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Abstract There is extensive epidemiologic and experi-

mental evidence from both animal and human studies that

demonstrates detrimental long-term pulmonary outcomes

in the offspring of mothers who smoke during pregnancy.

However, the molecular mechanisms underlying these

associations are not understood. Therefore, it is not sur-

prising that that there is no effective intervention to prevent

the damaging effects of perinatal smoke exposure. Using a

biologic model of lung development, homeostasis, and

repair, we have determined that in utero nicotine exposure

disrupts specific molecular paracrine communications

between epithelium and interstitium that are driven by

parathyroid hormone-related protein and peroxisome pro-

liferator-activated receptor (PPAR)c, resulting in transdif-

ferentiation of lung lipofibroblasts to myofibroblasts, i.e.,

the conversion of the lipofibroblast phenotype to a cell type

that is not conducive to alveolar homeostasis, and is the

cellular hallmark of chronic lung disease, including

asthma. Furthermore, we have shown that by molecularly

targeting PPARc expression, nicotine-induced lung injury

can not only be significantly averted, it can also be rever-

ted. The concept outlined by us differs from the traditional

paradigm of teratogenic and toxicological effects of

tobacco smoke that has been proposed in the past. We have

argued that since nicotine alters the normal homeostatic

epithelial-mesenchymal paracrine signaling in the devel-

oping alveolus, rather than causing totally disruptive

structural changes, it offers a unique opportunity to pre-

vent, halt, and/or reverse this process through targeted

molecular manipulations.
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Introduction

Tobacco smoking and exposure to second-hand smoke,

biofuel smoke from cooking stoves, and breathed air pol-

lutants are widely accepted to be causative factors for

childhood asthma and chronic obstructive pulmonary dis-

ease (COPD) affecting nearly 3 billion people worldwide,

predominantly in China, India, and Africa; however, over

15% of COPD occurs in nonsmokers [1]. Chronic

obstructive pulmonary disease is irreversible and difficult

to treat. Recent studies suggest that exposure of the

developing fetal lung in smoking mothers increases the

baby’s susceptibility to childhood asthma and possibly

COPD in later life. Because of the lack of direct experi-

mental evidence, nicotine purportedly does not cause

COPD [2]. However, recent data clearly demonstrate that

nicotine is directly and specifically responsible for induc-

ing differentiation of developing lung cells from the normal
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to abnormal phenotype [3–5]. These studies, which focused

on understanding the mechanistic effects of nicotine

exposure on the developing lung, offer the hope that the

compromised lung structure and functions in chronic lung

diseases (CLDs) such as asthma and COPD could in the

future be reversed to normalcy through pharmacological

interventions of specific target molecules.

Barker Hypothesis for CLD

Tager et al. [6] had first shown that side-stream smoke

affected fetal lung development in a landmark study of the

effects of smoke exposure on neonatal pulmonary function.

In a follow-up study it was shown that the levels of the

nicotine metabolite cotinine in amniotic fluid correlated

positively with the amount of cortisol, known to stimulate

lung development [7]. This interrelationship was consistent

with the burgeoning concept that antenatal factors could

affect normal lung development—infection, hydramnios,

hormones, and nutrients. Such thinking expedited Barker’s

hypothesis that chronic diseases have their origins in utero

[8]. The then recent breakthrough success of antenatal

glucocorticoids to prevent respiratory distress syndrome

further supported the concept that the long-term conse-

quences of intrauterine lung development could be cor-

rected by the judicious use of physiopharmacologic agents

[9].

Biologic Model of Lung Development, Homeostasis, and

Repair

The molecular mechanisms of lung injuries due to a wide

variety of perinatal insults such as barotrauma, oxotrauma,

and infection have been recently elucidated by using a

cellular/molecular model of normal lung development

(Fig. 1) [10–13]. By experimentally determining how nic-

otine affects the integrated cell-cell signaling mechanism,

this review describes the site and gene regulatory networks

involved in nicotine’s effects on lung structure and func-

tion, as a precursor of CLD.

Fostered by the seminal observation that glucocorticoids

accelerate alveolar type II (ATII) cell surfactant synthesis

by stimulating fibroblast synthesis and secretion of a low-

molecular-weight peptide termed fibroblast pneumocyte

factor [14], a paracrine growth factor model for the mat-

uration of the pulmonary surfactant system, based on

classic mesenchymal-epithelial interactions, has been

developed (Fig. 1, steps 1–7). It had previously been

shown that mesodermal development was under endocrine

control and that early signals emanated from the epithelium

to cause differentiation of the immature mesenchyme in the

neighboring epithelium [15]. Furthermore, Brody’s group

originally showed that the developing lung fibroblast

acquired an adipocyte-like phenotype termed the ‘‘lipid-

laden fibroblast,’’ leaving open the question as to whether

these cells might be a source of lipid substrate for surfac-

tant synthesis by the ATII cell [16]. Extending these

observations, it was discovered that coculture of lipid-laden

fibroblasts with type II cells resulted in the trafficking of

the lipid from the fibroblast to the type II cell and its highly

enriched incorporation into surfactant phospholipids, par-

ticularly when treated with glucocorticoids, suggesting a

specific regulated mechanism for neutral lipid trafficking

[17]. Interestingly, the fibroblasts take up neutral lipid but

do not release it unless they are in the presence of type II

cells; conversely, the type II cells are unable to take up

neutral lipid. These observations led to the discovery that

type II cell secretion of prostaglandin E2 caused the release

of neutral lipid from the fibroblasts, but the nature of the

lipid uptake mechanism by the type II cells remained

unknown [18]. However, it had been shown that the syn-

thesis of pulmonary surfactant was an ‘‘on-demand’’

Fig. 1 Coordinating effects of stretch on alveolar type II (ATII) cell

expression of PTHrP and prostaglandin E2 (PGE2) (step 1), the

expression of LIF PTHrP receptor (step 2), its downstream target LIF

ADRP (step 3) and triglyceride uptake (step 4), and the interaction

between LIF-produced leptin (step 5) and the ATII cell leptin receptor

(step 7), which stimulates de novo surfactant phospholipid synthesis

by ATII cells (step 7). We have also reported that stretching ATII

cells in culture increases the production of PTHrP and leptin [1]. The

effects of PTHrP and leptin are mutually exclusive, i.e., independent

and unidirectional, since LIFs express the PTHrP receptor and leptin,

but fetal ATII cells do not, although it should be noted that adult ATII

cells do; conversely, ATII cells express PTHrP and the leptin

receptor, but fibroblasts do not. Although it is difficult to compare the

independent quantitative effects of stretch on PTHrP and leptin with

their integrated effects on de novo surfactant phospholipid synthesis,

the fold increase in each approximates the combined effect. Exposure

to conditions such as hyperoxia, infection, nicotine, and/or fetal

nutrient restriction can have molecular effects on the epithelial (step

8) and mesenchymal (step 9) cells
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system in which increased respiration resulted in increased

surfactant production [19–21], suggesting a stretch-sensi-

tive signal from the type II cell. This led to studying the

role of parathyroid hormone-related protein (PTHrP) in

lung development because (1) it was expressed in the

embryonic endoderm [22]; (2) its receptor was present on

the adepithelial mesoderm [23]; (3) it had been shown to be

a stretch-regulated gene in the urinary bladder [24] and

uterus [25], and distension of the lung was known to be of

physiologic importance in normal lung development [26];

and (4) knockout of PTHrP caused stage-specific inhibition

of fetal lung alveolarization in the transition from the

pseudoglandular to the canalicular stage [27].

Early functional studies of PTHrP showed that it was a

paracrine factor that stimulated surfactant phospholipid

synthesis [28] and that it was stretch-regulated [29]. It was

subsequently discovered that PTHrP stimulated neutral lipid

uptake by the developing lung fibroblast (*lipofibroblasts)

[30] by upregulating adipocyte differentiation-related pro-

tein (ADRP), a molecule shown to be necessary for lipid

uptake and storage [31], which was subsequently found to be

necessary for the transit of neutral lipid from the lipofibro-

blast to the ATII cell for surfactant phospholipid synthesis

[32]. However, how PTHrP regulated lung surfactant via a

lipofibroblast paracrine factor was still not known. Since

lipofibroblasts are similar to adipocytes, it was hypothesized

that lipofibroblasts would, like fat cells, express leptin, which

would then bind to the type II cell and stimulate surfactant

synthesis. Indeed, lipofibroblasts were shown to express

leptin during rat lung development just prior to the onset of

surfactant synthesis by type II cells [33]. Importantly, type II

cells express the leptin receptor, thus providing a ligand-

receptor signaling pathway between the lipofibroblast and

the type II cell [34]. PTHrP was shown to stimulate leptin

expression by fetal lung fibroblasts, thus providing a com-

plete growth factor-mediated paracrine loop for the synthesis

of pulmonary surfactant, as predicted by the PTHrP-based

model of lung development [34].

Because the major effectors of normal lung develop-

ment, such as barotrauma, oxotrauma, and infection, cause

alveolar type II cell injury and damage, the effects of

PTHrP deprivation on the lipofibroblast phenotype was

next examined. It was discovered that in the absence of

PTHrP, the lipofibroblast transdifferentiates to a myofi-

broblast, the cell-type that characterizes lung fibrosis [35].

Furthermore, myofibroblasts cannot sustain type II cell

growth and differentiation whereas the lipofibroblast can,

demonstrating the functional significance of these two

fibroblast phenotypes for lung development. Importantly,

when myofibroblasts are treated with a PPARc agonist they

revert back to the lipofibroblast phenotype, including their

ability to promote type II cell growth and differentiation

[35].

Effects of Nicotine on the Developing Lung

Tobacco smoke exposure of the developing infant in a

pregnant woman who smokes begins in utero and continues

throughout the fulminate period of lung development (up to

age 8 years). There are well-documented short- and long-

term effects of smoke exposure on lung physiology and

pathophysiology that have life-long consequences. There is

strong epidemiologic and experimental evidence that fetal

exposure to maternal smoking during gestation results in

detrimental long-term effects on lung growth and function

(Table 1) [36–55]. Significant suppression of alveolariza-

tion, functional residual capacity, and tidal flow volume

has been demonstrated in the offspring of women who

smoked during pregnancy. It is important to emphasize that

the main effects of in utero nicotine exposure on lung

growth and differentiation are likely the result of specific

alterations in late fetal lung development rather than its

teratogenic or toxicological effects. These alterations in

specific developmental and maturational programs may be

subtle and thereby may explain significant long-term

adverse pulmonary outcome with only minor immediate

effects. The premise, therefore, is that nicotine exposure

modifies physiologic development, i.e., its effects are part

of the continuum of normal lung development, and there-

fore should be viewed as such and not as the traditional

paradigm of teratogenic and toxicological effects of

tobacco smoke. If this premise is valid, it allows for pos-

sible corrective treatment based on developmental and

physiologic principles, whereas toxic, teratogenic effects

would be less likely to be reversed since they lack an

integrated, physiologic process. The underlying mecha-

nisms and effector molecules involved in this process are

not completely understood. However, it has been shown

convincingly that in utero nicotine exposure disrupts spe-

cific molecular paracrine communications between epi-

thelium and interstitium that are driven by PTHrP and

PPARc (see above), resulting in transdifferentiation of lung

lipofibroblasts to myofibroblasts [3–5], i.e., the conversion

Table 1 Adverse effects of cigarette smoking during pregnancy on

offspring pulmonary structure and function

1. Hypoplastic lungs with fewer air saccules [39–41]

2. Increased predisposition to both upper and lower respiratory tract

infections [44–46]

3. Altered respiratory control and increased predisposition to sudden

infant death syndrome [47, 48]

4. Persistently reduced pulmonary function [42, 43, 49, 50, 75]

5. Increased incidence and severity of pediatric asthma [51, 52]

6. Increased incidence of adult asthma and chronic obstructive

pulmonary disease [53–55]
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of the lipofibroblast phenotype to a cell type that is not

conducive to alveolar homeostasis and is the cellular

hallmark of CLD, including asthma [56]. We had previ-

ously clearly demonstrated that PPARc expression is a key

determinant of the lipofibroblast phenotype and that by

molecularly targeting PPARc expression, nicotine-induced

lung injury can be significantly averted under both in vitro

and in vivo conditions [3–5].

Evidence that Nicotine is the Main Agent that Causes

Lung Injury in the Developing Fetus of the Pregnant

Smoker

Although some of the effects of maternal smoking on the

developing lung have been suggested to be stress-induced,

the direct effects of maternal smoke on prenatal lung

growth are constrained only by those components of

maternal smoke that are transferred across the placenta.

Although there are many agents in smoke that may be

detrimental to the developing lung, there is evidence to

support the idea that nicotine directly alters fetal lung

development. Nicotine crosses the human placenta with

minimal biotransformation to its metabolite cotinine [57].

It is accumulated in fetal blood, maternal milk, and

amniotic fluid despite increased nicotine clearance during

pregnancy, resulting in the fetus being exposed to even

higher levels than those of the smoking mother [58–60].

Nicotine accumulates in several fetal tissues, including the

respiratory tract [61], thereby suggesting nicotine as the

likely agent that alters lung development in the fetus of the

pregnant smoker. This is also supported by in vitro work

done by others and by our data that show direct effects of

nicotine on pulmonary ATII cells and fibroblasts isolated

from the developing lung [61–63].

Level of Nicotine Exposure in Smokers

Although the dose of in vivo nicotine used in various

studies to determine its systemic effects has ranged from

0.25 to 6 mg/kg, the range of nicotine intake in habitual

smokers in one study was 0.16 to 1.8 mg/kg body weight

[64, 65]. Because of this and the accelerated nicotine

clearance during pregnancy in animal studies, the standard

dose of nicotine used to mimic nicotine exposure in human

smokers is 0.5 to 2.0 mg/kg per day, which is equivalent to

an exposure to light (0.5 pack day-1) to moderately heavy

(2 pack day-1) smoke exposure [64–68]. Typically, nico-

tine patches and gum deliver half to one quarter the nico-

tine dose of cigarette smoking, respectively [66].

Relationship of Maternal Smoking to Prenatal

and Postnatal Lung Growth

There is extensive evidence from both animal and human

studies of the reduction in both prenatal and postnatal lung

growth in the offspring of mothers who smoke during

pregnancy [6, 37–43, 67–77]. Arrested lung growth and

lung hypoplasia have been reported after prenatal nicotine

exposure in animal models [36, 39–41, 61, 65, 69–74, 77].

The hypoplastic fetal lungs of in utero smoke-exposed rat

fetuses contain fewer and larger saccules that are more

compliant and have reduced parenchymal tissue, septal

crests, and markedly reduced surface area available for gas

exchange [39]. It is important to realize that the mecha-

nisms for prenatal and postnatal lung effects are likely to be

different, and evidence suggests that prenatal exposure to

tobacco smoke components may play a much greater role

in altered lung function than postnatal or childhood expo-

sures [75]. The pulmonary changes appear to occur early in

pregnancy because respiratory function in premature

infants of smoking mothers is significantly reduced com-

pared to premature infants of nonsmokers [76].

Specific Cellular and Molecular Effects of Nicotine

on the Developing Lung

Despite decades of research, specific cellular and molecular

effects through which in utero nicotine exposure affects

lung growth, development, and function remain incom-

pletely understood [69]. Various investigators have pur-

sued nicotine’s effects on individual lung cell types or

specific molecular pathways, but none of the models pro-

posed so far explains the morphologic, molecular, and

functional changes seen following in utero nicotine expo-

sure completely. Alveolar type II cell hyperplasia and

abnormal differentiation have been reported in rat and fetal

monkey models of in utero nicotine exposure [61, 67, 74].

In the fetal monkey model, upregulation of a-7 nicotinic

acetylcholine receptors in the lung and an increase in

collagen and elastin deposition in airways were observed

[67]. In the rat model, it was recently demonstrated that in

utero nicotine exposure significantly stimulates ATII cell

proliferation, differentiation, and metabolism [4]. Further-

more, it was shown that the nicotine-mediated stimulation

of surfactant synthesis was by its direct effect on ATII

cells, whereas ATII cell proliferation and metabolism were

mediated via its paracrine effects on the adepithelial

fibroblasts, permanently altering the ‘‘developmental pro-

gram’’ of the developing lung. Nicotine’s effects on lung

fibroblasts have also been explored in rat and monkey

models of perinatal nicotine exposure [67, 71–73]. Under

in vitro conditions it was shown that nicotine exposure
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disrupts epithelial-mesenchymal interactions and causes

lipofibroblast-to-myofibroblast transdifferentiation [3, 5].

More importantly, in these studies, targeting specific

alveolar interstitial fibroblast molecular intermediates

effectively blocked nicotine’s adverse effects on the

developing lung. In addition to nicotine’s effects on ATII

cells and fibroblasts, its effects on pulmonary neuroendo-

crine cells via the activation of the paracrine serotonin

pathway have also been described [78]. Therefore, prenatal

nicotine exposure seems to alter lung development through

multiple pathways, but a clear understanding of the

underlying mechanisms involved and the mechanistic link

between perinatal nicotine exposure and altered pulmonary

structure and function are still not completely understood.

Consequently, it is not surprising that there is no effective

intervention to prevent the damaging effects of in utero

nicotine exposure, though some strategies such as vitamin

C and copper supplementation have been suggested as

attractive options [70, 73]. However, the safety of these

interventions is not established, the mechanisms underlying

possible beneficial effects remain poorly understood, and

the protection afforded is only partial and inconsistent.

Given that despite enthusiastic antismoking campaigns,

12% of U.S. women still smoke during pregnancy, result-

ing in the birth of 450,000 smoke-exposed infants in 2002

[79]. Effective and safe interventions that are based upon a

sound understanding of the molecular mechanisms

involved in nicotine-induced lung injury are needed. Our

studies have begun to precisely address these mechanisms

and have already provided valuable and unique insights [3–

5, 80, 81].

Barring some of the work from our group, reviewed

above, no other studies seem to account for all of the

pulmonary abnormalities seen following in utero nicotine

exposure. For example, the paradox of advanced pul-

monary maturity at birth and ultimate poor long-term

pulmonary outcome is not explained by any of the pre-

viously proposed mechanisms. Since nicotine disrupts the

specific homeostatic epithelial-mesenchymal pulmonary

communications, inhibiting PTHrP/PPARc signaling and

stimulating Wnt signaling, culminating in lipofibroblast-

to-myofibroblast transdifferentiation, this could potentially

explain all of the known long-term pulmonary effects

following in utero nicotine exposure, including the

increased predisposition to childhood asthma [3–5, 80,

81]. Previous observations by others that there is

decreased cellular lipid content and increased mitotic

activity of fetal lung tissue in nicotine-exposed rat pups

versus control pups are also consistent with the lipofi-

broblast-to-myofibroblast transdifferentiation following in

utero nicotine exposure [35, 74]. The advanced pulmon-

ary maturity at birth is explained by the direct pharma-

cologic effects of nicotine on ATII cells that lead to their

pseudomaturation, which because of the breakdown of the

underlying homeostatic epithelial-mesenchymal commu-

nications, ultimately fails, explaining both failed alveo-

larization and increased predisposition to asthma later in

life in in utero smoke-exposed infants. Furthermore, the

molecular basis for the increased generation of lung

myofibroblasts, the key players in the pathophysiology of

asthma and which contribute not only to tissue remodel-

ing but also to airway inflammation, is clearly explained

by the downregulation of PTHrP/PPARc signaling and by

the upregulation of Wnt signaling in nicotine-exposed

lungs. Therefore, in addition to the abnormalities in lung

structure, the increased generation of myofibroblasts in

nicotine-exposed lungs explains the adverse long-term

pulmonary outcomes in infants exposed to smoke during

development [6, 37, 41, 75, 82, 83]. This paradigm pro-

vides a plausible and powerful unifying explanation for

all of the nicotine-associated pulmonary morphometric,

histologic, molecular, and functional abnormalities, set-

ting the stage for not only effectively blocking but also

possibly reversing these alterations by specific molecular

targeting of lipofibroblast PTHrP/PPARc and Wnt sig-

naling intermediates (Table 2) [5].

Table 2 Specific cellular and

molecular effects of nicotine on

the developing lung

Specific cellular/molecular effect Proposed intervention (PPARc
agonist ± Wnt antagonist)

Alveolar type II cell [4, 61, 74]

Altered structure and increased proliferation Normalized proliferation

Increased differentiation Normalized differentiation

Increased surfactant synthesis

Altered glucose and lipid metabolism Normalized glucose and lipid metabolism

Alveolar interstitial fibroblast [3, 5]

Decreased lipofibroblast differentiation Increased lipofibroblast differentiation

Increased myofibroblast differentiation Decreased myofibroblast differentiation

Epithelial-mesenchymal cross-talk [3–5]

Decreased PTHrP/PPARc signaling Increased PTHrP/PPARc signaling

Increased Wnt signaling Decreased Wnt signaling
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In summary, this review provides evidence for nicotine-

induced lipofibroblast-to-myofibroblast transdifferentia-

tion; alterations in ATII cell proliferation, differentiation,

and metabolism; deleterious effects on pulmonary func-

tion; downregulation of the lipofibroblast PPARc signaling

and activation of Wnt signaling; and effective prevention

of nicotine-induced effects on lipofibroblasts, ATII cells,

and pulmonary function by targeting specific molecular

intermediates of the PPARc signaling pathway [3–5, 80,

81]. These findings, for the first time, provide a unifying

mechanistic basis for various pulmonary morphologic and

molecular features that are known to follow in utero nic-

otine exposure. Specifically, the downregulation of PPARc
signaling and the upregulation of Wnt signaling, resulting

in lipofibroblast-to-myofibroblast transdifferentiation, are

likely to be central molecular events in this process. The

lipofibroblast-to-myofibroblast transdifferentiation, along

with abnormal ATII cell proliferation and differentiation,

explains the paradox of advanced pulmonary maturity at

birth and increased predisposition to CLD in in utero nic-

otine-exposed infants.

Antenatal Steroid Administration for RDS as a

Precedent for PPARc Agonist Administration for CLD

Glucocorticoids have been used effectively to reduce the

risk of respiratory distress syndrome (RDS) for over

30 years [9, 84]. This breakthrough in treating the fetus as

a patient was preceded by extensive studies of the effects

and mechanism of glucocorticoid action on normal lung

development. The first double-blind clinical trial of glu-

cocorticoid effects on lung development published in 1972

showed that it was safe and effective in lowering the

incidence of RDS. However, there were aspects of the

treatment that were of concern, namely, the lack of a sta-

tistically significant effect in males. A subsequent series of

studies revealed that the male hormone inhibited the effect

of glucocorticoids on the differentiation of the lung fibro-

blasts [85–87]. More recent studies of the mechanism of

androgen action have shown that androgens stimulate the

Wnt pathway by increasing b-catenin expression [88];

similar results have been obtained with nicotine [80, 81],

suggesting a common pathway for androgen and nicotine

blocking glucocorticoid-induced fetal lung development.

However, PPARc agonists can effectively block the

inhibitory effect of nicotine on fetal lung fibroblast dif-

ferentiation [3–5]. Bearing in mind that antenatal gluco-

corticoids have a less than optimal effect on fetal lung

development, testing the effects of antenatal and postnatal

PPARc agonists on this process is worthwhile and in pro-

gress [89]. Promising preliminary data show that PPARc
agonists accelerate lung development and that its effect is

non-gender-dependent, calling for a clinical trial of this

therapy in the near future.

Conclusion

Given that more than 400,000 infants are exposed to

maternal smoke per annum in the US alone, maternal

smoking is a huge worldwide public health problem. And

given that the cost of advertising for smoking increased by

over one billion dollars from 2001 to 2002, it is unlikely

that the problem of smoking during pregnancy will go

away any time soon. Therefore, the organ-specific mech-

anisms for the harmful effects of in utero smoke exposure

need to thoroughly understood before there is any real

chance of its prevention. For example, with the approaches

adopted so far, the mechanism for the 40% increase in

clinically impaired lung function of the in utero smoke-

exposed infants on follow-up is not known. As reviewed

here, in utero nicotine exposure disrupts the homeostatic

alveolar interaction between the alveolar lung fibroblast

PPARc and Wnt signaling pathways, offering a unique

mechanistic perspective and an exceptional translational

opportunity. This concept differs from the traditional par-

adigm of the teratogenic and toxicological effects of

tobacco smoke that has been proposed to underlie nicotine-

related pulmonary damage in the past. Since nicotine

seems to alter the normal homeostatic epithelial-mesen-

chymal paracrine signaling in the developing alveolus,

rather than causing totally disruptive structural changes,

there is a distinct opportunity to prevent, halt, and/or

reverse this process through targeted molecular manipula-

tions, e.g., PPARc administration. And because of the

relatively recent exposure of humans to cigarette smoke, it

is likely that elucidation of the deleterious effects of nic-

otine on the lung will help in understanding other chronic

lung diseases due to failed cell-cell signaling as well.
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