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Abstract
Purpose  We compared respiratory mechanics between the positive end-expiratory pressure of minimal respiratory system 
elastance (PEEPminErs) and three levels of PEEP during low-tidal-volume (6 mL/kg) ventilation in rats.
Methods  Twenty-four rats were anesthetized, paralyzed, and mechanically ventilated. Airway pressure (Paw), flow (F), 
and volume (V) were fitted by a linear single compartment model (LSCM) Paw(t) = Ers × V(t) + Rrs × F(t) + PEEP or a 
volume- and flow-dependent SCM (VFDSCM) Paw(t) = (E1 + E2 × V(t)) × V(t) + (K1 + K2 × |F(t)|) × F(t) + PEEP, where 
Ers and Rrs are respiratory system elastance and resistance, respectively; E1 and E2× V are volume-independent and vol-
ume-dependent Ers, respectively; and K1 and K2 × F are flow-independent and flow-dependent Rrs, respectively. Animals 
were ventilated for 1 h at PEEP 0 cmH2O (ZEEP); PEEPminErs; 2 cmH2O above PEEPminErs (PEEPminErs+2); or 4 cmH2O 
above PEEPminErs (PEEPminErs+4). Alveolar tidal recruitment/derecruitment and overdistension were assessed by the index 
%E2 = 100 × [(E2 × VT)/(E1 + |E2| × VT)], and alveolar stability by the slope of Ers(t).
Results  %E2 varied between 0 and 30% at PEEPminErs in most respiratory cycles. Alveolar Tidal recruitment/derecruitment 
(%E2 < 0) and overdistension (%E2 > 30) were predominant in the absence of PEEP and in PEEP levels higher than PEEPminErs, 
respectively. The slope of Ers(t) was different from zero in all groups besides PEEPminErs+4.
Conclusions  PEEPminErs presented the best compromise between alveolar tidal recruitment/derecruitment and overdistension, 
during 1 h of low-VT mechanical ventilation.
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Introduction

Atelectasis and intermittent airway closure may be common 
intraoperative findings [1] that can expose the lungs to high 
levels of shear stress generated during tidal recruitment/dere-
cruitment [2]. This excessive stress in the lung tissue during 
anesthesia may increase the risk of ventilator induced lung 
injury (VILI), even in patients with healthy lungs [3–6]. Posi-
tive end-expiratory pressure (PEEP) has been successfully 
used to minimize atelectasis and tidal recruitment/derecruit-
ment during anesthesia, especially after an alveolar recruit-
ment maneuver (ARM) [7–9]. This effect of PEEP is one of 
the suggested mechanisms to explain the lower levels of pul-
monary and systemic inflammation observed during anesthe-
sia in patients without previous lung disease, when compared 
with those in the absence of PEEP [6]. Consequently, PEEP 
has been used in protocols of protective ventilation [10, 11]. 
However, higher levels of PEEP are associated with alveolar 
hyperinflation and overdistension [12, 13], which can also be 
a triggering condition for VILI [4, 14]. Consequently, an opti-
mal level of PEEP would provide a balance between alveolar 
tidal recruitment/derecruitment and overdistension.

Different criteria have been used to define “optimal” 
PEEP to be used in protective ventilation, including the 
determination of PEEP of minimal respiratory system 
elastance (PEEPminErs) [12, 13, 15, 16]. Indeed, PEEPminErs 
was associated with a better balance between alveolar 
overdistension and tidal recruitment/derecruitment during 
a descendent PEEP titration in healthy and injured lung 
[12, 13, 16]. Nevertheless, whether PEEPminErs maintains 
this balance over time has yet to be determined.

The fraction of the volume-dependent respiratory system 
elastance (%E2) derived from a nonlinear model of respiratory 
mechanics has been used to quantify alveolar tidal recruit-
ment/derecruitment and overdistension in healthy as well as in 
injured lungs [9, 12, 13, 16–18] and could potentially be used to 
guide strategies of protective ventilation in patients with healthy 
lungs. The hypothesis of this study was that PEEPminErs, when 
used as a criterion to select optimal PEEP, would maintain the 
best balance between alveolar tidal recruitment/derecruitment 
and overdistension during mechanical ventilation in a lung-
healthy model. A secondary hypothesis was that %E2 is able 
to differentiate patterns of tidal recruitment/derecruitment and 
overdistension when different levels of end-expiratory pressure 
were used during ventilation with low tidal volume (VT).

In the present study, we aimed at comparing the occur-
rence of indices of tidal recruitment/derecruitment and 
overdistension among PEEPminErs and three other levels 
of end-expiratory pressure used during 1 h of low-VT 
mechanical ventilation in lung-healthy anesthetized rats.

Methods

This study was approved by the Ethics Committee on the Ani-
mal Use of the Health Sciences Centre, Federal University of 
Rio de Janeiro (CEUA CCS, IBCCF-019).

Animal Preparation

Twenty-four rats were anesthetized with intraperitoneal keta-
mine (60 mg/kg) and midazolam (3 mg/kg), followed by IV 
administration of both agents at 60 mg/kg/h and 3 mg/kg/h, 
respectively. A tracheal cannula was placed and they were 
maintained in spontaneous ventilation with room air during 
instrumentation, comprising electrocardiogram, blood pressure, 
and rectal temperature. After instrumentation, the animals were 
placed in dorsal recumbency, paralyzed and ventilated (Inspira 
ASV, Harvard Apparatus Inc., Road Holliston, MA, USA) with 
room air in a volume-controlled mode with VT of 6 mL/kg, 
no PEEP, inspiratory-to-expiratory time ratio (I:E) of 1:2, and 
respiratory rate (RR) of 90 breaths/min (initial settings).

Experimental Protocol

The experimental timeline is presented in Fig. 1. After a 
5-min period under initial settings, an ARM of a plateau 
pressure (Pplat) of 20 cmH2O maintained for 20 s was fol-
lowed by a decremental PEEP trial from 6 to 0 cmH2O in 
1-min steps of 1 cmH2O. VT was maintained at 6 mL/kg 
during the PEEP titration and PEEPminErs was determined 
(see “Data Acquisition and Processing” section). Another 
ARM, identical to the first one, was performed after the 
PEEP trial and the animals were randomly assigned to 
one of following groups: (1) PEEP = 0 cmH2O (ZEEP), 
PEEPminErs, PEEPminErs + 2  cmH2O (PEEPminErs+2), and 
PEEPminErs + 4 cmH2O (PEEPminErs+4). Each group had 6 rats 
ventilated for 1 h with room air and VT of 6 mL/kg, RR of 90 
breaths/min, and I:E of 1:2. At the end of the 1-h ventilation, 
the animals were euthanized during anesthesia by laparotomy 
and sectioning of abdominal aorta and caudal vena cava.

Data Acquisition and Processing

Airway pressure (Paw) and airflow were recorded in a com-
puter with a sampling rate of 1000 Hz and Paw was fitted to 
one of the two models of respiratory mechanics: linear single 
compartment model (LSCM—Eq. 1), [19] or volume- and 
flow-dependent single compartmental model (VFDSCM—
Eq. 2) [20]:

(1)Paw(t) = Ers × V(t) + Rrs × F(t) + PEEP

(2)Paw(t) = (E1 + E2 × V(t)) × V(t) + (K1 + K2 × F(t)) × F(t) + PEEP,
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where Rrs represents the linear resistance of the respira-
tory system; K1 and K2 are the flow-independent and flow-
dependent components of Rrs, respectively; E1 and E2 are the 
volume-independent and volume-dependent components of 
Ers, respectively; and PEEP represents the airway pressure 
when volume and flow are zero. From Eq. 2, the fraction 
of the volume-dependent elastance (%E2) was calculated as

During the PEEP trial, the mechanical parameters of 
Eq. 1 were estimated on-line for the immediate identifica-
tion of PEEPminErs. An offline estimation encompassing the 
60 min of ventilation was used for the parameters of Eq. 2 
and %E2. The dynamics of Ers(t) and %E2(t) were assessed 
by the slopes (a and c) of Eqs. 4 and 5, respectively, esti-
mated as in Eq. 1:

The average of Ers and %E2 from 50 respiratory cycles 
within the fifth (M5) and the sixtieth minute of ventilation 
(M60) were calculated for each group.

Statistics

Data normality was assessed by the Shapiro–Wilk test, and 
normally distributed data were expressed as mean (SD) 
and nonnormally distributed data as median (first and third 
quartiles).

Comparisons among groups were performed by one-way 
ANOVA or Kruskal–Wallis ANOVA, when appropriate, 
followed by the Student’s t-test or the Mann–Whitney test, 
respectively, and the Bonferroni–Holm method [21] was 
used for the adjustment for multiple comparisons.

The null hypothesis was also tested for the slopes of %E2 
and Ers with the Student’s t-test or Mann–Whitney with a 
p < 0.05 considered sufficient to reject the null hypothesis. 

(3)%E2 = 100 × [(E2 × VT)∕(E1 +
|
|E2

|
| × VT)].

(4)Ers(t) = a × t + b

(5)%E2(t) = c × t + d.

Statistical analysis as well as figures and graphs were made 
in MATLAB (The Mathworks Inc., MA, USA).

Results

PEEPminErs achieved during each PEEP trial ranged from 3 
to 6 cmH2O in all groups and it was significantly higher in 
PEEPminErs+4 (ranging from 4 to 6 cmH2O) than in ZEEP 
and PEEPminErs+2.

The dynamics of Ers in all animals is presented in Fig. 2. 
At the beginning of the protocol, Ers, estimated by the inter-
cept of Ers(t), was higher in PEEPminErs+4 and ZEEP groups 
than in PEEPminErs. The slope of Ers(t) was positive in all 
but PEEPminEsr+4 group, being larger in magnitude in ZEEP 
and smaller in PEEPminErs+4 than in PEEPminErs. By con-
trast, there was a significant temporal effect on %E2 [slope 
of %E2(t)] only in PEEPminErs. %E2 at the beginning of the 
protocol [intercept of %E2(t)] was larger in PEEPminErs+2 
and PEEPminErs+4 and smaller in ZEEP when compared to 
PEEPminErs (Fig. 3). The distribution of %E2 in all groups 
is shown in Fig. 4 and was characterized by tidal recruit-
ment/derecruitment in 79% of the respiratory cycles with 
ZEEP, and an overdistension occurrence of 100%, 97%, and 
28% of the respiratory cycles in PEEPminErs+4, PEEPminErs+2, 
and PEEPminErs, respectively. In PEEPminErs, 72% of the res-
piratory cycles had %E2 between 0 and 30%. Ers and %E2 
at M5 and M60 are presented in Table 1. %E2 was lower in 
M60 than in M5 only in PEEPminErs, and was different from 
PEEPminErs in all groups and in M5 and M60. Ers was higher 
at M60 than M5 in ZEEP, PEEPminErs, and PEEPminErs+2, and 
was higher in ZEEP and PEEPminErs+4 than in PEEPminErs.

Discussion

The main results of Ers as well as tidal recruitment/dere-
cruitment and overdistension assessed by %E2 in lung-
healthy anesthetized rats mechanically ventilated with 

Fig. 1   Timeline of the chrono-
logical sequence of events 
performed during the experi-
ments. ARM alveolar recruit-
ment maneuver; MV mechanical 
ventilation; VT tidal volume; 
and RR respiratory rate
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protective VT for 1  h were as follows: (1) PEEPminErs 
presented the best compromise between alveolar tidal 
recruitment/derecruitment; (2) ZEEP was associated with 
a positive temporal drift of Ers and a predominance of tidal 

recruitment/derecruitment; (3) PEEPminErs+4 was the 
only PEEP that provided temporal stability of Ers but at 
the expense of overdistension; and (4) %E2 was able to 

Fig. 2   Temporal dynamics of respiratory system elastance (Ers) 
in all rats ventilated for 60  min with a tidal volume of 6  mL/
kg and different levels of PEEP. PEEP presented for each ani-
mal in groups PEEPminErs, PEEPminErs+2, and PEEPminErs+4 is the 
actual PEEP that each animal was ventilated during the 60  min 

of ventilation. ZEEP = no PEEP; PEEPminErs  =  PEEP of mini-
mal Ers; PEEPminErs+2  =  PEEP of minimal Ers  +  2  cmH2O; and 
PEEPminErs+4  =  PEEP of minimal Ers  +  4  cmH2O. Red lines repre-
sent the linear function estimated with the linear regression of Ers as a 
function of time in each animal

Fig. 3   Slope (left column) and intercept (right column) of the tem-
poral linear function estimated to the fraction of volume-dependent 
respiratory system elastance (Panel A) and the respiratory system 
elastance (Ers, Panel B) in all six rats ventilated for 60 min with tidal 
volume of 6  mL/kg at different levels of PEEP. ZEEP = no PEEP; 

MinErs = PEEP of minimal Ers; MinErs + 2 = PEEP of minimal Ers + 2 
cmH2O; and MinErs + 4 = PEEP of minimal Ers + 4 cmH2O. v signifi-
cantly different from PEEPMinErs; x significantly different from zero 
(p < 0.05). The values connecting all groups are the medians
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discriminate patterns of alveolar recruitment/derecruit-
ment and overdistension among the different levels of 
PEEP.

%E2 increased with PEEP and was very similar to val-
ues previously reported in rats [22]. As a dynamic method 
to assess respiratory mechanics, it does not interfere with 
the current ventilation of the patient, and can be used 
noninvasively and at the bedside [23]. %E2 higher than 
30% has been associated with alveolar overdistension 
and was predominantly observed with PEEPminErs+2 and 
PEEPminErs+4, while negative values were more frequent 
during ZEEP and were potentially related to tidal recruit-
ment/derecruitment [17, 18]. %E2 was always positive and 
was lower than 30% in the vast majority of cycles with 
PEEPminErs. Consequently, PEEPminErs seemed to yield a 
better balance between alveolar tidal recruitment/dere-
cruitment and overdistension.

Atelectasis can develop promptly after the induction of 
anesthesia [24] contributing to intraoperative increases in 
venous admixture and decreases in PaO2, particularly in the 
absence of PEEP [25]. Atelectasis can also be a substrate 
for elevated shear stress in the lungs generated by the tidal 
alveolar recruitment/derecruitment at the interface between 
normal and nonaerated areas of the lung [2]. The higher 
occurrence of negative %E2 in the rats ventilated with 
ZEEP suggested that more tidal recruitment/derecruitment 
ensued in these animals, likely due to significant atelectasis, 
as found in pigs [13]. Indeed, tidal recruitment/derecruit-
ment was already expected in the rats ventilated with ZEEP 
and low VT probably because of progressive atelectasis, as 
observed in an ex vivo rat model [26] and an in vivo model in 
mice [27]. However, ZEEP was included in the experimental 
design because it is still commonly used during anesthesia 
[28] and also to test whether %E2 would be able to identify 
alveolar tidal recruitment/derecruitment distinctly from the 
PEEP levels.

PEEP can reverse or prevent atelectasis as well as 
improve respiratory mechanics and oxygenation during anes-
thesia [8, 12, 29]. In a recent clinical trial with anesthetized 
patients with healthy lungs, PEEP of 12 cmH2O was able to 
minimize tidal recruitment/derecruitment without increasing 
the levels of overdistension when compared to low levels of 
PEEP (≤ 2 cmH2O) [9]. Different methods have been used 
to identify the best PEEP to be used during mechanical ven-
tilation, including the PEEPminErs [12, 16, 30]. The concept 
of “optimal PEEP” was defined as the PEEP of minimal Ers 
by Suter and colleagues [15] and resulted in the best oxy-
gen delivery and the lowest dead-space fraction in ARDS 
patients. In the present study, PEEPminErs was considered 
the optimal PEEP because it was associated with the best 
balance between alveolar tidal recruitment/derecruitment 
and overdistension, similarly to the computerized tomog-
raphy findings in a pig model of healthy and injured lung 
[12, 13, 16], as well as in a computational model of injured 

Fig. 4   Histogram of the fraction of volume-dependent respira-
tory system elastance (%E2) frequency distribution during 1  h 
of ventilation with 6  mL/kg and different levels of PEEP in 
rats. Red  =  %E2 > 30%; Blue  =  %E2 between 0 and 30%; and 

Black  =  %E2 < 0. ZEEP = no PEEP; PEEP E = PEEP of minimal 
Ers; PEEP E + 2 = PEEP of minimal Ers  +  2  cmH2O; and PEEP 
E + 4 = PEEP of minimal Ers + 4 cmH2O

Table 1   Respiratory system elastance (Ers) and %E2 within the fifth 
(M5) and sixtieth (M60) minutes of mechanical ventilation with pro-
tective tidal volume (6 mL/kg) and four different levels of end-expira-
tory pressure in lung-healthy anesthetized rats

ZEEP no positive end-expiratory pressure (PEEP); PEEPminrErs 
PEEP of minimum Ers; PEEPminErs+2 PEEPminErs + 2 cmH2O; and 
PEEPminErs+4 = PEEPminErs + 4 cmH2O
*Significant difference between M5 and M60 and †Significant differ-
ence from PEEPminErs. p < 0.05

%E2
(%)

Ers
(cmH2O/mL/kg)

M5 M60 M5 M60

ZEEP − 3.5 ± 11.6† − 3.8 ± 11.8† 1.36 ± 0.24† 2.00 ± 0.38*†

PEEP-
minErs

27.8 ± 6.6 20.9 ± 6.0* 0.86 ± 0.08 1.13 ± 0.20*

PEEP-
minErs+2

40.4 ± 7.4† 43.2 ± 14.5† 0.92 ± 0.06 1.12 ± 0.05*

PEEP-
minErs+4

66.4 ± 6.6† 63.9 ± 7.7† 1.80 ± 0.28† 1.75 ± 0.17†
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canine lungs [31]. Differently from studies that evaluated 
alveolar tidal recruitment/derecruitment and overdisten-
sion during PEEP titration [11–13], the evaluation during 
the whole period of ventilation, as presented here, provided 
a more meaningful information about the effectiveness of 
PEEPminErs as a method of PEEP choice for protective ven-
tilation during anesthesia. In addition, to offer an objective 
assessment of tidal recruitment/derecruitment and overdis-
tension in the lungs, %E2 detected dynamic changes in these 
patterns that could occur during ventilation, as observed in 
the rats ventilated with PEEPminErs. If the period of ventila-
tion used with PEEPminErs was longer, possibly %E2 would 
reach negative levels, indicating tidal recruitment/derecruit-
ment due to progressive atelectasis. In this case, %E2 could 
be a parameter to identify the best moment for an ARM dur-
ing protective ventilation using PEEPminErs. This strategy of 
ARM seems more rational than performing an ARM every 
30 min as previously described in a protective ventilation 
protocol [10].

The temporal increase in Ers observed in ZEEP, 
PEEPminErs, and PEEPminErs+2 can be an additional indica-
tion of progressive alveolar derecruitment. This deterioration 
of Ers during ventilation has been demonstrated before in 
models of healthy and injured lungs and seems to be related 
to alveolar derecruitment and progressive decrease in lung 
aeration [32–35]. However, the interpretation of the tem-
poral increase in Ers in the context of protective ventilation 
needs to be further investigated because its association with 
VILI seems to be variable in different experimental settings 
[33–35]. Probably, the combined evaluation of %E2 and 
ErsErs and their temporal progression can provide valuable 
information to guide ventilatory settings, as well as the tim-
ing for ARMs.

When similar criteria were used to select low PEEP levels 
in ARDS patients, a large clinical trial observed increased 
mortality at 28 days when PEEPminErs+2 [36], while a smaller 
clinical trial reported less organ dysfunction and a trend 
toward decreased mortality when PEEPminErs was used [30]. 
This discrepancy between the results may be explained by 
the higher incidence of overdistension in the higher PEEP 
group, as observed when PEEPminErs+2 and PEEPminErs+4 
were used in the present study. In fact, the PEEP difference 
between the low and high PEEP groups in the two previously 
mentioned studies was between 2 and 4 cmH2O. Recent 
studies have shown that low driving pressure was the venti-
latory variable most strongly correlated with improvements 
in clinical outcome in ARDS [37] and lung-healthy surgical 
patients [38]. These findings provide substantial support for 
the use of PEEPminErs as a method to choose the ideal PEEP, 
because it will always be associated with the lowest driving 
pressure given a fixed VT. Consequently, PEEPminErs has the 
potential to improve the beneficial effects in outcome found 
with moderate PEEP (6 to 8 cmH2O) and ARM in surgical 

patients at risk for postoperative pulmonary complications 
(PPC) [10]. Future clinical trials in patients with healthy 
lungs are warranted to shed some light on the clinical appli-
cation of using PEEPminErs as a method of PEEP choice dur-
ing anesthesia.

PEEP levels higher than PEEPminErs were used to explore 
the concept of “open-lung PEEP,” since in lung-healthy rats 
it seemed to be associated with the mathematical inflec-
tion point of the PV curve—approximately 4 cmH2O above 
PEEPminErs (PEEPminErs+4) [22]. In fact, the only PEEP that 
maintained alveolar stability was PEEPminErs+4, but at the 
expense of detrimental alveolar overdistension.

Despite the lack of lung computerized tomography (CT) 
scans or other standard methods to confirm the results 
achieved by the %E2, this method has been able to detect 
alveolar tidal recruitment/derecruitment and overdistension 
more consistently in healthy than injured lungs [13], which 
reinforce the reliability of our results. Moreover, the math-
ematical model used in this study included a nonlinear com-
ponent of Rrs, which was shown to improve the estimation 
of %E2, especially when inspiratory waveforms other than 
constant flow are used or when nonlinearities associated 
with the endotracheal tube resistance are present [19, 39]. 
Future studies correlating %E2 with levels of inflammatory 
biomarkers in the lungs and/or plasma, lung histology, and 
more importantly patient outcome should be performed for 
a rational clinical use of this technique to evaluate protective 
ventilation in the lung-healthy patient.

This study presents some limitations such as the short 
duration of ventilation, ventilation with room air, and the 
respiratory mechanics differences between rats and humans. 
Webb and Tierney [40] reported that significant pulmonary 
edema developed after few minutes of using high Ppeak in 
rats. However, the same degree of lung injury requires a 
much longer period of mechanical ventilation in larger spe-
cies [41, 42]. Consequently, we believe that our model pos-
sibly represent the majority of anesthetic procedures, con-
sidering the differences in the time course of VILI within 
species [40–42]. Ventilation with room air does not neces-
sarily represent the usual clinical anesthesia scenario, but 
was used to minimize reabsorption atelectasis, which is 
commonly seen with high FiO2 [43]. Probably, if higher FiO2 
were used in the present study, a magnification of atelecta-
sis and alveolar instability would be observed as previously 
reported in humans [43]. Finally, the respiratory mechanics 
of rats is somewhat different from humans [44, 45]. First, 
the temporal evolution of Ers seen in rats would probably 
take longer in humans because of the much faster respiratory 
rate in the later. Second, the body weight-normalized chest 
wall elastance of rats is approximately a fourth of that in 
humans [44, 45]. This difference, associated with the smaller 
vertical gradient in the rat respiratory system and the lower 
pleural pressure at functional residual capacity, affects the 
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transpulmonary pressure and the end-expiratory lung vol-
ume at a given PEEP in such way that the PEEP needed to 
provide less alveolar collapse as well as PEEPminErs should 
be higher in humans than in rats. However, PEEPminErs is 
determined in an individual basis and should represent the 
PEEP with the best compromise between alveolar overdis-
tension and tidal recruitment/derecruitment independently 
of variations between subjects or species, as demonstrated 
in pigs with healthy and injured lungs [12, 13, 16], as well 
as in the rats of the present study.

In conclusion, PEEPminErs presented the best balance 
between alveolar tidal recruitment/derecruitment and over-
distension, and is a promising clinical criterion to select the 
best PEEP during protective ventilation of the healthy lung. 
Future studies evaluating the outcomes of patients using 
PEEPminErs and %E2 to guide protective ventilation are war-
ranted to define the clinical importance of this method to 
optimize protective ventilation in the anesthesia clinical 
scenario.
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