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Abstract
Background Chronic obstructive pulmonary disease (COPD) is a chronic respiratory disorder characterized by chronic 
inflammation and airway remodeling. Cigarette smoke (CS) and respiratory viruses are major causes of COPD development 
and exacerbation, but the mechanisms of these compounding factors on inflammation and pathological changes in airway 
structure still need further investigation.
Purpose This work aimed to investigate the effects and mechanisms of Poly I:C on pathological changes in CS-induced 
COPD mice, such as airway inflammation and remodeling.
Methods From 1 to 8 weeks, the mice were exposed to CS, Poly I:C, or a combination of both. To compare the pathological 
changes among different groups over time, the mice were sacrificed at week 4, 8, 16, and 24, then the lungs were harvested 
to measure pulmonary pathology, inflammatory cytokines, and airway remodeling.
Results Our data revealed that the fundamental characteristics of COPD, such as pulmonary pathological damage, the release 
of inflammatory mediators, and the remodeling of airway walls, were observed at week 8 in CS-exposed mice and these 
pathological changes persisted to week 16. Compared with the CS group, the pathological changes, including decreased 
lung function, inflammatory cell infiltration, alveolar destruction, and airway wall thickening, were weaker in the Poly I:C 
group. These pathological changes were observed at week 8 and persisted to week 16 in Poly I:C-induced mice. Furthermore, 
Poly I:C exacerbated lung tissue damage in CS-induced COPD mice. The decreased lung function, airway inflammation 
and remodeling were observed in the combined group at week 4, and these pathological changes persisted to week 24. Our 
research indicated that Poly I:C enhanced the expression of p-P38, p-JNK and p-NF-κB in CS-exposed mice.
Conclusion Poly I:C could promote airway inflammation and remodeling in CS-induced COPD mice probably by NF-κB 
and MAPK signaling.
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Introduction

Chronic obstructive pulmonary disease (COPD) is a fre-
quent and complex respiratory disease that incurs a sub-
stantial economic and social burden worldwide. It is usually 
characterized by irreversible airflow limitation and persistent 
inflammation [1]. The mortality of COPD is increasing, and 
approximately 2.9 million individuals died from COPD in 
2016 [2]. Thus, there is a critical need to understand the 
mechanisms of COPD and to identify novel molecular thera-
peutic targets.

Animal models are valuable tools in the investigation of 
pathological processes and related molecular mechanisms 
of COPD. Cigarette smoke (CS) is recognized as the most 
common risk factor for the onset and progression of COPD 
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[3, 4]. Previous studies have shown that CS can increase 
peroxides in the airway, which leads to cell damage, causing 
the aggregation of immune cells and the release of inflam-
matory mediators [5, 6]. Chronic inflammation can cause 
goblet cell hyperplasia and squamous metaplasia in the air-
way epithelium, eventually resulting in airway remolding. 
Pathogen infection, including Streptococcus pneumoniae, 
Klebsiella pneumoniae and respiratory syncytial virus, is 
the major reason for the ongoing progression and deteriora-
tion of COPD [7–9]. The respiratory viruses associated with 
COPD onset and deterioration include the respiratory syncy-
tial virus, adenovirus, human rhinovirus, etc. [10–12]. Dou-
ble-stranded RNA (dsRNA), the replication intermediates of 
the virus, can promote the production of pro-inflammatory 
cytokines, which ultimately results in COPD [13, 14]. The 
dsRNA analog Poly I:C has minimal toxicity and was used 
extensively to mimic virus infection [15]. Tracheal instilla-
tion of Poly I:C enhanced airway inflammation and remod-
eling in asthma rats [16]. However, the effect and mechanism 
of Poly I:C in CS-exposed mice are still unknown.

In this study, we established three mouse models by CS 
exposure, Poly I:C nasal instillation, or a combination of 
both. Next, we compared the dynamic pathological evolution 
of three mouse models, including airway inflammation, 
pulmonary function, lung pathology, and airway remodeling. 
Furthermore, we explored the mechanisms of Poly I:C on 
airway inflammation and remodeling in CS-exposed mice.

Materials and Methods

Chemicals and Animals

Ninety six mice (weight: 20 ± 2  g, certificate No. 
110011200106861568) were obtained from the Beijing 
Weitong Lihua Animal Center. This study was approved 
by the Ethics Committee of Laboratory Animal Welfare of 
Henan University of Chinese Medicine (DWLL202003210).

The Mouse IL-6 ELISA Set (555,240) was purchased 
from BD Bioscience (New Jersey, USA). Antibodies for 
P38 MAPK (8690), Phospho-P38 MAPK (4511), SAPK/
JNK (9252), Phospho-SAPK/JNK (4668S), Phospho-NF-
κBSer536 (3033S), and NF-κB (8242S) were obtained from 
Cell Signaling Technology Co., Ltd. (Boston, USA).

Animal Models

From the 1st to 8th week, the CS group mice were exposed 
to CS (40 min each time, twice a day); the Poly I:C group 
mice were treated with intranasal instillation of Poly I:C 
(25 μg/20 μL, once every 7 days for 8 weeks); the combined 
group mice were treated with intranasal instillation of Poly 
I:C and CS exposure. To observe the long-term effects, 

we observed the pathological changes of mice to week 24, 
and the mice were sacrificed at the 4th, 8th, 16th, and 24th 
weeks, respectively.

Pulmonary Function Analysis

We used unrestrained pulmonary function plethysmography 
to measure the peak expiratory flow (PEF) and enhanced 
pause (Penh) at week 0, 4, 8, 12, 16, 20, and 24 weeks, 
respectively [17].

Pulmonary Histopathology

We used HE and Masson staining to evaluate the lung tissue 
damage.

ELISA

The levels of IL-1β, IL-6, and MMP-2 in the lung tissue 
were measured by the mouse ELISA kit.

Immunohistochemistry

Col lagen  I  and  I I I  were  assessed  th rough 
immunohistochemical staining. The captured images were 
digitalized by calculating the integrated optical density 
(IOD) with Image-Pro Plus 6.0 software.

Immunofluorescence Staining

The tissue slices were blocked with 3% BSA for 30 min. 
Then anti-rabbit antibodies against TGF-β1 and α-SMA 
(1:100, proteintech) were added at 4 °C overnight. Moreover, 
the tissue slices were treated with fluorescein-conjugated 
secondary antibody (1:1000, proteintech) in a dark place 
for 1 h. Finally, the laser confocal microscope was used for 
detection (LSM700, Carl Zeiss, Germany).

Western Blot

First, we use the BCA method for protein quantification. 
Second, the levels of p-P38, p-JNK, and p-NF-κB were 
assessed through Western blot. Anti‐rabbit antibodies 
against p-P38, p-JNK, and p-NF-κB (CST, 1:1000) were 
added at 4 °C overnight. On the next day, the blots were 
incubated with the secondary antibody (1:5000, proteintech) 
at RT for 1 h.

Statistical Analysis

Data were analyzed by SPSS 23.0. One-way ANOVA 
was used for statistical analysis. Data were presented as 
mean ± SEM. n = 6, *P < 0.05, **P < 0.01 vs. control group; 
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#P < 0.05, ##P < 0.01 vs. CS group; ∆P < 0.05, ∆∆P < 0.01 vs. 
poly I:C group.

Result

Decreased Pulmonary Function Induced by CS 
and Poly I:C

PEF and Penh are significant indicators for reflecting air-
way obstruction in COPD [18]. PEF decreased and Penh 
increased with time in the three mouse model groups, and 
the changes were more obvious in the combined group 
(Fig. 1). In addition, these changes in pulmonary function 
were observed at week 8 in the CS and Poly I:C groups, 
whereas at week 4 in the combined group. After modeling, 
the trend persisted from week 8 to 24 only in the combined 
group.

Pathological Changes of the Lung Tissue Induced 
by CS and Poly I:C

Significant pathological changes, such as alveolar wall 
thickening, alveolar rupture and fusion, were observed in 
COPD mouse models [19]. Inflammatory cell infiltration and 
alveolar destruction were observed in the combined group at 
week 4 (Fig. 2A). From week 8 to 24, we observed massive 
inflammatory infiltration, thickened alveolar walls, alveolar 
rupture, and fusion in the lungs of mice in the three mouse 
model groups. However, the above pathological changes 
were more pronounced in the combined group than in the 
other two experimental groups. In addition, the airway wall 
thickness and area were increased in CS and CS + Poly I:C 
group from week 8 to 24 (Fig. 2B).

Poly I:C Exacerbated Inflammation and Immune 
Response in CS‑induced Mice

Chronic inflammation and immune imbalance are critical 
factors in lung tissue damage, abnormal lung function, and 
airflow limitation of COPD. After CS exposure, bacterial or 
viral infection, the numbers of neutrophils, macrophages, 
and T lymphocytes were increased, and subsequently acti-
vated inflammatory cells released multiple inflammatory 
mediators which promoted inflammatory response. The 
expression levels of IL-6 and IL-1β were significantly 
increased in the combined group from week 4 to 24, whereas 
in the CS group from week 8 to 24 and in the Poly I:C group 
from week 8 to 16 (Fig. 3A and B). Inflammatory cells are 
mainly composed of neutrophils, macrophages, and T lym-
phocytes. In this study, we found that CS exposure or viral 
infection alone caused the recruitment of immune cells, 
as demonstrated by the increased Ly6G,  CD3+CD8+, and 
decreased  CD3+CD4+ (Fig. 3C and D). NLRP3 was a major 
class of intracellular pattern recognition receptors, which 
functioned in host immune defense by mediating the produc-
tion of IL-1β [20]. CS exposure or viral infection alone also 
activated the NLRP3 inflammasome and caspase 1 (Fig. 3C). 
Here, all the changes above were more pronounced in the 
combined group. The data indicated that Poly I:C exacer-
bated inflammation and immune response in CS-induced 
mice.

Poly I:C Aggravated Airway Remodeling 
in CS‑induced Mice

Chronic inflammation in the airway can lead to mucin 
secretion, smooth muscle hyperplasia, collagen deposi-
tion, and angiogenesis that may eventually cause airway 
remodeling. The increased levels of collagen, α-SMA and 
TGF-β1 were observed in the three treatment groups from 

Fig. 1  Effects of CS and Poly 
I:C on pulmonary function in 
mice at different time points. 
A The changing trend of peak 
expiratory flow (PEF) in each 
group. B The changing trend 
of enhanced pause (Penh) in 
each group. n = 6, aP < 0.05, 
aaP < 0.01 vs. control group
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week 8, and these increases were more obvious in the 
combined group (Fig. 4A, C and D). In addition, MMPs 
play essential roles in the degradation of extracellular 
matrix proteins, such as collagen and elastin. As shown 
in Fig. 4B, the levels of MMP-2 in the lungs were upregu-
lated in the three treatment groups from week 8 to week 
24. Altogether, these increases were more marked in the 
combined group which implied that Poly I:C aggravated 
airway remodeling in CS-induced mice.

Poly I:C Might Enhance the Activation of NF‑κB 
and MAPK Signaling in CS‑induced Mice

The NF-κB and MAPK signaling has been demonstrated to be 
involved in the regulation of inflammation and airway remode-
ling [21, 22]. Virus can activate the TLR3 to upregulate NF-κB 
and MAPK signaling, which eventually results in airway 
inflammation [23, 24]. As illustrated in Fig. 5, CS exposure 
triggered the activation of NF-κB and MAPK. Compared to 
the CS or Poly I:C group, the protein levels of p-P38, p-JNK, 
and p-NF-κB were significantly increased in the combined 
group. These results indicated that Poly I:C might enhance the 
activation of NF-κB and MAPK in CS-induced mice.

Discussion

In this study, mouse models were established by CS 
exposure, Poly I:C infection, and a combination of both. 
Our results revealed that CS + Poly I:C resulted in a shorter 
time to establish an inflammatory response and observe 
lung function changes. In addition, Poly I:C exacerbated 
the inflammatory responses and airway remodeling in 
CS-induced COPD mice over time, which might be 
associated with NF-κB and MAPK signaling.

CS and virus are significant risk factors for the 
progression of COPD, which lead to protease–antiprotease 
imbalance, oxidative stress, and inflammation in the 
airways [25–27]. The immune response plays an essential 
role in the pathogenesis of COPD. Inflammatory cells, 
such as neutrophils, lymphocytes, and macrophages, 
participate in airway inflammation of COPD. Long-
term repeated inflammation stimulation induces airway 
mucus hypersecretion and smooth muscle hyperplasia, 
which ultimately lead to lung parenchyma damage and 
airway remodeling [28–30]. Previous studies used CS 
exposure for 24 weeks to establish a stable COPD model, 
which displayed clinicopathological features, such as 
decreased lung function, chronic airway inflammation, 
and alveolar damage [31]. However, from a clinical 
standpoint, the development and progression of COPD 
is a complex process. For example, the impaired 
airway epithelial function caused by CS can increase 
the chance of viral infection [32]. Mebratu et al. have 

Fig. 2  Effects of CS and Poly I:C on pulmonary pathology in mice at 
different time points. A H&E staining for lung tissue from different 
groups of mice (magnification, × 200). B The pulmonary injury was 

quantified by the airway wall thickness and airway wall area. n = 6, 
*P < 0.05 vs. control group, **P < 0.01 vs. control group; ∆P < 0.05 
vs. poly I:C group
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demonstrated that respiratory syncytial viruses enhanced 
inflammation and emphysema in CS-induced mice [13]. 
Consistent with their results, our findings suggested that 

Poly I:C augmented inflammation in CS-exposed mice. 
Furthermore, the present results showed that Poly I:C also 
enhanced CS-induced airway remodeling. In addition, 

Fig. 3  Poly I:C exacerbated inflammation and immune response 
in CS-induced mice. The expression of IL-6 (A) and IL-1β (B) in 
lung tissues from week 4 to 24. C The expression of Ly6G, NLRP3, 
and caspase 1 in lung tissues at week 8 was measured by immuno-
histochemical staining. D The expression of CD3+  CD4+  and 

CD3+  CD8+  in lung tissues at week 8 was measured by immuno-
fluorescence staining. n = 6, *P < 0.05 vs. control group, **P < 0.01 
vs. control group; #P < 0.05 vs. CS group, ##P < 0.01 vs. CS group; 
∆P < 0.05 vs. poly I:C group, ∆∆P < 0.01 vs. poly I:C group
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we continued to compare the pathological characteristics 
of mouse models for additional 16 weeks. The results 
demonstrated that airway inflammation and remodeling in 

CS + Poly I:C group were observed at week 4 and lasted 
up to week 24; whereas, these changes in CS or Poly 
I:C group were observed at week 8 and only lasted up 
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to week 16. This phenomenon indicated that smoking 
cessation and avoidance of viral infections might relieve 
the symptoms to a certain extent, but not restore the 
normal function of the lung once a certain degree of lung 
injury is reached.

One of the reasons for the existence of persistent 
changes in the combined exposure model was that 
chronic CS exposure and viral infection could cause 
the decompensation in epithelial damage and repair, 
leading to excessive proliferation of basal cells, 
shortened cilia, mucus-cell hyperplasia, and increased 
collagen deposition, which eventually contributed to 
airway remodeling and irreversible structural damage. 
Another reason was associated with disorder of the lung 
microbiome. It has been shown that the progression of 
COPD was associated with alterations in the microbiota, 
such as the increased Proteobacteria and Actinobacteria 
[33]. The immune system was a critical mediator of 
microbe-host interactions [34]. Persistent CS exposure 

and viral infection could disrupt the innate defense 
system and attenuate the ability of the host to fight 
against pathogenic microorganisms [35]. In addition, 
the changes in the microbiome could signal through a 
variety of pathogen-recognition receptors on epithelial 
and immune cells to cause inflammation. Meanwhile, 
the inflammation could induce further impairment of the 
innate defense system, allowing the bacterial microbiome 
to persist and proliferate and eventually forming vicious 
cycle [36].

Previous studies have shown that the virus can 
initiate pro-inf lammatory responses by activating 
TLR3 signaling, resulting in airway inflammation and 
hyper-responsiveness [37, 38]. The activation of TLR3 
can activate the NF-κB and MAPK, which are central 
transcriptional regulators of the airway inflammatory 
response [39, 40]. Once activated, NF-κB and MAPK 
promote the production of inflammatory mediators, which 
lead to airway smooth muscle thickening, goblet cell 
hyperplasia, and ultimately result in airway remodeling 
[41, 42]. Consistent with these results, our results 
demonstrated that Poly I:C might upregulate NF-κB 
and MAPK signaling to promote CS-induced airway 
inflammation and remodeling.

Fig. 4  Poly I:C aggravated airway remodeling in CS-induced mice. 
A Masson staining for lung tissue in different groups of mice from 
week 4 to 24 (magnification, × 200). B The levels of MMP-2 in lung 
tissues from week 4 to 24. C Immunohistochemical staining of col-
lagen I and collagen III at week 8 and 16 (magnification, × 200). The 
captured images were digitalized by calculating the integrated optical 
density (IOD). D Expressions of α-SMA and TGF-β1 were detected 
by immunofluorescence from week 4 to 24 (magnification, × 200). 
n = 6, *P < 0.05 vs. control group, **P < 0.01 vs. control group; 
#P < 0.05 vs. CS group, ##P < 0.01 vs. CS group; ∆∆P < 0.01 vs. poly 
I:C group

◂

Fig. 5  Effects of Poly I:C on NF-κB and MAPK signaling. Expres-
sions of p-NF-κB, p-P38, and p-JNK in lung tissues at week 8 were 
detected by WB. n = 3, *P < 0.05 vs. control group, **P < 0.01 

vs. control group; #P < 0.05 vs. CS group, ##P < 0.01 vs. CS group; 
∆P < 0.05 vs. poly I:C group, ∆∆P < 0.01 vs. poly I:C group
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Conclusion

Our studies indicated that Poly I:C might promote airway 
inflammation and airway remodeling in CS-exposed mice 
by NF-κB and MAPK signaling. The mice showed typical 
pathological characteristics of COPD patients in CS + Poly 
I:C group, and the pathological damage appeared to occur 
earlier and last longer.
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