (jugular) and nucleus 
of the solitary tract (nodose) within the brainstem [21–23]. 
Input from both mechanoreceptors and nociceptors can trig-
ger cough, during which the respiratory pattern generator of 
the brainstem switches from a rhythmic breathing pattern to 
a cough pattern. Sensory input is also transmitted to effer-
ent airway nerves to induce reflex bronchoconstriction and 
to higher-order cortical neurons where conscious percep-
tion of cough and cough suppression centers may modulate 
coughing.

Efferent Innervation of the Lower Airways

The primary efferent innervation of the airways is provided 
by cholinergic parasympathetic nerves, which provide the 
dominant control of bronchoconstriction [24]. Pregangli-
onic parasympathetic neurons originate in the dorsal motor 
nucleus and nucleus ambiguus in the brainstem, travel 
within the vagus nerves (alongside sensory afferents), and 
synapse on postganglionic nerves contained in airway gan-
glia seated in the walls of the trachea and extrapulmonary 
bronchi [25–28]. Post-ganglionic processes branch exten-
sively throughout the tracheobronchial tree to terminate on 
submucosal glands [12, 29], blood vessels [13], and most 
prominently, airway smooth muscle [30], where they release 
acetylcholine to induce smooth muscle contraction via M3 
muscarinic receptor activation. Acetylcholine also binds 
prejunctional M2 muscarinic receptors, which provides 
an inhibitory feedback mechanism limiting further ace-
tylcholine release [31–36]. Parasympathetic acetylcholine 
release is triggered by input from the cortex and by direct 
stimulation from sensory nerves in the brainstem [14, 37]. 
Bronchoconstriction resulting from sensory nerve-mediated 
parasympathetic nerve activation is termed “reflex broncho-
constriction.” Reflex bronchoconstriction has been demon-
strated in both humans and animals, and in response to a 
variety of sensory nerve stimuli including histamine [37], 
methacholine [38], allergen [39], cold air [40], and exercise 
[41].

In addition to parasympathetic nerves, sympathetic and 
non-adrenergic non-cholinergic nerves provide additional 
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efferent innervation of the lower airways [42]. In humans, 
sympathetic fibers principally innervate airway vasculature, 
with essentially no direct input to airway smooth muscle (in 
contrast to the sympathetic innervation of smooth muscle 
in mice) [43]. In contrast, non-adrenergic non-cholinergic 
(NANC) nerves induce airway smooth muscle relaxation 
through release of nitric oxide (NO) and vaso-intestinal 
peptide (VIP) [44–47].

Advanced Methods for Studying Airway 
Innervation

Confocal Microscopy Illuminates 3‑Dimensional 
Complexity of Sensory Innervation

Airway sensory nerves form complex, 3-dimensional 
structures that can span hundreds of histologic tissue sec-
tions. This complexity has made studying the morphology 
of airway nerves in individual tissue sections challenging. 
Heterogenous expression of receptors and neuropeptides 
by airway sensory nerves has further complicated quan-
titative assessments of nerve morphology [48]. However, 
advances in confocal imaging and immunohistochemistry 
have bridged this technological gap by capturing high-res-
olution, 3-dimensional image Z-stacks of airway structures 
using whole-mount tissues that do not require tissue section-
ing. When paired with tissue optical clearing, where airway 
specimens or whole lungs are rendered transparent by an 
optical clearing reagent, image Z-stacks can extend through 
entire organs, limited only by the optical constraints of the 
confocal objectives (Fig. 1a, b) [49, 50].

Confocal techniques have illuminated a remarkable 
degree of three-dimensional neural complexity in both 
human airways [51–53] and animal models, including rat 
[54], pig [55], rabbit [56], guinea pig [57], and mouse [49, 
50]. Nerves are interposed within and around virtually all 
airway structures and in all tissue layers (e.g., epithelium, 
subepithelium, smooth muscle, etc.) [58]. Epithelial sen-
sory nerves, for example, extend from subepithelial roots 
to form a lattice of branching nerve terminals among air-
way epithelial cells in close juxtaposition to airways, where 
they detect impacting particles and noxious compounds 
(Fig. 1c, d). Sensory nerve density (i.e., total nerve length) 
and complexity (i.e., nerve branching) vary by airway loca-
tion and are tissue-compartment specific, with both density 
and complexity decreasing from proximal trachea to bron-
chi, and from the dorsal to ventral aspect of the airway [49, 
50]. Epithelial nerve complexity is also greatest at airway 
branch points, where inhaled particles are most likely to 
impact, and surrounding airway parasympathetic ganglia 
embedded within the airway wall (Fig. 1e, f) and among 
specialized cells embedded within the epithelial layer termed 

neuroepithelial bodies (NEBs) [59]. Collectively, NEBs and 
the nerve axons surrounding them are termed pulmonary 
neuroendocrine cells (PNECs), and are composed of multi-
ple TRPV1 and substance P-expressing nociceptive C fib-
ers, and cholinergic neurons [60], suggesting that these cells 
functionally serve mechanosensory, chemosensory, and cho-
linergic roles. PNECs are sparsely and randomly distributed 
throughout human airways [61].

Fluorescence Labeling Highlights Axonal 
Organization

As nerve axons travel deeper into tissues (i.e., from epithe-
lium to subepithelium and smooth muscle), they frequently 
join larger nerve bundles consisting of a mix of sensory and 
efferent fibers. Techniques have been developed to trace 
nerve axons to their termination, including the application of 
lipophilic dyes (e.g., carbocyanine dye DiI) [62], horseradish 
peroxidase [63], and wheat germ agglutin [64]; methods that 
involve uptake and transport of tracers along axons to enable 
visualization of nerve course and synaptic organization. Su 
et al. recently combined retrograde tracing methods, immu-
nohistochemistry, and confocal imaging to show that cen-
tral projections of TRPV1 and substance P-positive neurons 
within vagal ganglia have both shared and distinct synaptic 
targets in airways, including within airway smooth muscles, 
along lymphatic, and surrounding alveoli [65]. Confocal 
immunostaining has also demonstrated patterns of overlap-
ping expression patterns on sensory neurons. For example, 
on nociceptors, the most commonly expressed receptors and 
peptides included Trpv1 (78%), Piezo1 (74%), Piezo2 (69%), 
and substance P (57%), followed by Calb1 (45%), Trpa1 
(48%), and VIP (24%) . Receptors and peptides frequently 
colocalize (i.e., dual TRPV1 + and substance P + sensory 
neurons), with each unique combination of co-expression 
representing a small portion of total nerves overall [57, 66].

Neuronal organization and expression have been defined 
using Cre-lox-based genetic reporter mice coupled with 
fluorescent proteins. Using Pirt+, 5HT3+, substance P+, 
and TRPV1 + reporters, this method demonstrated relative 
contributions of each neuronal subtype to the innervation 
of airway targets [67]. Piezo2 reporters have also been used 
to elucidate their functional roles in detecting pulmonary 
stretch [68].

Multi-color nerve labeling is an alternative method for 
axonal tracing. Unlike retrograde tracers or Cre reporter 
mice, which label nerves originating from a common site 
(i.e., airway lumen) or expressing a specific promoter with 
a single color, multi-color nerve labeling provides a distinct 
fluorescent color for each nerve process, enabling distinc-
tion of individual axons in close proximity and tracing of 
individual nerves to their target of innervation [69]. Multi-
color labeling has been used to study neurons in the brain 
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(e.g., Brainbow mice [70]), where fluorophore expression 
was driven by the Thy1 promoter. Peripheral nerves had not 
been studieds in this manner due to the absence of Thy1 

promoter expression by peripheral neurons. We used a modi-
fied technique involving simultaneous injection of three neu-
rotrophic adeno-associated virus (AAV) vectors tagged with 

Fig. 1   Tissue optical clearing 
and high-resolution confocal 
microscopy enable quantita-
tive modeling of airway nerve 
morphology. a Mouse trachea 
immunostained and cleared 
using an optical clearing reagent 
to render tissue transparent. b 
Immunolabeling of transpar-
ent airway tissues followed 
by confocal imaging provides 
detailed visualization of airway 
nerves. Orange: pan-neuronal 
marker AbPGP9.5; Green: 
channelrhodopsin-CH2; Blue: 
nuclear stain DAPI. Scale bar: 
500 µm. c Epithelial sensory 
nerves in a human bronchiole 
immunostained for PGP9.5 
(green), NFHC (magenta), and 
neuropeptide substance P (red). 
Scale bar: 10 µm d 3D nerve 
model based on PGP9.5-pos-
itive voxels in C using Imaris 
software; Scale bar: 20 µm. 
e Parasympathetic ganglion 
in optogenetic mouse trachea 
immunostained for PGP9.5 (yel-
low), channelrhodopsin-CH2 
(turquoise) and neuropeptide 
substance P (magenta). Scale 
bar: 20 µm. f Parasympathetic 
ganglion in human lung immu-
nostained for PGP9.5 (green), 
substance P (red), and TRPV1 
(magenta). Scale bar: 30 µm. 
PGP9.5 protein gene product 
9.5, CH2 channelrhodopsin-2 
expressed on parasympathetic 
ganglia, TRPV1 transient recep-
tor potential vanilloid subtype 
1, NFHC neurofilament heavy 
chain
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a distinct fluorophore to produce a spectrum of colors in 
airway neurons [69]. Random viral transduction within each 
neuron produces different ratios of fluorophore expression  
to enable distinction and tracing of individual nerve axons. 
When paired with conventional immunohistochemistry, the 
morphology of specific nerves, such substance P, neuronal 
NOS-, and TH-expressing neurons, can be traced to their 
termination.

Confocal Studies of Axonal Development During 
Embryogenesis

During embryogenesis, airway neuronal outgrowth is closely 
associated with airway elongation and airway smooth mus-
cle proliferation [71]. These primitive airway tubules are 
coated by a dense neural plexus overlying smooth muscle, 
which by the canicular phase, forms two distinct bronchial 
trunks giving rise to varicosed fibers and discrete airway 
ganglia [72]. Similar patterns of neuronal elongation and 
branching have been demonstrated in the pig, rabbit, and 
mouse fetal lung, where neural tissue is a dominant feature 
of the developing lung [61, 72–74].

Vagal sensory input supplies an abundance of fibers to 
cholinergic airway ganglia precursors as well. These gan-
glia, which originate from neuroblasts along the wall of the 
epithelial tubules during the pseudoglandular stage, coalesce 
and become increasingly enveloped by glial fibrillary acid-
positive sheaths. Ganglionic neurons transition to a cholin-
ergic phenotype from the canalicular stage onward, further 
increasing in size during the saccular phase and during early 
post-natal development [73].

Transgenic Models for Testing Airway Nerve 
Function

Testing the function of activated airway nerves has histori-
cally required electrical stimulation, either via electrodes 
attached to nerve bundles in vivo (e.g.,  the vagus nerve 
trunks) or by applying electrical currents across isolated 
airway segments ex vivo [75], or through the application of 
pharmacologic agonists. While these techniques contributed 
significantly to our understanding of neural control of airway 
function, their readouts were limited by a lack of selectivity 
for neuronal subtypes. Recent applications of transgenic and 
Cre-recombinase-based methods, such as optogenetics and 
in vivo calcium fluorescence, have significantly advanced 
our ability to manipulate and measure the function of neu-
ronal subtypes.

Optogenetics involves genetic insertion of photosensi-
tive ion channels into specific neuronal subpopulations, 
enabling targeted nerve activation or inhibition using  light 
[76]. While discovery of opsin-based channels is now over 
20 years ago, genetic insertion techniques and channel 

options continue to expand, providing increasingly selective 
control of nerve function. Our lab has applied this approach 
to provoke or inhibit nerve-mediated bronchoconstriction 
in  vivo by inserting nerve-activating channelrhodopsin 
and nerve-inhibiting halorhodopsin channels into effer-
ent choline-acetyltransferase-expressing cholinergic para-
sympathetic nerves and into advillin- and tac1-expressing 
sensory nerves [77, 78]. Similarly, optogenetic activation 
of TRPV1- and S1PR3-positive sensory nerves stimulated 
bronchoconstriction in allergen-sensitized mice  [79]. Acti-
vation of P2RY1-expressing sensory neurons triggered a 
series of reflexes designed to prevent aspiration, including 
pharyngeal swallowing, apnea, and vocal fold adduction 
[80, 81], while Piezo2-expressing sensory neurons, which 
often also co-express P2RY1, produced sustained apnea 
upon optogenetic light stimulation without pharyngeal and 
vocal cord reflexes, suggesting that Piezo2 neurons provide 
mechanosensory feedback of lung stretch during physiologic 
respiration [68].

Cre-lox recombination has also been used to insert cal-
cium-sensitive fluorophores into neurons to study nerve 
activation in vivo at a single-cell resolutionwith two-photon 
microscopy  [82]. In this study, Pirt-cre mice in which cre 
recombinase is expressed in all vagal neurons were crossed 
with R26‐GCaMP6s to create a strain that expresses a 
calcium-sensitive fluorophore in vagal sensory neurons.  
The effects of the lipid agonist sphingosine‐1‐phosphate 
(S1P), which is elevated in asthma, were then tested in vivo. 
Approximately 80% of vagal sensory neurons responded 
to SP1 via S1PR3 receptors, suggesting that elevated S1P 
levels in inflammatory conditions like asthma contribute to 
increased neuronal activation in diseased lungs.

Neuronal Remodeling and Neuro‑immune 
Interactions—Implications for Chronic 
Cough Pathogenesis

Neural Sensitization Contributes to Excessive Cough

Several mechanisms have been identified, which may con-
tribute to neuronal sensitization in chronic cough, includ-
ing increased nociceptor sensitivity, de novo expression of 
nociceptors and neuropeptides by sensory neurons, increased 
airway epithelial nerve density, and increased release of 
endogenous cough-triggering molecules in airways [83]. 
While most of these mechanisms are derived from animal 
models, we recently demonstrated in bronchoscopic human 
airway samples using tissue optical clearing and confocal 
microscopy that airway epithelial sensory nerve density is 
doubled in patients with chronic cough compared to healthy 
airways [53]. In some samples, sensory neuropeptide sub-
stance P was also increased although not uniformly in the 



504	 Lung (2023) 201:499–509

1 3

chronic cough cohort, in line with cough challenge studies 
suggesting that heterogeneous neuronal remodeling events 
may underlie the development of clinical symptoms [7].

Substance P augments cough responses by lowering 
neuronal activation thresholds [84, 85]. However, its role in 
chronic cough has been in doubt since an initial clinical trial 
of a substance P receptor (neurokinin 1 and 2) antagonist 
failed to reduce cough frequency [86]. Since that study, a 
second family of substance P receptors (mas-related g-pro-
tein coupled receptors, Mrgprs) has been discovered, which 
has been linked to the generation of itch; a sensory nerve-
mediated process in skin with many similarities to cough 
[87]. This pathway, coupled with the identification of dis-
tinct cough neurophenotypes and our finding that substance 
P is increased in human airways, suggest that neurokinins 
require a fresh examination as a therapeutic target. Indeed, 
two recent studies of the NK-1 receptor antagonist, aprepi-
tant, reported a decrease in cough frequency compared to 
placebo in patients with lung cancer  and chronic cough 
[88, 89]. A second NK-1 receptor antagonist is also under 
clinical investigation [90]. Whether this approach will be 
broadly applicable across diseases or more targeted for spe-
cific populations awaits further study.

Several sensory receptors have also been implicated in 
chronic cough generation. Foremost are P2X3 purinorecep-
tors, which are expressed by approximately 1/3 of nodose 
sensory neurons [91, 92] and are activated by ATP, an 
endogenous mediator released during times of cell stress. 
In diseased lungs, cough responses to inhaled ATP are 
increased [93–95]. Moreover, P2X3 antagonists in phase 
2 and 3 trials have demonstrated reductions in cough fre-
quency [96–102]. If approved for clinical use, P2X3 recep-
tor antagonists would represent the first-targeted therapy 
approved for chronic cough.

How P2X3 signaling is modulated in disease is an area 
of active interest. Increased extracellular ATP has been 
reported in asthma and chronic obstructive pulmonary dis-
ease, which may contribute to P2X3-mediated cough [103, 
104]. However, this finding would not explain the increased 
sensitivity to inhaled ATP in chronic cough [95]. Rather, we 
hypothesized that neuronal P2X3 expression is increased 
by airway inflammation. To test this postulate, we quanti-
fied airway neuronal P2X3 expression in a mouse model of 
eosinophilic asthma (a disease frequently associated with 
chronic cough). In these mice, neuronal P2X3 expression 
was significantly increased compared control animals, sug-
gesting modulation of P2X3 expression may underlie devel-
opment of ATP sensitivity in some cases [105]. Modulation 
of endogenous ATP release may also occur, either through 
alterations in the number or function of ATP-releasing 
Pannexin-1 channels on structural and inflammatory cells 
directly, or indirectly via modulation of pathways that regu-
late Pannexin-1 function, as suggested by Bonvini et al. who 

reported that TRPV4 agonist stimulated Pannexin-1 ATP 
release to evoke cough [106].

TRP channels, including TRPV4 as well as TRPV1, 
TRPA1, and others, are a family of transmembrane pro-
teins that detect a wide array of cough-provoking irritants 
[107–111]. Cough studies in guinea pigs have revealed a 
positive correlation between cough frequency and TRPA1 
and TRPV1 expression [112], and increased TRPV1 chan-
nel expression has been demonstrated in airways of humans 
with chronic cough [113, 114]. In patients with asthma and 
in those with chronic obstructive pulmonary disease  (both 
conditions associated with chronic cough), TRPV1 expres-
sion and cough responses to TRPV1 agonists are increased 
[7]. In animal models, mechanoreceptors express TRPV1 de 
novo after allergen exposure and virus infection [115–117], 
possibly due to induction of the neurotrophin brain-derived 
neurotrophic factor (BDNF) [115].

Despite a clear role for TRP channels in triggering 
cough and TRP channel antagonists’ efficacy in blocking 
evoked cough responses, multiple TRP antagonists have 
failed to reduce cough frequency in chronic cough clinical 
trials [118–120]. This apparent discrepancy highlights the 
challenge in developing anti-tussives that block pathologic 
cough while preserving protective cough.

Neuro‑immune Interactions Result in Dysregulated 
Airway Function

Chronic cough is a common feature in over 100 distinct 
diseases, many of which are characterized by the influx of 
inflammatory cells into airways. As an example, asthma is 
an inflammatory airway disease characterized by excessive 
bronchoconstriction and in many cases, chronic cough, with 
increased sensitivity to inhaled irritants [121]. In asthma, air-
way eosinophils, which are abundant in a majority of patients, 
migrate to nerves due to neuronal release of the eosinophil 
chemoattractant eotaxin [122–124]. Eosinophil’s interactions 
with nerves have profound effects on both afferent and efferent 
pathways.  Airway eosinophils  were associated with increased 
epithelial sensory nerve density in bronchoscopic airway 
samples from humans with asthma and were demonstrated to 
mediate sensory hyperinnervation in mice (quantified using 
confocal microscopy) [52]. In mice, increased sensory nerve 
density develops after chronic allergen-induced eosinophilia 
(i.e., house dust mite allergen exposure for 8 weeks) and  in 
offspring exposed to maternal asthma in utero, suggesting 
hyperinnervation  develops due to prenatal programming, 
predisposing an individual to lung disease later in life [125, 
126]. These morphologic changes in airway nerves, which are 
akin to those seen in idiopathic chronic cough patients [53], 
increase bronchoconstriction evoked by sensory nerve activa-
tion and were associated with increased sensitivity to envi-
ronmental irritants [52]. Eosinophils also exacerbate efferent 
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parasympathetic nerve control of bronchoconstriction [122, 
127, 128]. Thus, both bronchoconstriction and cough, which 
are cardinal signs of asthma, result from inflammatory cell 
effects on each limb of airway innervation.

Eosinophil proximity to nerves is critical to the develop-
ment of nerve dysfunction. To study the effects of eosinophil 
proximity on nerve structure and function, we paired in vivo 
measurements of bronchoconstriction using optogenetic 
mice with confocal imaging to quantify spatial interactions 
between leukocytes and their effects on neuronal subtypes. We 
demonstrated that the density of tissue eosinophils is signifi-
cantly increased around airway nerves, which correlates with 
increased neuronally-mediated bronchoconstriction [77, 78]. 
The combined effects of eosinophil interactions with nerves, 
coupled with pre-existing airway hyperinnervation, were pro-
found, resulting in fatal bronchoconstriction in a mouse model 
of asthma [125]. Thus, structural remodeling coupled with 
physical interactions with eosinophils severely dysregulates 
neural control of airway tone.

Conclusions

Airway nerves are heterogeneous, with overlapping patterns 
for receptors and protein expression that define their functional 
role in regulating cough, bronchoconstriction, respiration, and 
other functions. Neuronal remodeling underlies the develop-
ment of airway disorders, including most prominently, chronic 
cough. Advances in confocal imaging and genetic methods 
have expanded our understanding of the function and morphol-
ogy of neuronal subtypes, while enabling quantitative analy-
ses of neuronal remodeling and neuro-immune interactions. 
These results offer new insights into mechanisms of disease 
pathogenesis and potential treatment targets, for which targeted 
therapies in chronic cough are urgently needed.
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