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Abstract Recent advances in our understanding of volt-

age-gated sodium channels (NaVs) lead to the rational

hypothesis that drugs capable of selective blockade of NaV

subtypes may be a safe and effective strategy for the

treatment of unwanted cough. Among the nine NaV sub-

types (NaV1.1–NaV1.9), the afferent nerves involved in

initiating cough, in common with nociceptive neurons in

the somatosensory system, express mainly NaV1.7, NaV1.8,

and NaV1.9. Although knowledge about the effect of

selectively blocking these channels on the cough reflex is

limited, their biophysical properties indicate that each may

contribute to the hypertussive and allotussive state that

typifies subacute and chronic nonproductive cough.
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Introduction

Cough can be initiated from activation of peripheral

afferent (sensory) nerves or initiated from processes

occurring within the central nervous system (CNS) inde-

pendently of afferent nerves. Cough initiated from the CNS

can be subcategorized as voluntary cough or psychogenic

cough. Cough initiated from the periphery can be subcat-

egorized into the protective cough reflex vital for airway

defense on one hand, and the irritating, itchy, urge-to-

cough that serves essentially no useful purpose, on the

other. From a therapeutic perspective, it is logical to focus

attention on psychogenic cough and the afferent initiated

nonproductive urge-to-cough sensations and avoid

inhibiting protective cough or voluntary cough. With

respect to inhibiting cough initiated by activation of

peripheral sensory nerves, the voltage-gated sodium

channels (NaVs) are particularly attractive therapeutic

targets.

Cough associated with respiratory viral infections,

respiratory diseases, and esophageal reflux are initiated by

peripheral afferent nerves. Often the cough associated with

these disorders develops into an itchy, nonproductive

cough. These sensations and the resulting nonproductive

coughing can be mimicked by inhalation of low concen-

trations of agents known to stimulate vagal afferent

C-fibers. Yet, there is little evidence for the existence of a

truly effective peripherally acting antitussive drug.

NaVs are a sine qua non of action potential discharge

[1]. They provide the current for the action potential spike,

and they are determinant in voltage thresholds, spike fre-

quency, and conduction. A breakthrough in our under-

standing of NaVs came with the unraveling of their

molecular biology [2]. The NaVs comprise large a subunits

with four homologous domains and two noncovalently

linked b subunits. The a subunits are the pore-forming

proteins and are encoded by nine distinct genes. The

channels formed are referred to NaV1.1–1.9. These chan-

nels can be blocked nonselectively with the class of drugs

known as local anesthetics. They are ‘‘local’’ because

systemic blockade of all NaVs is lethal, limiting their utility

in the treatment of visceral diseases.

Proof of Concept

Local anesthetics have been tried in proof-of-concept trials

for NaV blockade in cough. Although local treatment with

lidocaine inhibits cough evoked by mechanical stimulation
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of the larynx/trachea, and nebulized lidocaine causes a

short-lasting partial inhibition of cough induced by inhaled

capsaicin [3], it has thus far shown to be of little use in the

treatment of pathological cough. Case reports show the

antitussive efficacy of nebulized lidocaine in patients with

chronic cough [4, 5], but in a large study examining cough

in COPD, lidocaine was not effective [6]. An oral formu-

lation of benzonatate, a derivative of the local anesthetic

procaine, is used for the treatment of cough, but the evi-

dence of its effectiveness is scanty [7]. The lack of

impressive efficacy of nebulized lidocaine or oral benzo-

natate should not, however, be taken as a lack of ‘‘proof-of-

concept’’ for NaVs in the treatment of cough. Local anes-

thetics have relatively low affinities for NaVs, and it is

likely that at the doses that can be administered safely, they

only weakly and briefly inhibit NaVs in the afferent C-fiber

and A-fiber terminals involved in cough. More potent

nonselective NaVs are available, but severe toxicity pre-

vents their use in humans. For example, tetrodotoxin

(TTX) blocks seven of the nine NaVs (all except NaV1.5,

1.8 and 1.9) with *1000 times greater potency than lido-

caine. Systemic administration of this toxin however leads

to rapid death that is likely secondary the paralysis of

respiratory muscles.

All peripherally acting stimuli for cough must first

interact with afferent nerve terminals to cause a membrane

depolarization. This initial stimulus-dependent depolariza-

tion is referred to as a ‘‘generator potential’’ (Fig. 1). The

nature of the activating stimuli for the Ad-fiber ‘‘cough

receptor’’ terminal in the large airways appears to be rel-

atively limited [8]. In guinea pigs, the A-fiber cough

receptor is stimulated by punctuate mechanical perturba-

tion of the epithelium and by rapid decreases in pH; it is by

in large not stimulated by mediators of inflammation. The

vagal airway afferent C-fibers, by contrast, have a much

more promiscuous activation profile. Depending on the

C-fiber subtype, these nerves can be activated by numerous

chemicals and inflammatory mediators. In many cases,

these stimuli lead to generator potentials by stimulating

ionotropic receptors. Stimuli that gate ionotropic receptors

include ATP acting via P2X2/3 receptors, 5-HT acting via

5-HT3 receptors, nicotine via nicotinic receptors, and the

panoply of irritating substances that can activate TRPV1 or

TRPA1 channels. Certain mediators that stimulate G-pro-

tein receptors also can lead to generator potentials in vagal

afferent C-fibers in the airways. These include bradykinin

via B2 receptors and adenosine via A1 and A2A receptors

[9–14].

Generator potentials are of little consequence unless

they are of a rate and magnitude sufficient to trigger an

action potential. Short of this, generator potentials elec-

tronically decline to the resting potential over a time and

distance that is based on the time and space constant of the

nerve membrane. The triggering of the action potential

occurs only when the voltage threshold of NaVs is reached,

the channels are opened, and the rush of sodium ion tra-

verses the membrane (Fig. 1). When NaVs in vagal afferent

nerves are blocked, action potentials are not generated, and

GENERATOR POTENTIAL

ACTION POTENTIALS

Stimulus Gates ion channels:

NaV

Mechanical sensing ion channel
Acid sensing ion channel

Ionotropic receptors
TRP channels

etc. 

Brainstem

Afferent nerve terminal

Fig. 1 Illustration of the concept of afferent nerve terminal activa-

tion. Stimuli act on various receptors and ion channels to cause a

membrane depolarization that is referred to as the generator potential.

This in turn activates voltage-gated sodium channels (NaV) that are

responsible for action potential generation and conduction to the

central terminal in the brainstem. The yellow image is an actual

guinea pig vagal afferent nerve terminal. The example of a generator

potential is actually a depolarizing potential recorded with patch

clamp technology at the level of the cell soma (due to technical

difficulties, generator potentials have not yet been recorded at vagal

afferent nerve terminals)
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the communication between the innervated organ and CNS

is silenced. In other words, blockade of NaVs is a form of

‘‘chemical denervation’’ every bit as effective as surgical

sectioning of the nerve. If you silence the communication

between the respiratory tract (and perhaps esophagus) and

the brainstem, there will be no urge-to-cough initiated from

peripheral sources (although voluntary cough and psycho-

genic cough would be unaffected). In a sense, the proof of

concept for NaV blockade in cough can be found in double-

lung-transplant patients, where indeed it is not excessive

coughing but a lack of coughing that poses the potential

problem [15].

Selective NaV Blockade for Cough

The NaV1 subtypes (NaV1.1–NaV1.9) are differentially

distributed among neurons, cardiac muscle, and skeletal

muscle [2]. For example, the NaV involved in action

potential generation in skeletal muscle is largely NaV1.4,

the NaV expressed in cardiac myocytes is principally 1.5,

and the neurons in the brain express largely NaV1.1, 1.2,

1.3, and 1.6. This differential distribution paves the way for

developing selective NaV blockers with therapeutic indexes

much greater than can be obtained with nonselective local

anesthetics. The question arises, what types of NaVs are

expressed by afferent neurons involved in the cough reflex?

This important issue has received relatively little experi-

mental attention, but in guinea pigs, the vagal afferent

A-fiber cough receptors and C-fiber neurons innervating

the respiratory tract were found to express primarily

NaV1.7, NaV1.8, and NaV1.9 [16, 17] (Fig. 2). This is

potentially very encouraging information, because these

channels have a relatively limited expression elsewhere in

the body [18]. They are not expressed by skeletal or cardiac

muscle and scantly expressed in the CNS. They are

strongly expressed in small diameter, presumed nocicep-

tive, neurons in the dorsal root ganglia. This has led to the

hypothesis that NaV1.7, 1.8, and 1.9 may play important

roles in transmitting pain signals to the brain [19–21].

Accordingly, the past decade has witnessed intensive

efforts within the pharmaceutical industry towards dis-

covering selective NaV1.7, 1.8, and 1.9 blockers for the

treatment of neuropathic and inflammatory pain. Several

companies have developed safe NaV blockers that are in

various stages of development [21]. The time is ripe to

investigate the potential of these same products for

peripheral acting antitussive agents.

NaV1.7

Among the three principal NaVs expressed in airway spe-

cific vagal afferent neurons (NaV 1.7, 1.8, and 1.9), NaV1.7

is the only one that is sensitive to blockade with TTX.

Fig. 2 Relative expression of NaV1.1–1.9 in neurons situated in the

guinea pig nodose and jugular ganglia as determined using real time

quantitative PCR. For more details of NaV expression in airway-

specific nodose and jugular ganglia see [16] and [17]
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Fig. 3 Patch clamp recordings of a vagal sensory nodose neurons

isolate from a control guinea pig (left) or a guinea pig that was

previously treated with NaV1.7shRNA to block expression of NaV1.7

channels (right). a Example of an experiment in which the amount of

depolarizing current required to evoke an action potential was

determined. In this control neuron 20 pA was required, whereas in the

NaV1.7 shRNA treated neuron 80 pA was required. The aver-

age ± SEM from 12 experiments is stated below the figures. b The

frequency of action potential discharge in response to a supramaximal

1 s depolarizing current was determined; note how the frequency of

firing is reduced in the absence of NaV1.7. For details see [17]
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NaV1.8 and 1.9 are TTX-resistant channels. TTX is

effective at blocking action potential conduction in vagal

afferent nerve fibers [17, 22]; therefore, it is likely that

NaV1.7 plays an important role in this regard as well. This

hypothesis was addressed using NaV1.7 shRNA delivered

to the vagal sensory neurons via adeno-associated virus

(AAV) in vivo [17]. This treatment nearly abolished

expression of NaV1.7 without influencing expression of

other NaVs in the transfected vagal neurons. In the absence

of NaV1.7, the neurons were much less excitable (required

a much larger depolarizing stimulus to evoke an action

potential), and they were incapable of firing action poten-

tials at high frequencies (Fig. 3). This latter point is rele-

vant in that cough is preferentially triggered by high

frequency action potential input to the brainstem [23, 24].

When the vagus nerve was isolated from animals in which

the expression of NaV1.7 was silenced, the number of

afferent nerve fibers capable of conducting action poten-

tials was substantially inhibited. Thus, inhibiting the

expression of NaV1.7 recapitulates many of the effects of

TTX on vagal afferent nerves. It was not surprising

therefore, that a lack of NaV1.7 was associated with inhi-

bition of C-fiber and Ad-fiber mediated cough in guinea

pigs [17, 25].

Another point making NaV1.7 an attractive target for

inflammatory associated cough is the observation that P38

mitogen-activated protein kinase and ERK kinases can lead

to channel phosphorylation and a consequent increase in

the sodium current density [26]. Inflammation also has

been associated with an increase in expression of NaV1.7

[27]. A NaV1.7 blocker, at the right dose, therefore may

normalize the hyper-excitable state of afferent terminals at

the sites of inflammation. A rare loss-of-function mutation

in NaV1.7 leads to a congenital insensitivity to pain, yet

with otherwise normal neuronal function and normal sen-

sations to other non-painful stimuli [28], although a recent

report indicates that those with this mutation also have a

diminished sense of smell [29]. The cough sensitivity in

these subjects has not been evaluated.

NaV1.8

In the presence of TTX (that blocks NaV1.1–NaV1.7),

depolarizing current leads to a relatively large, fast, inac-

tivating sodium current, in airway-specific sensory neurons

that is likely secondary to the gating of NaV1.8. Elegant

modeling has indicated that along with NaV1.7, NaV1.8 has

a substantive effect on the neurons excitability and capacity

for action potential discharge in vagal sensory neurons

[30]. Studies in both spinal afferent neurons [31] and in

vagal afferent neurons [32] have demonstrated that

inflammatory mediators known to increase the excitability

of afferent C-fibers and increase cough sensitivity [33] can,

by multiple mechanisms, lead to NaV1.8 phosphorylation

and an increase in sodium current density. NaV1.8 (as with

NaV1.7 and NaV1.9) also appears to be upregulated trans-

criptionally by inflammatory processes [27]. As with

NaV1.7, inhibiting NaV1.8 may therefore normalize

C-fibers that are in a hyperexcitable state due to an

inflammatory reaction. Consistent with this idea, blocking

NaV1.8 has little effect on the response to painful stimuli in

healthy animals, but profoundly inhibits the hyperalgesia

in response to inflammatory lesions [19, 34]. There is no

information on the effect of NaV1.8 blockade specifically

on cough associated afferent nerves.

NaV1.9

The other TTX-resistant current in vagal afferent neurons

involved in cough is activated at membrane potentials closer

to the resting potential, and unlike NaV1.7 and NaV1.8 results

in a persistent very slowly inactivating current. The slowly

inactivating NaV current is largely gone in neurons from

NaV1.9 knockout mice [35]. NaV1.9 is strongly expressed in

C-fibers and A-fibers involved in the cough reflex in guinea

pigs [16], but there is no information on how this channel

modulates cough sensitivity. Once again, we are left with

studies on pain sensations for potential analogies [36].

Inflammatory mediators, such as PGE2, shifts the steady-state

activation of this channel in a hyperpolarizing direction,

which might be expected for a mechanisms that could

increase nerve excitability [37]. As with NaV1.8, when

NaV1.9 is genetically deleted, there is little change in the

response of the healthy mouse to various painful stimuli.

However, the hyperalgesia that accompanies the injection of

various inflammatory mediators, such as bradykinin and

PGE2, is absent in NaV1.9 -/- mice [35]. Certain models of

inflammation-induced hyperalgesia are normalized in NaV1.9

-/- mice [35]. Likewise, inflammation associated bladder

hyperreactivity is diminished in NaV1.9 -/- mice [38].

Advantages of Targeting NaVs for Cough

Blocking NaVs will decrease the efficacy by which gen-

erator potentials lead to action potentials in all afferent

nerve terminals. It will also lead to a decrease in the action

potential discharge frequency conducted in the vagal

afferent nerves to the brain stem. This will be the case

irrespective of the nature of the stimuli that induces the

generator potential. A decided advantage of NaV blockers

in cough is that in theory they will be equally effective at

quelling cough evoked by stimuli as disparate as mechan-

ical perturbations, acid, osmotic changes, TRPV1 stimu-

lants, TRPA1 stimulants, bradykinin, ATP, and various

inhaled irritants.
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NaV blockers could conceivably be administered topi-

cally via aerosol, but due to the relatively limited expres-

sion of NaV1.7, 1.8, and 1.9, these drugs are likely to be

relatively safe given systemically. This could be an

advantage when the afferent nerve driving the pathological

cough is situated outside the airway wall, e.g., in the nasal

mucosa, oral pharynx, or esophagus.

The third advantage of targeting NaVs is based on the

studies showing that NaV1.7, 1.8, and 1.9 are all ‘‘upreg-

ulated’’ in the presence of inflammation, and specific

inflammatory mediators [27]. It is possible that targeting

these channels could block the hypertussivity and allotus-

sivity associated with pathological cough without inhibit-

ing the protective cough reflex.

Disadvantages of Targeting NaVs for Cough

Although the NaVs expressed in cough causing afferent

nerves have a limited distribution in the body, there is little

evidence that subtypes of vagal afferent C-fibers and

A-fibers differentially express NaVs. Therefore, if the NaVs

were maximally blocked, one would anticipate that the

protective cough reflex could be compromised. Based on

the limited information available, this is likely to be truer

for NaV1.7 than either NaV1.8 or NaV1.9. This concern

would need to be addressed in dose-ranging studies where

the goal is to normalize the hypertussive state, without

severely compromising the protective cough reflex. Studies

performed in guinea pigs suggest that NaV1.7, NaV1.8, and

NaV1.9 are not only expressed in vagal C-fibers and A-fiber

cough receptors, but also expressed in rapidly and slowly

adapting low threshold stretch sensitive nerves in the lungs

(RARs and SARs) [16]. The effect of inhibiting NaVs in

these afferent nerve subtypes may at least potentially lead

to unwanted side effects. Little is known about the NaV

expression in autonomic nerves in the airways. Inhibition

of neural control of vascular tone in the respiratory tract

could potentially raise concerns.
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