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Abstract
Background  Circular RNA migration and invasion inhibitory protein (circMIIP) is reported to be upregulated in non-small 
cell lung cancer (NSCLC) tissues compared with normal tissues. However, the role and working mechanism of circMIIP in 
NSCLC progression remain largely unclear.
Methods  Cell proliferation ability was analyzed by colony formation assay, cell counting kit-8 (CCK-8) assay, and 5-ethynyl-
2′-deoxyuridine assay. Cell apoptosis was assessed by flow cytometry. Transwell assays were performed to analyze the 
migration and invasion abilities of NSCLC cells. The interaction between microRNA-766-5p (miR-766-5p) and circMIIP or 
family with sequence similarity 83A (FAM83A) was validated by dual-luciferase reporter assay and RNA immunoprecipita-
tion assay. Xenograft tumor model was established to analyze the role of circMIIP on tumor growth in vivo.
Results  CircMIIP was highly expressed in NSCLC tissues and cell lines. CircMIIP knockdown restrained the proliferation, 
migration and invasion and induced the apoptosis of NSCLC cells. CircMIIP acted as a molecular sponge for miR-766-5p, 
and circMIIP silencing-mediated anti-tumor effects were largely overturned by the knockdown of miR-766-5p in NSCLC 
cells. miR-766-5p interacted with the 3’ untranslated region (3′UTR) of FAM83A, and FAM83A overexpression largely 
reversed miR-766-5p accumulation-induced anti-tumor effects in NSCLC cells. CircMIIP competitively bound to miR-
766-5p to elevate the expression of FAM83A in NSCLC cells. CircMIIP knockdown significantly restrained xenograft 
tumor growth in vivo.
Conclusion  CircMIIP promoted cell proliferation, migration and invasion and suppressed cell apoptosis in NSCLC cells 
through mediating miR-766-5p/FAM83A axis.
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Introduction

Non-small cell lung cancer (NSCLC) accounts for 85% of all 
lung cancer cases and is one of the leading causes of cancer-
associated deaths [1, 2]. Although significant advances have 
been made in the treatment of NSCLC, including surgery, 
radiotherapy and chemotherapy, the five-year survival rate 
of NSCLC patients remains only 16% [3]. Therefore, an 
in-depth understanding of the molecular mechanisms of 
NSCLC progression is helpful for NSCLC therapy.

Circular RNAs (circRNAs) are a class of endogenous 
non-coding RNAs with covalently closed loop structure [4]. 
Accumulating evidence have demonstrated that circRNAs 
play important roles in multiple malignancies, including 
colorectal cancer [5], ovarian cancer [6], hepatocellular car-
cinoma [7], and NSCLC [8]. CircRNA migration and inva-
sion inhibitory protein (circMIIP, ID: hsa_circ_0009932) is 
derived from exon 4–10 of the MIIP gene, whose mature 
spliced sequence length is 946 nt. Circular RNA microarray 
analysis by a previous study showed that circMIIP expres-
sion is notably upregulated in NSCLC tissues compared with 
normal tissues [9]. However, the role and mechanism of circ-
MIIP in NSCLC progression remain largely undefined.

In this study, we aimed to investigate the expression and 
mechanism of circMIIP in NSCLC progression, with a view 
to finding new therapeutic targets for NSCLC.

 *	 Tao Wang 
	 dabw2xk@163.com

1	 Department of Thoracic Surgery, Affiliated Hospital 
of Guizhou Medical University, No. 28 Guiyi Street, 
Yungang District, Guiyang 550004, Guizhou, China

http://orcid.org/0000-0001-8343-9243
http://crossmark.crossref.org/dialog/?doi=10.1007/s00408-021-00500-3&domain=pdf


108	 Lung (2022) 200:107–117

1 3

Materials and Methods

Clinical Tissue Samples

Sixty-five pairs of NSCLC tumor tissues and adjacent 
normal tissues (at least 2 cm away from tumor border) 
were collected from NSCLC patients who underwent sur-
gical resection at Affiliated Hospital of Guizhou Medical 
University, and all tissues were examined by two patholo-
gists. None of the patients had received radiotherapy or 
chemotherapy before the surgery. All tissue samples were 
immediately frozen in liquid nitrogen and then stored in 
a − 80 °C refrigerator. This research was approved by the 
Ethics Committee of Affiliated hospital of Guizhou medi-
cal university. All patients had signed the written informed 
consent before the surgery.

Cell Culture and Transfection

Human NSCLC cell lines (NCI-H23 and A549) and nor-
mal human lung epithelial cell line BEAS-2B were pur-
chased from Chinese Academy of Sciences (Shanghai, 
China) and cultured with Dulbecco’s Modified Eagle 
Medium (DMEM; Invitrogen, Carlsbad, CA, USA) sup-
plemented with 10% fetal bovine serum (FBS; Solarbio, 
Shanghai, China) at 37 °C with 5% CO2.

CircMIIP overexpression plasmid in pCD5-ciR vector 
(circMIIP), pCD5-ciR empty vector (vector), small inter-
fering RNA (siRNA) targeting circMIIP (si-circMIIP#1, 
si-circMIIP#2, or si-circMIIP#3), and si-NC were pur-
chased from Invitrogen. microRNA-766-5p (miR-766-5p) 
mimics or inhibitor (miR-766-5p or anti-miR-766-5p) and 
the controls (miR-NC or anti-NC) were obtained from 
RiboBio (Guangzhou, China). Family with sequence simi-
larity 83A (FAM83A) overexpression plasmid (FAM83A) 
was constructed by cloning its complementary DNA 
(cDNA) into pcDNA3.1 vector (Invitrogen). Cell trans-
fection was conducted using lipofectamine 2000 reagent 
(Invitrogen).

Reverse Transcription‑Quantitative Polymerase 
Chain Reaction (RT‑qPCR)

RNA samples were extracted from tissues and cells with 
Trizol reagent (Invitrogen), and complementary DNA 
(cDNA) was synthesized using the PrimeScript RT poly-
merase Kit (Qiagen, Frankfurt, Germany) or miScript II 
RT Kit (Qiagen). The Plus SYBR real-time PCR mixture 
(LMAI Bio, Shanghai, China) was utilized to perform 
qPCR with cDNA as the template. The expression levels 

were normalized to glyceraldehyde-3-phosphate dehy-
drogenase (GAPDH; for circMIIP and FAM83A) or U6 
small nuclear RNA (for miR-766-5p) and calculated by 
the 2−ΔΔCt method. The primers are shown in Sup. Table 1.

Colony Formation Assay

Transfected NCI-H23 and A549 cells were seeded onto the 
12-well plates at 150 cells/well. Cells were incubated for 
14 d to form visible colonies, and the culture medium was 
replenished every 4 d. After immobilizing with 4% para-
formaldehyde (Sigma, St. Louis, MO, USA) and staining 
with 0.1% crystal violet solution (Solarbio), the colonies 
were washed, air-fried, imaged and then manually counted.

Cell Counting Kit‑8 (CCK‑8) Assay

NCI-H23 and A549 cells were seeded onto 96-well plates to 
settle down. NSCLC cells were incubated with 10 µL CCK-8 
reagent (Beyotime, Shanghai, China) after transfection for 
24 h, 48 h, or 72 h. The absorbance at 450 nm was examined 
using a microplate reader (Olympus, Tokyo, Japan).

5‑Ethynyl‑2’‑Deoxyuridine (EdU) Assay

After transfection for 48 h, NCI-H23 and A549 cells were 
incubated with 50 μM EdU (RiboBio) for 2 h. After immo-
bilizing with 4% paraformaldehyde and 2 mg/mL glycine, 
NSCLC cells were incubated with 1 × Apollo staining solu-
tion for 30 min. Cell nuclei was stained with DAPI, and 
the fluorescence images were captured under a fluorescence 
microscope (Leica, Wetzlar, Germany). The fluorescence 
images were merged using Adobe Photoshop software. 
ImageJ software (Bio-Rad, Hercules, CA, USA) was used 
to quantify the numbers of DAPI-positive cells and EdU-
positive cells, and we calculated the percentage of EdU-pos-
itive cells as the number of EdU-positive cells/the number 
of DAPI-positive cells.

Flow Cytometry

Annexin V-fluorescein isothiocyanate (FITC)/propidium 
iodide (PI) apoptosis detection kit (Invitrogen) was utilized 
in this assay. After transfection for 48 h, 1 × 106 NSCLC 
cells were collected and suspended in 100 μL binding buffer. 
Then, 10 μL Annexin V-FITC and 10 μL PI were added to 
the binding buffer to incubate with NSCLC cells at 37 °C 
for 15 min in the dark. The apoptosis rate (the percentage 
of NSCLC cells with FITC+ and PI±) was analyzed by BD 
FACS Calibur flow cytometer (BD Biosciences, San Diego, 
CA, USA).
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Transwell Assays

Transwell chambers (Costar, Corning, Switzerland) coated 
with or without Matrigel (BD Biosciences) were used for 
cell invasion or migration assay, respectively. A total of 
100 μL cell suspension (serum-free medium) was added to 
the upper chamber, while the bottom chambers were filled 
with 500 μL complete culture medium. After incubation for 
24 h, the migrated and invaded cells were fixed with 4% 
paraformaldehyde (Sigma) and stained with hematoxylin 
(Solarbio). Finally, the numbers of migrated and invaded 
cells in five random fields were counted under a light micro-
scope (Olympus).

Western Blot Assay

NSCLC cells were disrupted with radio-immunoprecipita-
tion assay (RIPA) buffer (Solarbio), and the concentrations 
of protein samples were determined by the bicinchoninic 
acid (BCA) method. Equal amounts of protein samples 
(30 μg) were separated by 12% sodium dodecyl sulfate–poly-
acrylamide gel electrophoresis (SDS-PAGE) and transferred 
to a polyvinylidene fluoride (PVDF) membrane (Millipore, 
Billerica, MA, USA). The membrane was blocked with 5% 
skimmed milk for 1 h at 37 °C. Subsequently, the mem-
brane was incubated with primary antibodies overnight 
at 4  °C, including anti-ki67 (1:3000, ab16667, Abcam, 
Cambridge, MA, USA), anti-cleaved-caspase 3 (1:8000, 
ab2302, Abcam), anti-MMP9 (1:500, ab137867, abcam), 
anti-FAM83A (1:3000, PA5-46441, Thermo Fisher Scien-
tific, Rochester, NY, USA) and GAPDH (1:20,000, ab9485, 
Abcam). The next day, the membrane was incubated with 
the secondary antibody (1:3000; Abcam) for 2 h at room 
temperature, the immune-reactive protein bands were visu-
alized using the enhanced chemiluminescence system kit 
(Beyotime). ImageJ software (Bio-Rad) was used to analyze 
the intensities of protein bands.

Dual‑Luciferase Reporter Assay

The partial sequence of circMIIP or FAM83A 3′ untrans-
lated region (3′UTR), including the wild-type or mutant 
type binding sites with miR-766-5p, was inserted into pmir-
GLO vector (Promega, Madison, WI, USA). The luciferase 
reporter was co-transfected into NCI-H23 and A549 cells 
with miR-766-5p mimics or miR-NC. After transfection for 
48 h, the luciferase activity was examined by Dual-Lucif-
erase reporter Assay Kit (Solarbio).

RNA Immunoprecipitation (RIP) Assay

A Magna RNA immunoprecipitation kit (Millipore) was 
used to perform RIP assay. NSCLC cells were disrupted 

with ice-cold RIP lysis buffer. Then, cell lysates were incu-
bated with magnetic beads labeled with the antibody of 
Ago2 (ab186733, Abcam) or IgG (ab19047, Abcam). After 
that, beads were washed with phosphate buffer saline (PBS) 
twice, and RT-qPCR was conducted to determine RNA 
enrichment in precipitated complex.

Xenograft Tumor Model

A549 cell line stably expressing sh-NC or sh-circMIIP was 
established. BALB/c nude mice (5-week-old) were randomly 
divided into two groups (n = 6/group, Charles River Labs, 
Beijing, China). A549 cells (1 × 106 cells) stably expressing 
sh-NC or sh-circMIIP were subcutaneously injected into the 
right flank of mice. Tumor volume was measured every 3 d 
as (length × width2)/2. After inoculation for 21 d, mice were 
killed, and the xenograft tumors were excised and weighed. 
The animal experiment was authorized by the Animal Wel-
fare Committee of Affiliated hospital of Guizhou medical 
university.

Statistical Analysis

Data were expressed as mean ± standard deviation. Student’s 
t test and one-way analysis of variance followed by Tukey’s 
test were used to compare the difference in two groups or 
multiple groups using GraphPad Prism 7 software (Graph-
Pad, La Jolla, CA, USA). The linear correlation was assessed 
by Pearson’s correlation coefficient. P < 0.05 indicated the 
statistically significant differences.

Results

CircMIIP Knockdown Suppresses the Proliferation, 
Migration, and Invasion While Promotes 
the Apoptosis of NSCLC Cells

CircMIIP (hsa_circ_0009932) is derived from exon 4–10 of 
its host gene MIIP, with a length of 946 nt (Sup. Fig. 1A). 
The results of RT-qPCR assay showed that circMIIP expres-
sion was remarkably increased in NSCLC tissues and cell 
lines (NCI-H23 and A549) compared with adjacent healthy 
tissues and normal human lung epithelial cell line (BEAS-
2B) (Sup. Fig. 1B, C).

To investigate the biological role of circMIIP in NSCLC 
progression, loss-of-function experiments were performed. 
The results of RT-qPCR revealed that si-circMIIP#3 had the 
highest knockdown efficiency among three circMIIP-specific 
siRNAs (Fig. 1A). Then, si-circMIIP#3 was selected for 
further experiments. Colony formation assay, CCK-8 assay, 
and EdU assay together suggested that circMIIP knock-
down suppressed the proliferation of NSCLC cells. (Sup. 
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Fig. 2A, B; Fig. 1B; Sup. Fig. 3A). Flow cytometry showed 
that circMIIP absence induced the apoptosis of NSCLC cells 
(Fig. 1C; Sup. Fig. 3B). Transwell chambers coated with 
or without Matrigel were used to analyze cell invasion or 
migration ability, respectively. Transwell assays showed that 
circMIIP knockdown inhibited the migration and invasion 
abilities of NSCLC cells (Fig. 1D, E; Sup. Fig. 3C, D). Pre-
vious studies reported that ki67 expression can be detected 
in the nuclei of cells at G1, S, G2 phase and mitosis, but not 
in the nuclei of quiescent cells at G0 phase [10, 11]. Hence, 
ki67 level suggests the status of cell proliferation. Interest-
ingly, ki67 is reported to be highly expressed in cancer cells 
and has been identified as a prognostic indicator of multiple 
cancers [12, 13]. MMP9 is one of the most widely investi-
gated matrix metalloproteinases (MMPs), and it plays a vital 
role in ECM remodeling and membrane protein cleavage 
[14]. Increasing articles have demonstrated the MMP9 is 
closely associated with the pathology of multiple malignan-
cies, including but not limited to metastasis and angiogen-
esis [15–17]. Currently, MMP9 has been widely used as a 
cell motility-related indicator in multiple cancers [18–20]. 
We measured the protein levels of proliferation-associated 
indicator ki67, apoptosis-associated indicator cleaved-cas-
pase3, and motility-associated indicator MMP9 in trans-
fected NSCLC cells. The protein levels of ki67 and MMP9 
were decreased, while cleaved-caspase-3 level was increased 
in circMIIP-silenced NSCLC cells (Fig. 1F), further dem-
onstrating that circMIIP silencing suppressed the prolifera-
tion and motility and induced the apoptosis of NSCLC cells. 
Taken together, circMIIP knockdown suppressed NSCLC 
progression in vitro.

CircMIIP Acts as a Molecular Sponge for miR‑766‑5p

Bioinformatics databases starbase and circbank were used 
to predict the potential miRNA targets of circMIIP, and 
there were 4 miRNAs (miR-138-5p, miR-6783-3p, miR-
766-5p, and miR-1343-3p) that were predicted to be targets 
of circMIIP by both databases (Fig. 2A). Only the expres-
sion of miR-766-5p was reduced by the overexpression of 
circMIIP in A549 cells (Fig. 2A). Thus, miR-766-5p was 
chosen for further experiments. The complementary sites 
between circMIIP and miR-766-5p are shown in Fig. 2B. 
miR-766-5p expression was notably reduced in NSCLC 
tissues compared with adjacent normal tissues (Fig. 2C), 
and the expression of miR-766-5p in NSCLC tissues was 
negatively correlated with circMIIP expression (Fig. 2D). 
Also, circMIIP expression was decreased in NSCLC cell 
lines relative to BEAS-2B cell line (Fig. 2E). RT-qPCR 
confirmed that the transfection efficiencies of miR-766-5p 
and anti-miR-766-5p were significant in NSCLC cells 
(Fig. 2F). Dual-luciferase reporter assay showed that miR-
766-5p overexpression significantly reduced the luciferase 
activity of wild-type reporter (WT-circMIIP), but not that 
of mutant reporter (MUT-circMIIP) (Fig. 2G), suggesting 
that miR-766-5p was a direct target of circMIIP in NSCLC 
cells. RIP assay suggested that circMIIP and miR-766-5p 
were simultaneously enriched in Ago2 antibody group 
compared with IgG antibody group (Fig.  2H), further 
demonstrating the target relation between circMIIP and 
miR-766-5p. Taken together, circMIIP directly targeted 
miR-766-5p and negatively regulated miR-766-5p expres-
sion in NSCLC cells.

Fig. 1   CircMIIP knockdown suppresses NSCLC cell growth, migra-
tion, and invasion in  vitro. A CircMIIP knockdown efficiency was 
confirmed in NCI-H23 and A549 cells introduced with si-NC, si-circ-
MIIP#1, si-circMIIP#2, or si-circMIIP#3. B–F NCI-H23 and A549 
cells were introduced with si-NC or si-circMIIP#3. B Cell prolifera-
tion ability was analyzed by EdU assay. C Flow cytometry was con-

ducted to analyze cell apoptosis rate. D and E Transwell assays were 
conducted to analyze the migration and invasion abilities of NSCLC 
cells. F Western blot assay was performed to analyze the protein 
levels of ki67, clesved-caspase3, and MMP9 in transfected NSCLC 
cells. *P < 0.05
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CircMIIP Knockdown Suppresses NSCLC Progression 
by Sponging miR‑766‑5p

To explore whether circMIIP functioned by targeting miR-
766-5p in NSCLC cells, rescue experiments were conducted 
by transfecting NSCLC cells with si-circMIIP#3 alone or 
together with miR-766-5p inhibitor. RT-qPCR analysis 
suggested that the introduction of miR-766-5p inhibitor 
attenuated circMIIP knockdown-induced upregulation of 
miR-766-5p in NSCLC cells (Fig.  3A). Rescue experi-
ments showed that miR-766-5p inhibitor abolished circMIIP 
knockdown-mediated suppressive effects on the proliferation 
(Fig. 3B; Sup. Fig. 4A, B), migration (Fig. 3D) and invasion 
(Fig. 3E) and promoting effect on the apoptosis (Fig. 3C) of 
NSCLC cells. Furthermore, miR-766-5p knockdown over-
turned the effects of circMIIP knockdown on the protein 
levels of ki67, MMP9 and cleaved-caspase-3 in NSCLC 

cells (Fig. 3F). Altogether, circMIIP absence suppressed the 
malignant behaviors of NSCLC cells largely by upregulating 
miR-766-5p.

CircMIIP Positively Regulates FAM83A Expression 
by Sponging miR‑766‑5p in NSCLC Cells

Four bioinformatics databases (miRDB, starbase, targetscan 
and GEPIA) were used to predict the potential messenger 
RNA (mRNA) targets of miR-766-5p, and only FAM83A 
was predicted to be the target of miR-766-5p by all four 
databases (Fig. 4A). The complementary sites between the 
3’UTR of FAM83A and miR-766-5p were shown in Fig. 4B. 
The results of dual-luciferase reporter assay revealed that 
miR-766-5p overexpression markedly decreased the lucif-
erase activity of wild-type reporter (WT-FAM83A 3’UTR) 
rather than mutant reporter (MUT-FAM83A 3’UTR), 

Fig. 2   CircMIIP was a sponge of miR-766-5p in NSCLC cells. A 
Schematic illustration exhibiting overlapping of the target miRNAs 
of circMIIP predicted by starbase and circbank, and luciferase activ-
ity was detected in A549 cells co-transfected with wild-type circMIIP 
reporter and mimics of miR-766-5p miR-138-5p, miR-6783-5p or 
miR-1343-3p using the dual-luciferase reporter assay. B The pre-
dicted binding sites of circMIIP and miR-766-5p were exhibited. C 
CircMIIP expression was measured in NSCLC tissues and normal 
tissues using RT-qPCR. D Correlation between circMIIP and miR-
766-5p in NSCLC samples. E CircMIIP expression was measured 

in NSCLC cell lines (NCI-H23 and A549) and human lung epithe-
lial cell line (BEAS-2B) using RT-qPCR. F Transfection efficien-
cies detection of miR-766-5p mimics, inhibitor or their controls in 
NCI-H23 and A549 cells using RT-qPCR. G Luciferase activity was 
detected in NCI-H23 and A549 cells co-transfected with wild-type or 
mutated circMIIP reporter and miR-766-5p mimics or mimics control 
using the dual-luciferase reporter assay. H RT-qPCR analysis of circ-
MIIP and miR-766-5p levels in NCI-H23 and A549 cells pulled down 
by anti-Ago antibody or IgG control antibody. *P < 0.05
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confirming the binding relationship between FAM83A and 
miR-766-5p via the predicted sites (Fig. 4C). FAM83A 
mRNA and protein expression was conspicuously increased 
in NSCLC tissues relative to adjacent normal tissues, and 
the mRNA expression of FAM83A in NSCLC tissues was 
negatively correlated with miR-766-5p expression (Fig. 4D, 
F). Besides, immunohistochemistry (IHC) assay showed 
that the staining intensity of FAM83A was significantly 
elevated in NSCLC tissues compared with adjacent normal 
tissues (Fig. 4G), further demonstrating the upregulation of 
FAM83A in NSCLC tissues. FAM83A protein expression 
was also upregulated in NSCLC cell lines relative to BEAS-
2B cell line (Fig. 4H). Moreover, miR-766-5p overexpres-
sion decreased FAM83A expression in mRNA and protein 
levels, while miR-766-5p knockdown increased FAM83A 
mRNA and protein expression in NCI-H23 and A549 cells 

(Fig. 4I). CircMIIP overexpression elevated the protein 
expression of FAM83A in NSCLC cells, and this effect was 
reversed by the addition of miR-766-5p mimics (Fig. 4J). 
Overall, these results demonstrated that circMIIP positively 
regulated FAM83A expression by sponging miR-766-5p in 
NSCLC cells.

miR‑766‑5p Overexpression Suppresses 
the Malignant Behaviors of NSCLC Cells by Targeting 
FAM83A

To investigate whether miR-766-5p regulated the bio-
logical behaviors of NSCLC cells by targeting FAM83A, 
compensation experiments were conducted. Western blot 
assay confirmed that the overexpression efficiency of 
FAM83A plasmid was significant (Fig. 5A). miR-766-5p 

Fig. 3   CircMIIP knockdown suppresses NSCLC cell growth, migra-
tion, and invasion via miR-766-5p. A–F NCI-H23 and A549 cells 
were co-transfected with si-NC, si-circMIIP#3, si-circMIIP#3 + anti-
NC or si-circMIIP#3 + anti-miR-766-5p. A RT-qPCR assay was 
conducted to analyze miR-766-5p expression in transfected NSCLC 
cells. B Cell proliferation capacity was analyzed by EdU assay. C 

Flow cytometry was carried out to assess the apoptosis of transfected 
NSCLC cells. D and E Transwell assays were conducted to analyze 
the migration and invasion abilities of NSCLC cells. F Western blot 
assay was implemented to measure the protein levels of ki67, clesved-
caspase-3 and MMP9 in NSCLC cells. *P < 0.05
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overexpression reduced the protein level of FAM83A in 
NSCLC cells, which was largely rescued by the addition 
of FAM83A plasmid (Fig. 5B). Functionally, we found 
that miR-766-5p overexpression suppressed cell prolifera-
tion (Fig. 5C; Sup. Fig. 5A, B), induced cell apoptosis 
(Fig. 5D), as well as inhibited cell migration and inva-
sion (Fig. 5E, F) in NSCLC cells, whereas these effects 

were largely counteracted by FAM83A overexpression. In 
addition, FAM83A overexpression largely overturned the 
effects of miR-766-5p accumulation on the protein levels 
of ki67, MMP9 and cleaved-caspase-3 in NSCLC cells 
(Fig. 5G, H). Overall, these results demonstrated that miR-
766-5p overexpression restrained the malignant behaviors 
of NSCLC cells largely by downregulating FAM83A.

Fig. 4   FAM83A is target of miR-766-5p, and circMIIP positively reg-
ulates FAM83A via miR-766-5p. A Schematic illustration exhibiting 
overlapping of the target genes of miR-766-5p predicted by miRDB, 
starbase, targetscan and GEPIA. B The predicted binding sites of 
FAM83A and miR-766-5p were exhibited. C Luciferase activity was 
detected in NCI-H23 and A549 cells co-transfected with wild-type 
or mutated FAM83A reporter and miR-766-5p mimics or mimics 
control using the dual-luciferase reporter assay. D FAM83A mRNA 
expression was measured in NSCLC tissues and normal tissues using 
RT-qPCR. E Correlation between FAM83A and miR-766-5p in 

NSCLC samples. F FAM83A protein level was measured in NSCLC 
tissues and normal tissues using western blot. G IHC staining of 
FAM83A level in NSCLC tissues and normal tissues. H Western 
blot analysis of FAM83A levels in NSCLC cell lines (NCI-H23 and 
A549) and BEAS-2B cells. I Western blot analysis of FAM83A lev-
els in NCI-H23 and A549 cells transfected with miR-766-5p mimics, 
inhibitor or their controls. J Western blot analysis of FAM83A levels 
in NCI-H23 and A549 cells transfected with vector, circMIIP, circ-
MIIP + miR-NC or circMIIP + miR-766-5p. *P < 0.05
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CircMIIP Knockdown Suppresses Xenograft Tumor 
Growth In Vivo

Considering the oncogenic role of circMIIP in NSCLC cells 
in vitro, we further explored whether circMIIP played a sim-
ilar role on tumor growth in vivo. As shown in Fig. 6A, B, 
circMIIP silencing inhibited the growth of xenograft tumors. 
RT-qPCR and western blot analysis revealed that the lev-
els of circMIIP and FAM83A mRNA and protein were 
decreased while miR-766-5p expression was elevated in 
circMIIP-silenced tumor tissues (Fig. 6C, D). IHC analysis 
revealed that the staining intensities of ki67 and MMP9 were 
both reduced in circMIIP-silenced tumor tissues compared 
with sh-NC group (Fig. 6E). These results demonstrated that 
circMIIP silencing inhibited xenograft tumor growth at least 
partly by targeting miR-766-5p/FAM83A axis in vivo.

We also analyzed the roles of circMIIP and miR-766-5p 
on normal human lung epithelial cell line BEAS-2B. We 
found that circMIIP absence or miR-766-5p overexpression 

had almost no effect on the proliferation of BEAS-2B cells 
(Sup. Figs. 6A, B and 7A, B). Dual-luciferase reporter assay 
and RIP assay were performed to validate the interaction 
between miR-766-5p and circMIIP or FAM83A in BEAS-
2B cells. The results revealed that circMIIP/miR-766-5p/
FAM83A axis can also be established in BEAS-2B cells 
(Sup. Fig. 6C, F).

Discussion

CircRNAs are characterized by closed circular structure, 
which endows them high stability [21, 22]. Accumulating 
evidence demonstrated that circRNAs are widely dysregu-
lated in multiple malignancies, and they play important roles 
in the patho-mechanism of cancers [23, 24]. In the present 
study, we found that circMIIP was strikingly upregulated in 
NSCLC tissues and cell lines compared with adjacent nor-
mal tissues and BEAS-2B cell line, implying that circMIIP 

Fig. 5   miR-766-5p suppresses NSCLC cell growth, migration, and 
invasion via FAM83A. A Western blot analysis of FAM83A level in 
NCI-H23 and A549 cells transfected with pcNDA3.1 or FAM83A. 
B–H NCI-H23 and A549 cells were transfected with miR-NC, miR-
766-5p, miR-766-5p + pcNDA3.1, or miR-766-5p + FAM83A. B 
Western blot analysis of FAM83A levels in cells. C Cell proliferation 

was evaluated by EdU assay. D Flow cytometry was utilized to ana-
lyze cell apoptosis rate. E and F Transwell assays were performed to 
analyze cell motility in transfected NSCLC cells. G and H The pro-
tein levels of ki67, clesved-caspase-3 and MMP9 were detected by 
western blot assay. *P < 0.05
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expression might be associated with NSCLC pathology. 
The abnormal high expression pattern of circMIIP in HCC 
was consistent with the previous study [9]. Loss-of-function 
experiments suggested that circMIIP knockdown restrained 
the proliferation, migration, and invasion and induced the 
apoptosis of NSCLC cells in vitro. Moreover, xenograft 
tumor model showed that circMIIP knockdown hampered 
the growth of xenograft tumors in vivo. Taken together, 
these results suggested that circMIIP played an oncogenic 
role in NSCLC.

It is well established that circRNAs can act as molecu-
lar sponges for miRNAs to regulate target gene expres-
sion, thereby influencing tumor initiation and progression 
[25, 26]. Increasing articles have reported that miRNAs 
play vital regulatory roles in NSCLC carcinogenesis [27, 
28]. We found that miR-766-5p was a direct target of circ-
MIIP in NSCLC cells. Previous studies reported that miR-
766-5p is a functional miRNA and is implicated in the 
pathology of various cancers. Furthermore, the function 
of miR-766-5p may be completely opposite in different 
cancers, which may due to different tumor microenviron-
ments. For example, miR-766-5p is identified as an onco-
miR in colorectal cancer [29], cervical cancer [30], and 
glioma [31], and it is reported to be a tumor suppressor 
in lung cancer [32, 33]. We found that miR-766-5p was 
downregulated in NSCLC tissues and cell lines. Consist-
ent with former articles [32, 33], miR-766-5p overex-
pression restrained the malignant phenotypes of NSCLC 

cells. Moreover, we observed that miR-766-5p knockdown 
largely reversed the anti-cancer effects induced by circ-
MIIP knockdown in NSCLC cells, suggesting that circ-
MIIP knockdown restrained NSCLC progression largely 
by upregulating miR-766-5p in vitro.

FAM83A, also known as tumor-specific gene BJ-TSA-9, 
is a member of the eight-member FAM83 family [34]. Pre-
vious studies reported that FAM83A is highly expressed 
in bladder cancer, breast cancer, and pancreatic cancer 
[35–37]. FAM83A expression is also reported to be upreg-
ulated in lung cancer, and high expression of FAM83A is 
associated with poor outcome of lung cancer patients [38, 
39]. FAM83A is reported to facilitate the proliferation and 
invasion of lung cancer cells by activating Wnt signal-
ing and blocking Hippo signaling [40]. Hu et al. showed 
that FAM83A contributes to NSCLC progression by pro-
moting cell proliferation and motility [41]. In this study, 
FAM83A was identified as a target of miR-766-5p, and we 
found that circMIIP served as a molecular sponge for miR-
766-5p to elevate FAM83A expression in NSCLC cells. 
FAM83A overexpression largely abolished the anti-cancer 
effects induced by miR-766-5p overexpression in NSCLC 
cells, indicating that miR-766-5p overexpression restrained 
NSCLC progression largely by downregulating FAM83A 
in vitro.

In conclusion, circMIIP promoted cell proliferation, 
migration, and invasion and inhibited cell apoptosis in 
NSCLC cells through mediating miR-766-5p/FAM83A axis 

Fig. 6   CircMIIP knockdown suppresses NSCLC tumor growth and 
migration in vivo. A Tumor volume was measured every 3 days after 
injection. B The xenograft tumors were excised and weighed after 
mice were sacrificed. C, D The expression of circMIIP, miR-766-5p 

and FAM83A was examined in xenograft tissues by RT-qPCR and 
western blot, respectively. E IHC staining of ki67 and MMP9 in xen-
ograft tissues. *P < 0.05
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(Sup. Fig. 8), which provided novel potential therapeutic 
targets for NSCLC.
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