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Acronychal Risings in Babylonian Planetary Theory
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Communicated byN. M. Swerdlow

The Astronomical Diaries (ADT), and a few known collections for individual planets,
contain observations of five synodic phenomena of superior planets: heliacal rising (0),
first station (8), acronychal rising (2), second station (9), and heliacal setting (�). A
date is given for each, in the case of0 often both an observed date and a ‘true’ or ‘ideal’
date on which the rising is considered to have occurred even if it was not observed, as due
to clouds, found by a measurement of the interval in degrees of time between the rising
of the planet and the rising of the sun. However, location is recorded differently for each
class of phenomena. Heliacal risings and settings,0 and�, are located by zodiacal sign,
or by beginning or end of zodiacal sign. In some cases0 contains a measured distance
from a nearby ‘normal’ (standard) star or planet, for conjunctions of planets with stars or
with each other were considered ominous. But it does not appear that measurements of
distances from stars at0 were used to establish location more precisely than by zodiacal
sign, and distances from planets cannot be used to establish location. First and second
stations,8 and9, usually contain a measured distance from a normal star, presumably
to determine when the planet was stationary, but sometimes only a location by zodiacal
sign. Acronychal rising2 contains no location at all. It could have been assumed that
the planet was in the zodiacal sign opposite the sun, but no location for the sun is given
in the Diaries. (It is curious that acronychal risings were observed at all since there are
no omens associated with them. Yet an acronychal rising of Jupiter appears already in
the second earliest known Diary, ADT -567, and one may wonder why.) Sometimes
observations contain the remark ‘not observed’ (nu pap), which presumably indicates
an inference of the date and location from nearby preceding or following observations.

The dates and longitudes of the same phenomena reported in the Diaries are computed
in the ephemerides to a degree of precision exceeding the observations in the Diaries.
The ephemerides are published in ACT, and the further analysis in HAMA is essential.
In a recent study of Babylonian planetary theory (Swerdlow, 1998), I set out a method
by which the parameters of the ephemerides can be derived from synodic times between
phenomena, recoverable from the dates in the Diaries, and locations no more precise
than by zodiacal sign. The method depends upon a constant difference between synodic
time and synodic arc,DT − Dλ = C, found in the ephemerides of all planets except
Venus, which allowsDλ to be found fromDT . With the exception of2 and9 of Mars,
which occur in the retrograde arc, the ephemerides use the same functions for computing
all phenomena of the superior planets by complete synodic arcs and synodic times even
though the synodic arcs and times between consecutive heliacal risings or settings, which
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depend upon the latitude and brightness of the planet and the inclination of the ecliptic to
the horizon, differ from those between consecutive first or second stations, which depend
only upon the longitude, and thus the speed, primarily of the planet and secondarily of
the sun. The ephemerides use methods based upon a variation of speed, of the planet
alone but treated as of the phenomenon itself, specifying that the phenomenon moves
through synodic arcDλ in synodic timeDT , in the case of System A as a function of
longitude, in the case of System B as a function of the number of the phenomenon in
the ACT period, which is nevertheless close to a function of longitude for Saturn and
Jupiter although the departures for Mars are considerable.

Because of the inaccuracy of the observations in the Diaries in the dates of phe-
nomena, frequently amounting to 2 or 3 days or even more, it is not clear just how the
maximum and minimum limits of the synodic time, upon which the parameters depend,
were selected. In our study, we provided figures (2.2–2.4) comparing synodic times
from (1) the computed functions of the ephemerides, (2) the observations recorded in
the Diaries and other collections, and (3) modern computations of heliacal risings, using
for this purpose a computer program of our own, intended to duplicate Tuckerman’s
tables (1962), and P. V. Neugebauer’s visibility tables (1938), throwing together, we
fear, too much disparate information in the same figures. Further, we had noted that A.
Aaboe (1958, 247–51) had found a nearly perfect agreement of System A for Mars with
synodic arcs derived from the longitudes of oppositions, which are close to acronychal
risings, but we did not investigate the matter further and assumed that, with the excep-
tion of Mars, for which dates of acronychal risings were preferable, dates of heliacal
risings were used to establish synodic times since, through the use of rising times to
determine the ‘true’ date, they appear to have been the most carefully observed. We
have now carried out computations for all three superior planets, something we should
have done in the first place, of (1) synodic times from oppositions as an approximation
and control of acronychal risings, (2) synodic times from a provisional computation of
acronychal risings, and (3) synodic arcs from first stations, all of which we compare
with the functions in the ephemerides.

The results are shown in Figs. 1–3 A and B. In A,Dt , the excess of the total synodic
timeDT in tithis (τ ) over 12 months= 6,0τ (for Mars 24 months= 12,0τ ) is graphed
against longitudeλ by zodiacal sign. The solid lines are the computed System A function,
the broken lines the linear zigzag of System B with small squares showingλ for eachDt ,
for Jupiter from ACT 620a and for Mars from ACT 510 extended by computation; for
Saturnλ falls nearly on the zigzag and is not illustrated. The open circles showDt between
heliacal risings taken from our original figures (2.2–2.4) and the filled circlesDt between
true oppositions computed from the same program. I have computed oppositions as a
control of acronychal risings and because it is first necessary to compute opposition in
order to compute acronychal rising. The computation of acronychal risings is explained
in the Appendix. In B we show by filled circles synodic timesDt from acronychal risings
and by open circles synodic arcsDλ from first station, the scale for which is on the right
of the graph. The points are located at the beginning of eachDt andDλ. We begin with the
year -200 (-202 for Mars) and compute the following number of synodic periods: Saturn
29, Jupiter 34, Mars 38. The longitudes are converted to the Babylonian zodiac by adding
6◦, following P. Huber’s (1958) conclusion that the difference for−100 is about 4;30◦;
any inaccuracy, surely no more than 1◦ or 2◦, affects only the placement ofλ and notDt or
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Fig. 1A. Saturn. ComputedDt : Heliacal Rising(◦), Opposition(•)

ObservedDt : Heliacal Rising(∗), Acronycal Rising(+)

Fig. 1B. Saturn. ComputedDt andDλ: Acronychal Rising(•), First Station(◦)

Dλ. The synodic time in days is converted to tithis byDtτ = (30/29;31,50)DT d − 6,0τ

(for Mars 12,0τ ) rounded to integers; on account of the rounding, there are irregularities
in Dt of ±1τ , which we have corrected where interpolation is secure.Dλ in B is graphed
to a precision of 1/18◦ for Saturn and Jupiter and 1/3◦ for Mars, and thus follows a more
continuous curve than the integer steps ofDt . We also show in ADt from the dates of
observations in the Diaries and other collections, those from heliacal risings indicated
by * and from acronychal risings, of which there are not many, by+. Those located by
zodiacal sign are placed in the middle of the sign; a few located by beginning of sign are
placed at 5◦ and a few located by end of sign at 25◦. It can be seen from these figures,
and from the figures (2.2–2.4) in our study, that these are not particularly accurate.

Since our principal interest is the limits of the functions, which were used to derive
the parameters of the ephemerides, the minimum and maximum synodic times and arcs,
Dtm andDtM,Dλm andDλM, are shown in Table 1 for Systems A and B to minutes,
along with what we believe to be the original assumption for the limits of System A of
Mars, which is obviously rounded forDλ. These are followed by modern computation
for heliacal rising0, opposition O, acronychal rising2, and first station8. Dt is given
to the nearest integer andDλ is given as computed, although the true limits, which may
differ slightly, may not have turned up in our computations. Not all of these synodic
times and arcs are recoverable from the Diaries or are strictly observable. Thus, for0Dt

is recoverable from dates, but notDλ since location is imprecise. O is, as mentioned,
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Fig. 2A. Jupiter. ComputedDt : Heliacal Rising(◦), Opposition(•)

ObservedDt : Heliacal Rising(∗), Acronycal Rising(+)

Fig. 2B. Jupiter. ComputedDt andDλ: Acronychal Rising(•), First Station(◦)

intended as a control on the computation of2 and was not, and could not be, observed.
For2Dt is recoverable from dates but notDλ since no locations are given. For8 both
dates and distances from normal stars were recorded in the Diaries, so that if longitudes
could be determined to a precision of, say,±1◦ from such distances,Dλ is recoverable.
However,Dt derived from dates of8 is insecure since the planet moves from not at all
to at most±0;5◦ in ±3 or±4 days around station. Still, dates are given, as insecure as
they may be.

Consider first the relation of the phenomena to the systems for each planet. For
Saturn,Dt of all phenomena agree with the limits of both systems rounded to integers,
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Fig. 3A. Mars. ComputedDt : Heliacal Rising(◦), Opposition(•)

ObservedDt : Heliacal Rising(∗)

Fig. 3B. Mars. ComputedDt andDλ: Acronychal Rising(•), First Station(◦)

and as can be seen in the figures,Dt of O and2 are identical andDλ of 8 tracks System
B very nicely. It is of interest that all known ephemerides for Saturn are System B, while
System A is known only from procedure texts and longitude templates. For Jupiter,DtM
of 0 is clearly beyond both systems,Dt of O and2 are identical, and the limits of O,
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Table 1. Limits of synodic time and arc

Planet Dtm DtM Dλm DλM

Saturn A 23;10τ 25;31τ 11;43◦ 14; 4◦

B 22;41 25;32 11;14 14; 5
Mod. 0 23 26 11;13 14;10

O 23 26 11; 8 14;28
2 23 26 11; 8 14;23
8 23 26 11; 8 14;25

Jupiter A 42; 5 48; 5 30 36
B 40;20 50; 7 28;16 38; 2

Mod. 0 41 52 30; 7 37;19
O 41 49 30; 5 36;41
2 41 49 30; 6 36;43
8 41 49 30; 4 36;40

Mars A 53;37 1,46; 7 30 1,22;30
Orig. A 54 1,44 30 1,20

B 40;57 1,43;45 17;19 1,20; 7
Mod. 0 50 2,26 30;11 1,49;54

O 56 1,44 33;50 1,16;56
2 57 1,46 33;22 1,16;26
8 56 1,42 33;22 1,18;18

2, and8 fall ±1τ between both systems;Dλ of 8 can be seen to track both systems
well except at the limits of B. In the case of Mars,DtM of 0 is, as mentioned earlier, far
beyondDtM of both systems whileDtm is somewhat low for System A. Considering the
large range of Mars’s synodic time and arc, the differences of the limits ofDt andDλ of
O,2 and8 are very small and are close to the limits of System A and the maximum of
System B; nothing is close to the minimum of System B. The closest fit in following the
graph of System A isDλ of 8 andDt of O, of which the latter cannot be observed. In
part the fit is due to the finer resolution ofDλ for 8 in the figures than ofDt to integers,
but Dλ andλ of 8 really do track the functions in the ephemerides quite well for all
three planets.

Consider next the information that may be recovered from the observational reports
and the methods of deriving parameters described in our study, which depend upon the
limits of Dt andDλ. The parameters of both systems of Saturn may be derived fromDt

of 0, 2, and8; Dλ of 8 may be used only by adjustment to very nearly the limits in the
systems. Both systems of Jupiter may be derived fromDt of 2 and8 with adjustments
of ±1τ , and System A may be derived fromDλ of 8 with a slight reduction inDλM. The
limits of Dλ of System B are definitely not observed, but computed fromDλ = DT −C.
System A of Mars may be derived fromDt of 2 and8 andDλ of 8 provided that
adjustments of from 1 to 3 tithis or degrees are made to give the original assumption for
the limits, which amounts to rounding the limits ofDλ to 30◦ and 1,20◦. The latter is also
DλM of System B, of whichDλm, and likewiseDtm, is incompatible with any observation
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and clearly erroneous. And thus with this one exception, with small adjustments both
2 and8 can be used to derive the parameters of all three planets. I must admit that
these results surprised me because2 and8 present problems of observation, while0,
which appears to be the most carefully observed, can be used only for Saturn, probably
not for Jupiter, even with adjustment, and definitely not for Mars. We shall consider the
observational conditions of both2 and8.

Unlike reports of heliacal risings in the Diaries, which contain a date, location, and
measured rising time, reports of acronychal risings give only a date and no location, with
not a clue about how the date was found. In the case of heliacal rising, the planet has
been invisible for some time, and the morning it is first seen a measurement is made of
the interval of time between the planets being observed—not necessarily crossing the
horizon—and the rising of the sun, in order to infer a possible ‘true’ or ‘ideal’ date prior
to the date of the observation, meaning the date the planet should have been seen to rise
had the horizon been clear and an observation made. Some heliacal risings are described
as ‘high’ or ‘bright and high’, which must mean that the planet was already above the
horizon when it was first seen. This is curious because the planet must have crossed the
horizon earlier in the morning when the sky was darker, but evidently the rising itself
was not observed. The intervals between observed and true dates in the Diaries may
reach as high as 20 days for Mars, although for Saturn and Jupiter they are never more
than 6 days and are usually less than 3. In the case of Mars, because of its long period
of invisibility, from 90 to more than 220 days, its faintness near heliacal rising, between
magnitude 2.1 and 1.3, and the effects of twilight, true heliacal risings are difficult to
observe, as shown by the long intervals between observed and true dates. By contrast,
the magnitude near opposition is between−0.7 and−2.5 so the acronychal rising is
more easily visible in twilight.

Acronychal risings are also different because the planet has not been invisible. After
heliacal rising, as the elongation of the planet from the sun increases—most of the motion
actually belongs to the sun—the planet rises earlier each night. Acronychal rising is the
lastevening the planet is seen to rise, to cross the horizon, after sunset, and its date can
only be determined by observing the following night that the planet is already above the
horizon when it becomes visible after sunset. But what if the following night is cloudy?
When did acronychal rising occur? And because of twilight, the planet could, indeed
will, continue to rise after sunset for a few nights but not be visible until it reaches
some altitude. In the absence of any information in the Diaries about measuring the
interval of time between sunset and the rising, or visibility, of the planet, this appears
to be a rather crude observation: the last evening the planet isseento rise after sunset
is acronychal rising even if it continues to rise after sunset for a few nights without
its rising being seen. Or perhaps some correction is applied of which the Diaries give
no information. One can nevertheless see that for Mars, even with this uncertainty of
a few days, acronychal risings are preferable for determining synodic times to the still
greater uncertainty of many more days in heliacal risings. For Jupiter and Saturn, heliacal
risings, with shorter intervals between observed and true dates, would appear to be better
defined than acronychal risings although perhaps the darker horizon at acronychal rising
made its use preferable.

We next considerDλ derived from stations. In order to findDλ from measured
distances from normal stars at stations, two points must be considered, (1) the accuracy
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of measurement of distance and (2) the accuracy of fixing zodiacal longitudes of normal
stars. I was skeptical of the sufficiency of both of these, but extensive discussions with
John Britton in the course of writing this paper has convinced me that my skepticism
was too great. My view was influenced principally by my finding the measurements
rather inaccurate, by the difficulties of measuring distances at heliacal risings rather
than stations, and by the case of Mercury, in which stations were not observed and only
Dt derived from dates of heliacal phenomena could be used. I had also assumed that, large
errors aside—of which the figures in our study (2.2–2.4 for superior planets, 2.10–2.13
for Mercury) show that there were many—the inherent precision of specifying dates,
1τ or 2τ , was better than in measuring distances. John Britton, relying in part on Gerd
Graßhoff’s (1999) analysis, has convinced me that, again large errors aside and without
pressing the statistics too closely, the accuracy of converting measured distances in cubits
and fingers to degrees is about 1◦, and, once again large errors aside, the accuracy of
longitudes of those normal stars for which assigned zodiacal locations are known is
also about 1◦. One could thus expect longitudes derived from measured distances from
normal stars to have a precision of 1◦ or 2◦, comparable to the precision of dates, 1τ

or 2τ , assuming for both that large errors have been eliminated. The resulting synodic
arcs and synodic times would have about the same precision, 1 or 2 degrees or tithis.
And as painstaking as the derivation ofDλ from measured longitudes may be, it would
only have to be done around the limits. I still have strong reservations about whetherDλ

was derived from the conversion of such measured distances to longitudes, because of
the difficulty of the procedure compared with the use of dates to findDt , because there
is no textual evidence that such conversions were ever made, and because I do not see
how the resultingDλ could be adjusted to the required limits for Saturn and System B
of Jupiter. Nevertheless, it appears that in principleDλ could be derived from longitudes
with a precision comparable to the derivation ofDt from dates.

Now, whether we consider synodic times derived from dates or synodic arcs derived
from longitudes, two points must be made which appear contradictory, but are not.
The first is that whatever observations were used to establish limits, they must have
been subject to some kind of analysis to eliminate errors, which occur frequently in
observations of dates, as shown by the errors ofDt in our figures, and presumably also
in observations of longitude. Thus, the observations used to establish the limits must have
been either corrected or of better quality than most of the observations in the Diaries.
For otherwise the limits of the functions would not be as close to the computedDt from
2 andDλ from 8 as they are (again setting asideDλ of System B of Jupiter and the
minimum of System B of Mars). How this was done, I do not know. Presumably it
involved the analysis of some number of observations, and the resultingDt or Dλ, in the
vicinity of the limits, first to eliminate gross errors, then to decide upon correct limits
within the range of±1 or ±2 tithis or degrees still remaining. For this last step, might
one suggest the use of simple statistical techniques by taking mean values in the zodiacal
signs in which the limits occur?

The second point is that, even with careful selection of the limits, the resulting
functions were intended only as approximations to the true behavior of the phenomena.
This can be seen in the different limits of Systems A and B of Jupiter, both of which
cannot be uniquely correct, and in the differences between Systems A and System B in
general. In System ADt andDλ are strictly a function of longitude, but in System B
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they are a function of the number of the phenomenon in the period. The differences in
the correspondence ofDt andDλ to longitude are not great for Saturn and Jupiter, but
are very large for Mars, which could explain why only a single fragment of a System
B ephemeris for Mars is known. Another approximation concerns the relation of the
computed functions to the observations themselves, for which the only reasonable check
throughout the zodiac must beDt . The observations contain many large errors that could
be identified from the resultingDt , but most are also in error by a day or two, resulting
in similar errors inDt , and rather than consider almost all the observations wrong and
the computed function uniquely correct, the computation may have been considered
an approximation to phenomena that were strictly too complex to compute with full
accuracy. This also seems a way of reconciling the concurrent use of Systems A and B
for Jupiter.

Yet another approximation is that the same functions are used for all phenomena of
the superior planets, except2 and9 of Mars, which also raises a question about the
use of2. Here there is no problem for Saturn and only a small error for Jupiter, but in
the case of Mars the errors for0 reach−30◦ and−40τ for the long synodic periods,
which seems intolerable. Then, the longitudes of2 are computed by auxiliary methods
rather than by synodic periods; and in the one ephemeris from which there is evidence,
ACT 500, the interval of time between8 and2 is taken as constant. Thus, taking limits
of Dt , and thusDλ, from 2, or of Dλ, and thusDt , from 8 harms0, and the method
of computation compromises2 although not8. It is possible that the long synodic
times of Mars were thought to be the result of late, that is, not normal, first appearances,
whether due to observational error or for other reasons, and thus not taken account of
in the ephemerides. Still, as these long periods occur every 15 or 17 years, their regular
recurrence should have been noticed. Perhaps it was simply thought preferable to take
the narrower range ofDt andDλ that would fit acronychal risings and stations, rather than
the wider range of heliacal risings and settings, even at the cost of introducing errors into
dates and longitudes of heliacal risings and settings, for the most serious errors would
be only near the maximum limit. I really have no explanation for these problems, which
would remain no matter which phenomena were used for the derivations.

The conversion between synodic arc and synodic time in the ephemerides of the
superior planets is taken as constant,DT − Dλ = C, or eliminating complete years,
Dt −Dλ = c, wherec is the difference between the mean values ofDt andDλ. This pro-
duces notable errors at heliacal rising of Mars, but is far smaller for all other phenomena.
The errors are greatest near, but not necessarily exactly at, the limits of the synodic arc
and time, the minimum(Dt −Dλ)m and maximum(Dt −Dλ)M. In Table 2 we give these
to 0;30 computed from the values in Table 1 with the constant conversionc to minutes,
and in parentheses the errors(Dt − Dλ) − c to 0;30. The changes for Saturn are too
small to be significant, since 11 and 12 are just the integers closest toc, but the reduction
for (Dt − Dλ)M of Jupiter from+3 for 0 to 0 for the other phenomena shows that they
are more compatible with the constant conversion with small residual errors. The most
striking reduction is the large error for Mars in0 of +12;30, reduced greatly for the other
phenomena, especially to 0 for8. By coincidence, the minimum of2 is exactly 23;38,
but the maximum, with an error of+6 shows thatc is not a satisfactory conversion, and
this is true of all four phenomena of Mercury, as shown in our original study.
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Table 2. Errors of constant conversion of synodic time and arc

Planet (Dt − Dλ)m c (Dt − Dλ)M

Saturn 0 12 (+0;30) 11;27 12 (+0;30)
O 12 (+0;30) 11;30 (0)
2 12 (+0;30) 11;30 (0)
8 12 (+0;30) 11;30 (0)

Jupiter 0 11 (−1) 12; 5 15 (+3)
O 11(−1) 12 (0)
2 11 (−1) 12 (0)
8 11 (−1) 12 (0)

Mars 0 20 (−3;30) 23;38 36 (+12;30)
O 22(−1;30) 27 (+3;30)
2 23;30 (0) 29;30 (+6)
8 22;30(−1) 23;30 (0)

We may also investigate the elongations of2 from the mean sun implicit in the
ephemerides as we did for the other phenomena in Part 3 of our study (Swerdlow,
1998, esp. 152-60) using intervals of timeδt and longitudeδλ for the subdivision of
the synodic arc and time in the intervals8 → 2 → 9 from ephemerides (ACT),
templates of undated longitudes (DCL), and procedure texts (ACT). It should, however,
be noted that these are not consistent and produce different results depending upon the
combination in which they are used. Also, the conditions that determine the elongation of
2 are sufficiently constraining that it may not be significant as an independent parameter.
First, limits of the total retrograde arcδλ and timeδt for 8 → 9 without the division by
2 are given in Table 3 from various sources and from modern computation for the same
number of synodic periods used earlier: Saturn 29, Jupiter 34, Mars 38. In each case one
limit for arc is quite accurate, perhaps derived from two measured distances from a single
normal star for each planet (although the one example of this I have found in the Diaries,
distances of Jupiter fromη Piscium in -70 IV 23 and VIII 20, gives a very erroneous
arc of only−4;25◦ if 1 cubit = 2;30◦). But the range for Saturn and Jupiter, adjusted
in the ratios of the fast and slow zones, is too large, and the range for Mars is far too
small; the times are very schematic and cannot be pressed closely. The peculiar values
for δλ of Saturn from ACT 801.4-5 and 802.2-3 result from multiplying a velocity per
day by an interval of time. Note that in the modern computation, for Saturn and Jupiter
the variation of the arcs is very slight and the shorter times go with the longer arcs.

The method of finding the elongation of2 is as follows: For the interval of timeδt
for 8 → 2 we compute the mean motion of the sunδλs = δt · vs, where the mean
velocity of the sunvs = 6,0◦/6;11,4τ ≈ 0;58,12,38◦/τ . There is little or no distinction
of δt for 8 → 2 → 9 in the slow and fast zones in the procedure texts or ephemerides,
although there are variant values—in fact the variation of time of retrogradation in days
far exceeds the variation of arc in degrees—which is further evidence of the uncertainty
of determining the time of stations. Then, indicating the slow and fast zones byi = 1
andi = 2, the difference of elongation in timeδt is δηi = δλs − δλi and the elongation
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Table 3. Total retrograde arc and time8 → 9

Ancient δλm ModernδλM

Planet Source δλm δλM δt δt δt

Saturn DCL A −6;40◦ −8◦ −6;38◦ −6;58◦

ACT 801.4–5, 802.2–3 −7; 1,57,30 −8;26,20 1,52;30τ 142/43d 133/34d

Jupiter DCL D, ACT 813.2 −10 −12 −9;48◦ −10;5◦

ACT 810.3-6, 813.9 −8;20 −10 2,2τ 123/24d 117/18d

Mars S in DCL G-J −15 −18 −10;0◦ −19;30◦

ACT 501, 501a ∼ 1,23τ 60/61d 81/82d

of 2 is η2i = η8i + δηi , whereη8i is taken from our earlier determination, but here
as a positive rather than a negative elongation. Using the same procedure, we may then
extend the computation from2 to 9 to find the elongation at9 by finding δηi for
2 → 9 and thenη9i = η2i + δηi , which we compare with our earlier determination,
given here in the form 6,0◦ − η9i so thatηi increases through8 → 2 → 9. What
follows are examples of various possible computations.

We begin with Jupiter System A, withδt from ACT 813.23,30 and equal divisions
of δλ in the retrograde arc, as in DCL Text D:

Interval δt δλs δλ1 δλ2 δη1 δη2
8 → 2 58τ 56;16◦ −5◦ −6◦ 1,1;16◦ 1,2;16◦
2 → 9 1, 4 1, 2; 5 −5 −6 1,7; 5 1,8; 5

Then, takingη81 andη82 from our earlier determination:

η81 η82 η21 η22 η91 η92
1,53;42◦ 1,52;46◦ 2,54;58◦ 2,55;2 4,2;3◦ 4,3;7◦

We earlier found forη91 4,2;4◦ and forη92 4,3;8◦, the slight difference due to roundings,
and here we see thatη2 ≈ 2,55◦, about 5◦ short of mean opposition.

With the sameδt but unequal divisions ofδλ in the retrograde arc, as in ACT 813.2
and 814.2, we have:

Interval δt δλs δλ1 δλ2 δη1 δη2
8 → 2 58τ 56;16◦ −4◦ −4;48◦ 1,0;16◦ 1,1; 4◦
2 → 9 1, 4 1, 2; 5 −6 −7;12 1,8; 5 1,9;17

And again with the same values ofη81 andη82:

η81 η82 η21 η22 η91 η92
1,53;42◦ 1,52;46◦ 2,53;58◦ 2,53;50 4,2;3◦ 4,3;7◦

Now η2 ≈ 2,54◦, about 6◦ short of mean opposition.
There is less information on the division of the interval8 → 2 → 9 for System

A ′, but ACT 611 contains8 → 2, although with the rather highδt of 1,1τ or 1,2τ , and
ACT 612 contains2 → 9 with the very lowδt of 52τ or 53τ . Since the two texts are
not consistent in dates or longitudes of2, they cannot be used together and so we shall
consider only8 → 2 in ACT 611, taking the slow and fast arcs 1 and 3 and omitting
the equal transitional arcs 2 and 4:
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Interval δt δλs δλ1 δλ3 δη1 δη3
8 → 2 62τ 1,0;9◦ −4◦ −4;48◦ 1,4;9◦ 1,4;57◦

And takingη8 for System A′,

η81 η83 η21 η23
1,53;35◦ 1,52;37◦ 2,57;44◦ 2,57;34◦

Now η2 ≈ 2,58◦, only 2◦ short of mean opposition. Because of the high value ofδt , I
am particularly suspicious of this result.

For Saturn System A, we takeδt andδλ as given or implied in ACT 801.4-5 and
802.2-3, and round to minutes, from which:

Interval δt δλs δλ1 δλ2 δη1 δη2
8 → 2 52;30τ 50;56◦ −3;42◦ −4;26◦ 54;38◦ 55;22◦
2 → 9 1, 0 58;13 −3;20 −4 1, 1;33 1, 2;13

Note that, surprisingly, the longerδλ occurs in the interval with the shorterδt . And
takingη81 andη82 from our earlier determination:

η81 η82 η21 η22 η91 η92
2,2;8◦ 2,1;26◦ 2,56;46◦ 2,56;48◦ 3,58;19◦ 3,59;1◦

Hereη2 ≈ 2,57◦, about 3◦ before mean opposition;η9 cannot be compared with our
original derivation, for which we used DCL Text A in whichδλ extends through8 → 9

without 2 and differs fromδλ used here. Note, however, thatη8 is close to 2,0◦ and
η9 is close to 4,0◦, which shows the simple assumptions underlying the treatment of
stations and retrogradations.

For Mars, although mean elongations of each phenomenon and mean values ofδt

in the intervals� → 0 → 8 → � are known from ACT 811a, andδλ is known for
8 → 2 from the four methods R, S, T, U—and2 → 9 is also known from S—there
is little information onδt in the retrograde arc. In ACT 500δt for 8 → 2 is a constant,
and rather long, 47;55,4τ , and by taking corresponding synodic periods for Seleucid Era
170–187 in ACT 501 and 501a, which is not really secure since the resulting retrograde
arcs are far too long,δt for 8 → 9 is 1,22τ , 1,23τ or 1,24τ , also nearly constant
but in excellent agreement with the maximumδt ≈ 1,23τ by modern computation (the
minimumδt ≈ 1,1τ is not found in any source). Still, with this information it is possible
to find an elongation for2, although the result may not be significant. We shall takeη8

from ACT 811a,δt for 8 → 2 from ACT 500, andδλ from T and U, as they have the
widest range, using only the limits for zones 1 and 4. We thus have:

Interval δt δλs δλ1 δλ4 δη1 δη4
8 → 2 47;55,4τ 46;27◦ −7;30◦ −6◦ 53;59◦ 52;29◦

Since the mean value, the only one known,η8 = 2,0◦,

η21 = 2,53;59◦, η24 = 2,52;29◦,

and acronychal rising is about 6◦ or 7;30◦ before mean opposition.
We may also investigate the implied elongation of9 using onlyδλM = −18◦ from

S andδt ≈ 1,23τ . The results are:
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Interval δt δλs δλM δη η8 η9

8 → 2 1,23τ 1,20;31◦ −18◦ 1,38;31◦ 2,0◦ 3,38;31◦

η9 is about 21;30◦ from symmetry toη8 at 4,0◦. The reason is thatη8 is too small, for
correctly it extends from about 2,9◦ near aphelion to 2,26◦ near perihelion, the smaller
elongations thus corresponding to the longerδλ andδt . Hence, if we takeη8 ≈ 2,9◦
andδη ≈ 1,39◦, η9 ≈ 3,48◦, only 3◦ from symmetry at 3,51◦. More accurate modern
parameters produce still closer symmetry ofη8 andη9 around aphelion and perihelion,
as is to be expected.

In summation, we have found that acronychal rising for each superior planet falls
short of mean opposition,η = 180◦, by the following amounts, which are only approx-
imate:

Saturn: 3◦ Jupiter: 5◦,6◦,2◦ Mars: 6◦,7;30◦

I do not know whetherany of these results is significant—they cannot all be signifi-
cant and yet other computations can produce different results—except for showing that
acronychal rising occurs at a mean elongation less than 180◦. (The true elongations
by modern computation, given in the Appendix, are larger and, for Mars, highly vari-
able.) The reason is that the elongation of2 is determined by the elongation of8,
perhaps also the elongation of9, and the length and division of the retrograde arc and
time, some of which seem to be chosen as convenient values of strictly unknown quanti-
ties, perhaps with the condition for2 that its elongation be less than 180◦. Nevertheless,
the elongation of2 could be used to establish a longitude for the phenomenonλp by
addition to the computed mean longitude of the sunλs, that is,λp = λs + η2, whereη2

may differ for each planet or be taken as some conventional value for all three. In this
way, an acronychal rising, just as a heliacal rising, with a known elongation, assumed
to be fixed, could be used to find an epoch. The subdivisions of the synodic arc could
then be used to set the initial longitudes of the remaining phenomena in an ephemeris,
just as if heliacal rising were used as the primary phenomenon.

Appendix: computation of acronychal risings

For the rising of a planet to be visible, the sun must be below the horizon a minimal
distance, called thearcus visionis, which is illustrated in Figure 4 for both heliacal and
acronychal risings of a superior planet. The observer is atO and the planetP is rising
at the eastern horizon. In a heliacal rising, which takes place before sunrise, the sunS0

Fig. 4. Heliacal and acronychalarcus visionis
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Fig. 5. Elongation of acronychal rising and opposition

is below the eastern horizon by a distanceh0, and in an acronychal rising, which takes
place after sunset, the sunS2 is below the western horizon by a distanceh2. The arcus
visionish2 is less thanh0 because (1) the planet is brighter at acronychal rising, near
opposition, than at heliacal rising, near conjunction, and (2) the eastern horizon is darker
in the evening, when the sun is below the western horizon, than in the morning, when
the sun is at an equal distance below the eastern horizon.

The relation of elongation at acronychal rising and opposition is shown in Figure 5,
which is not a horizon diagram. The planet at acronychal rising isP2, the true sun isS2,
and the projection of the true sun to the ‘antisolar point’, for which the elongation of the
planet at acronychal rising is to be computed, isS′. If we let elongationP2S′ = η′, then
the elongation from the true sunP2S2 = η = 180◦ − η′. We may then findη′ using
the method described by Neugebauer (HAMA, 234ff.) and van der Waerden (1942) for
heliacal risings and settings, which is in fact Ptolemy’s method and, as is worth noting, is
still used in tables for heliacal phases without essential change in over eighteen hundred
years. To reach opposition, which follows acronychal rising, the sun moves a distance
δλs to So and the planet moves retrograde a distanceδλp to Po; it can be seen that
δλs + δλp = η′ and alwaysδλs � δλp.

Figure 6 shows the configuration for acronychal rising at the eastern horizon for
both positive and negative latitudes of the planet. The ecliptic intersects the horizon at
the horoscopusH with the horizon angleν, and the sun, which is below the western
horizon, is projected to the antisolar pointS′, abovethe eastern horizon by thearcus

Fig. 6. Computation of elongation of acronychal rising
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visionis h = S′A. The planetP2, shown at the horizon with positive latitude+β

and negative latitude−β, is projected to ecliptic longitude atP ′. Since the arcs are
small, we may use plane triangles. In triangleS′AH , S′H = h/ sinν, and in triangle
HP ′P2, P ′H = β/ tanν. Thus, for both positive and negative latitudes of the planet,
the elongation at acronychal rising from the antisolar point,S′P ′ = η′, and the interval
of time δt between opposition and acronychal rising are given by

η′ = h

sinν
+ β

tanν
, (1)

δt = η′

vη

, (2)

wherevη is the velocity of elongation, found from the velocities of the sun and planet,
vη = vs − vp; since the planet is moving retrogradevη > vs. Given the dates of two
oppositionsT1 andT2, the synodic time between oppositionsDTo = T2 − T1; and with
the intervalsδt1 andδt2 from opposition to acronychal rising, the synodic time between
acronychal risingsDT2 is

DT2 = (T2 − δt2) − (T1 − δt1) = DTo + (δt1 − δt2). (3)

There are various approximations in this method. One is the use of plane for spherical
triangles. A second is that the longitude ofH , used for findingν, is taken as the longitude
of opposition, which actually lies at a lesser longitude thanP ′, say, at O, since the planet is
moving retrograde. One can compensate for this by an iterative computation, first finding
ν for λH = λo and computingη′ andδt from (1) and (2). Then compute the motion ofP ′
from δλp = δt · vp, andλ′

p = λo − δλp, noting thatδλp < 0. Next findP ′H = β/ tanν,
observing the sign ofβ, and thenλH ≈ λ′

p − P ′H . The computation ofη′ andδt is then
repeated with the better value ofν for the correctedλH. However, the iteration makes
virtually no difference for computing synodic times from acronychal risings. Hence, in
computingDt in the figures, we have takenν for λH = λo without further correction.
This approximation is not safe for dates of heliacal risings and settings, particularly of
Mars, and van der Waerden (1942) provides a table for making the correction from the
longitude of the sun.

A more important question concernsh, thearcus visionisfor acronychal rising, for
which there are, to my knowledge, no established values. For heliacal rising and setting,
the modern values ofh are those of Schoch, which are the basis of the tables of P.V.
Neugebauer (1938) and van der Waerden (1942). Those for the superior planets are:

Saturn Jupiter Mars
0 13◦ � 10◦ 0 9◦ � 7.5◦ 0 13◦ � 10◦

The values for2 must be less, but by how much? From P.V. Neugebauer (1932), the
range of magnitudes at0 and2 is:

m 0 M m 2 M
Saturn 1.6 1.1 1.2 0.6
Jupiter −1.2 −1.8 −2 −2.7
Mars 2.1 1.3 −0.7 −2.5
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Since the planets, Mars in particular, are brighter near2 than near0, and since for
the same value ofh the eastern horizon is darker after sunset than before sunrise, I have
usedh = 8◦ for Saturn andh = 6◦ for Jupiter and Mars. It is possible thath is low for
Saturn and high for Jupiter, and no single value would seem to be adequate to the wide
variation of brightness of Mars.

As for the effect ofh, we have computedDt for eight synodic periods of Mars, just
over one rotation of phenomena through the zodiac, forh from 12◦ to 0◦ in 2◦ steps for
the latitude of Babylon, 32.5◦. We find that, althoughh can produce intervals between
opposition and acronychal rising of as much as−14 days forh = 12◦, its effect onDt

between acronychal risings is far smaller. Thus, to take the maximum synodic time in
tithis over 12,0τ , which shows the greatest change due toh:

Opp. h = 12◦ 10 8 6 4 2 0
1,44τ 1,44 1,44 1,45 1,46 1,47 1,48 1,48

Three synodic times vary by 2, 3 by 1, and 1 by 0 due toh, although there are differences
of up to −6 from Dt at opposition due to latitudeβ. Hence, even for the large range
of synodic times of Mars, it does not matter greatly what value ofh is used. From
checkingh = 10◦, 8◦, 6◦, 4◦ for the greatest and least synodic times, we have found a
variation due toh of about−0.3d to +0.3d for Saturn and+0.7d to −0.1d for Jupiter,
although other synodic periods may show greater variation. Heliacal risings and settings
are more sensitive, particularly at higher geographical latitudes, and the entire method
of computing heliacal and acronychal phenomena is not exactly secure. Finally, it can
show only what could have been observed, not what was actually observed.

It is of interest to examine the range of elongationη′, interval of timeδt , and motion
of the planetδλ between opposition and acronychal rising, and of the changedt in the
synodic timeDt . The limits that we have found in computingDt for the figures are:

η′
m η′

M δtm δtM δλm δλM dtm dtM
Saturn 8.5◦ 10.5◦ 8.1d 10.1d 0.62◦ 0.76◦ −0.2d +0.3d

Jupiter 6.3 8.4 5.8 7.3 0.7 0.98 −0.4 +0.6
Mars 1.4 11.3 1.1 7.9 0.3 3.1 −5.3 +3.4

Note that Saturn has the longest intervalδt , but the least changedt in Dt , and the limits
of dt do not correspond to the limits ofδt , but occur whereδt is changing the most
rapidly. The locations of the limits are also of interest. The minimum ofη′, δt , andδλ

for Jupiter are near aphelion and the maximum near perihelion, while for Mars these
are reversed. For Saturn the predominant effect is latitude, and the minimum values are
(roughly) near the northern limit and the maximum near the southern.

To summarize what we have done: The synodic times from acronychal risings in
Figures 1–3 B are computed from formulas(1–3) with h = 8◦ for Saturn andh = 6◦
for Jupiter and Mars, takingν from Table 6 in van der Waerden (1942) for the latitude
of Babylon, 32.5◦, and assuming thatλH = λo without adjustment. The range ofδλp
between opposition and acronychal rising for the values ofh we have used is, as above:
Saturn, 0.6◦–0.8◦, Jupiter, 0.7◦–1◦, Mars, 0.3◦–3◦, all positive, and the large values for
Mars occur in the shortest synodic arcs. Rather than compute these individually, we
have advanced longitudes 1◦ for Saturn and Jupiter and 2◦ for Mars from opposition.
Anything more refined would not be noticeable in the scale of the figures.
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Corrections to Swerdlow, 1998:
p. 12 l. 35: for stand read stands.
p. 124 l. 10: for 0 to from 10 read 0 to 10.
p. 163 l. 26: for 27;43≈ 28 read−27;43≈ −28.
p. 195 Table 1.5: Saturn:Π = 4,16 Y = 4,25.
p. 199 Table 2.2A. l. 21: for−124 VI 12 read−123 VI 12; Per= 1.
p. 202 Table 2.3: l. 12:� −663:Dt = 48τ ; correct Fig. 2.4 accordingly.
p. 203 Table 2.4: Saturn:Π = 4,16.
p. 206 Table 2.7A: l. 3: for -306 read -308; l. 5: afterh omit ‘d’.
Bibliography p. 242: Thompson, R.C.: for Ninevah read Nineveh.
add: Bott́ero, J. 1992.Mesopotamia. Writing, Reasoning, and the Gods. Chicago.

Brown, D.R. 1995.Neo-Assyrian and Neo-Babylonian Planetary Astronomy-Astrology (747-
612 B.C.). Dissertation, Cambridge University.
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