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Acronychal Risings in Babylonian Planetary Theory

N. M. SWERDLOW

Communicated bi{. M. SWERDLOW

The Astronomical Diaries (ADT), and a few known collections for individual planets,
contain observations of five synodic phenomena of superior planets: heliacal fi%ing (
first station (), acronychal rising®), second station¥), and heliacal settingc¥). A
date is given for each, in the caselbbften both an observed date and a ‘true’ or ‘ideal’
date on which the rising is considered to have occurred even if it was not observed, as due
to clouds, found by a measurement of the interval in degrees of time between the rising
of the planet and the rising of the sun. However, location is recorded differently for each
class of phenomena. Heliacal risings and settiigmd<2, are located by zodiacal sign,
or by beginning or end of zodiacal sign. In some cd3esntains a measured distance
from a nearby ‘normal’ (standard) star or planet, for conjunctions of planets with stars or
with each other were considered ominous. But it does not appear that measurements of
distances from stars Btwere used to establish location more precisely than by zodiacal
sign, and distances from planets cannot be used to establish location. First and second
stations,® andW, usually contain a measured distance from a normal star, presumably
to determine when the planet was stationary, but sometimes only a location by zodiacal
sign. Acronychal rising® contains no location at all. It could have been assumed that
the planet was in the zodiacal sign opposite the sun, but no location for the sun is given
in the Diaries. (It is curious that acronychal risings were observed at all since there are
no omens associated with them. Yet an acronychal rising of Jupiter appears already in
the second earliest known Diary, ADT -567, and one may wonder why.) Sometimes
observations contain the remark ‘not observed’ (nu pap), which presumably indicates
an inference of the date and location from nearby preceding or following observations.

The dates and longitudes of the same phenomenareported in the Diaries are computed
in the ephemerides to a degree of precision exceeding the observations in the Diaries.
The ephemerides are published in ACT, and the further analysis in HAMA is essential.
In a recent study of Babylonian planetary theory (Swerdlow, 1998), | set out a method
by which the parameters of the ephemerides can be derived from synodic times between
phenomena, recoverable from the dates in the Diaries, and locations no more precise
than by zodiacal sign. The method depends upon a constant difference between synodic
time and synodic arc47 — 4x = C, found in the ephemerides of all planets except
Venus, which allowsiA to be found fromdT. With the exception o® andW¥ of Mars,
which occur in the retrograde arc, the ephemerides use the same functions for computing
all phenomena of the superior planets by complete synodic arcs and synodic times even
though the synodic arcs and times between consecutive heliacal risings or settings, which
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depend upon the latitude and brightness of the planet and the inclination of the ecliptic to
the horizon, differ from those between consecutive first or second stations, which depend
only upon the longitude, and thus the speed, primarily of the planet and secondarily of
the sun. The ephemerides use methods based upon a variation of speed, of the planet
alone but treated as of the phenomenon itself, specifying that the phenomenon moves
through synodic arefx in synodic time4T, in the case of System A as a function of
longitude, in the case of System B as a function of the number of the phenomenon in
the ACT period, which is nevertheless close to a function of longitude for Saturn and
Jupiter although the departures for Mars are considerable.

Because of the inaccuracy of the observations in the Diaries in the dates of phe-
nomena, frequently amounting to 2 or 3 days or even more, it is not clear just how the
maximum and minimum limits of the synodic time, upon which the parameters depend,
were selected. In our study, we provided figures (2.2—-2.4) comparing synodic times
from (1) the computed functions of the ephemerides, (2) the observations recorded in
the Diaries and other collections, and (3) modern computations of heliacal risings, using
for this purpose a computer program of our own, intended to duplicate Tuckerman’s
tables (1962), and P. V. Neugebauer’s visibility tables (1938), throwing together, we
fear, too much disparate information in the same figures. Further, we had noted that A.
Aaboe (1958, 247-51) had found a nearly perfect agreement of System A for Mars with
synodic arcs derived from the longitudes of oppositions, which are close to acronychal
risings, but we did not investigate the matter further and assumed that, with the excep-
tion of Mars, for which dates of acronychal risings were preferable, dates of heliacal
risings were used to establish synodic times since, through the use of rising times to
determine the ‘true’ date, they appear to have been the most carefully observed. We
have now carried out computations for all three superior planets, something we should
have done in the first place, of (1) synodic times from oppositions as an approximation
and control of acronychal risings, (2) synodic times from a provisional computation of
acronychal risings, and (3) synodic arcs from first stations, all of which we compare
with the functions in the ephemerides.

The results are shown in Figs. 1-3 A and B. In4&, the excess of the total synodic
time AT in tithis (r) over 12 months= 6,0" (for Mars 24 months= 12 0%) is graphed
againstlongitude by zodiacal sign. The solid lines are the computed System A function,
the broken lines the linear zigzag of System B with small squares shaviorggachAz,
for Jupiter from ACT 620a and for Mars from ACT 510 extended by computation; for
Saturnk falls nearly on the zigzag andis notillustrated. The open circles shdstween
heliacal risings taken from our original figures (2.2—-2.4) and the filled cirtié®tween
true oppositions computed from the same program. | have computed oppositions as a
control of acronychal risings and because it is first necessary to compute opposition in
order to compute acronychal rising. The computation of acronychal risings is explained
in the Appendix. In B we show by filled circles synodic timésfrom acronychal risings
and by open circles synodic arda from first station, the scale for which is on the right
of the graph. The points are located at the beginning of daelndA . We begin with the
year -200 (-202 for Mars) and compute the following number of synodic periods: Saturn
29, Jupiter 34, Mars 38. The longitudes are converted to the Babylonian zodiac by adding
6°, following P. Huber’s (1958) conclusion that the difference$dr00 is about 4;3Q
any inaccuracy, surely no more theak 2°, affects only the placement dfand notz or
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Fig. 1B. Saturn. Computed andAx: Acronychal Rising(e), First Station(o)

Ax. The synodic time in days is converted to tithisAy = (30/29;31,50)479 — 6,07
(for Mars 12,0) rounded to integers; on account of the rounding, there are irregularities
in 4t of £17, which we have corrected where interpolation is sectikdén B is graphed
to a precision of 118 for Saturn and Jupiter ang 3° for Mars, and thus follows a more
continuous curve than the integer stepsiof We also show in Adt from the dates of
observations in the Diaries and other collections, those from heliacal risings indicated
by * and from acronychal risings, of which there are not manytbyrhose located by
zodiacal sign are placed in the middle of the sign; a few located by beginning of sign are
placed at 5 and a few located by end of sign at’2% can be seen from these figures,
and from the figures (2.2—2.4) in our study, that these are not particularly accurate.
Since our principal interest is the limits of the functions, which were used to derive
the parameters of the ephemerides, the minimum and maximum synodic times and arcs,
Aty and Aty , Ahym and A1y, are shown in Table 1 for Systems A and B to minutes,
along with what we believe to be the original assumption for the limits of System A of
Mars, which is obviously rounded fati. These are followed by modern computation
for heliacal risingl", opposition O, acronychal rising, and first stationb. 4z is given
to the nearest integer anfl is given as computed, although the true limits, which may
differ slightly, may not have turned up in our computations. Not all of these synodic
times and arcs are recoverable from the Diaries or are strictly observable. Thindyfor
is recoverable from dates, but ndt. since location is imprecise. O is, as mentioned,
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Fig. 2A. Jupiter. Computedir: Heliacal Rising(o), Opposition(e)
Observedd: Heliacal Rising(x), Acronycal Rising(+)
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Fig. 2B. Jupiter. Computedi: andAx: Acronychal Rising(e), First Station(o)

intended as a control on the computatioreband was not, and could not be, observed.
For ® 4t is recoverable from dates but ndt since no locations are given. Férboth
dates and distances from normal stars were recorded in the Diaries, so that if longitudes
could be determined to a precision of, s&yl° from such distancesgia is recoverable.
However,4¢ derived from dates ob is insecure since the planet moves from not at all
to at most0;5° in 3 or £4 days around station. Still, dates are given, as insecure as
they may be.

Consider first the relation of the phenomena to the systems for each planet. For
Saturn,4t of all phenomena agree with the limits of both systems rounded to integers,
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Fig. 3B. Mars. Computedis andA4x: Acronychal Rising(e), First Station(o)

and as can be seen in the figurgspf O and® are identical andlA of ® tracks System
B very nicely. Itis of interest that all known ephemerides for Saturn are System B, while
System A is known only from procedure texts and longitude templates. For Jupijger,
of I' is clearly beyond both systemd: of O and® are identical, and the limits of O,
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Table 1. Limits of synodic time and arc

Planet Atm Aty Arm A

Saturn A 23;10 253 1143 14; &

B 2241 25;32 11;14 14; 5
Mod. I' 23 26 11;13 14;10
O 23 26 11; 8 14;28
® 23 26 11; 8 14;23
® 23 26 11; 8 14;25
Jupiter A 42;5 48; 5 30 36
B 40;20 50; 7 28;16 38; 2
Mod. TI' 41 52 30; 7 37;19
o 41 49 30; 5 36;41
® 41 49 30; 6 36;43
o 41 49 30; 4 36;40
Mars A 53;37 1,46; 7 30 1,22;30
Orig. A 54 1,44 30 1,20
B 4057 1,43;45 17;19 1,20; 7
Mod. I 50 2,26 30;11 1,49;54
O 56 1,44 33;50 1,16;56
® 57 1,46 33;22 1,16;26
® 56 1,42 33,22 1,18;18

®, and® fall £1° between both systemd. of & can be seen to track both systems
well except at the limits of B. In the case of Mary of I is, as mentioned earlier, far
beyondAry of both systems whilelz, is somewhat low for System A. Considering the
large range of Mars’s synodic time and arc, the differences of the limitg ahdAA of

0O, ® and® are very small and are close to the limits of System A and the maximum of
System B; nothing is close to the minimum of System B. The closest fit in following the
graph of System A igix of ® and ¢ of O, of which the latter cannot be observed. In
part the fit is due to the finer resolution #f. for @ in the figures than ofiz to integers,

but Ax andx of @ really do track the functions in the ephemerides quite well for all
three planets.

Consider next the information that may be recovered from the observational reports
and the methods of deriving parameters described in our study, which depend upon the
limits of A+ and4A. The parameters of both systems of Saturn may be derivedArom
of I', ®, and®; 4x of & may be used only by adjustment to very nearly the limits in the
systems. Both systems of Jupiter may be derived frioraf © and® with adjustments
of £17, and System A may be derived from. of ® with a slight reduction imiy. The
limits of AA of System B are definitely not observed, but computed from= AT — C.
System A of Mars may be derived fror of ® and ® and Ax of & provided that
adjustments of from 1 to 3 tithis or degrees are made to give the original assumption for
the limits, which amounts to rounding the limits#f to 30° and 1 20°. The latter is also
A of System B, of whichii, and likewisedry,, is incompatible with any observation
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and clearly erroneous. And thus with this one exception, with small adjustments both
® and ® can be used to derive the parameters of all three planets. | must admit that
these results surprised me beca@sand® present problems of observation, while

which appears to be the most carefully observed, can be used only for Saturn, probably
not for Jupiter, even with adjustment, and definitely not for Mars. We shall consider the
observational conditions of both and ®.

Unlike reports of heliacal risings in the Diaries, which contain a date, location, and
measured rising time, reports of acronychal risings give only a date and no location, with
not a clue about how the date was found. In the case of heliacal rising, the planet has
been invisible for some time, and the morning it is first seen a measurement is made of
the interval of time between the planets being observed—not necessarily crossing the
horizon—and the rising of the sun, in order to infer a possible ‘true’ or ‘ideal’ date prior
to the date of the observation, meaning the date the planet should have been seen to rise
had the horizon been clear and an observation made. Some heliacal risings are described
as ‘high’ or ‘bright and high’, which must mean that the planet was already above the
horizon when it was first seen. This is curious because the planet must have crossed the
horizon earlier in the morning when the sky was darker, but evidently the rising itself
was not observed. The intervals between observed and true dates in the Diaries may
reach as high as 20 days for Mars, although for Saturn and Jupiter they are never more
than 6 days and are usually less than 3. In the case of Mars, because of its long period
of invisibility, from 90 to more than 220 days, its faintness near heliacal rising, between
magnitude 2.1 and 1.3, and the effects of twilight, true heliacal risings are difficult to
observe, as shown by the long intervals between observed and true dates. By contrast,
the magnitude near opposition is betwee@.7 and—2.5 so the acronychal rising is
more easily visible in twilight.

Acronychal risings are also different because the planet has not been invisible. After
heliacalrising, as the elongation of the planet from the sun increases—maost of the motion
actually belongs to the sun—the planet rises earlier each night. Acronychal rising is the
lastevening the planet is seen to rise, to cross the horizon, after sunset, and its date can
only be determined by observing the following night that the planet is already above the
horizon when it becomes visible after sunset. But what if the following night is cloudy?
When did acronychal rising occur? And because of twilight, the planet could, indeed
will, continue to rise after sunset for a few nights but not be visible until it reaches
some altitude. In the absence of any information in the Diaries about measuring the
interval of time between sunset and the rising, or visibility, of the planet, this appears
to be a rather crude observation: the last evening the plasegito rise after sunset
is acronychal rising even if it continues to rise after sunset for a few nights without
its rising being seen. Or perhaps some correction is applied of which the Diaries give
no information. One can nevertheless see that for Mars, even with this uncertainty of
a few days, acronychal risings are preferable for determining synodic times to the still
greater uncertainty of many more days in heliacal risings. For Jupiter and Saturn, heliacal
risings, with shorter intervals between observed and true dates, would appear to be better
defined than acronychal risings although perhaps the darker horizon at acronychal rising
made its use preferable.

We next consider) derived from stations. In order to findx from measured
distances from normal stars at stations, two points must be considered, (1) the accuracy
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of measurement of distance and (2) the accuracy of fixing zodiacal longitudes of normal
stars. | was skeptical of the sufficiency of both of these, but extensive discussions with
John Britton in the course of writing this paper has convinced me that my skepticism
was too great. My view was influenced principally by my finding the measurements
rather inaccurate, by the difficulties of measuring distances at heliacal risings rather
than stations, and by the case of Mercury, in which stations were not observed and only
At derived from dates of heliacal phenomena could be used. | had also assumed that, large
errors aside—of which the figures in our study (2.2—2.4 for superior planets, 2.10-2.13
for Mercury) show that there were many—the inherent precision of specifying dates,
17 or 27, was better than in measuring distances. John Britton, relying in part on Gerd
Gral3hoff’s (1999) analysis, has convinced me that, again large errors aside and without
pressing the statistics too closely, the accuracy of converting measured distances in cubits
and fingers to degrees is about and, once again large errors aside, the accuracy of
longitudes of those normal stars for which assigned zodiacal locations are known is
also about 1. One could thus expect longitudes derived from measured distances from
normal stars to have a precision of &r 2°, comparable to the precision of dates, 1

or 2¢, assuming for both that large errors have been eliminated. The resulting synodic
arcs and synodic times would have about the same precision, 1 or 2 degrees or tithis.
And as painstaking as the derivation4% from measured longitudes may be, it would

only have to be done around the limits. | still have strong reservations about whether

was derived from the conversion of such measured distances to longitudes, because of
the difficulty of the procedure compared with the use of dates tofimtbecause there

is no textual evidence that such conversions were ever made, and because | do not see
how the resultingi could be adjusted to the required limits for Saturn and System B

of Jupiter. Nevertheless, it appears that in principlecould be derived from longitudes

with a precision comparable to the derivationtsffrom dates.

Now, whether we consider synodic times derived from dates or synodic arcs derived
from longitudes, two points must be made which appear contradictory, but are not.
The first is that whatever observations were used to establish limits, they must have
been subject to some kind of analysis to eliminate errors, which occur frequently in
observations of dates, as shown by the errordtah our figures, and presumably also
in observations of longitude. Thus, the observations used to establish the limits must have
been either corrected or of better quality than most of the observations in the Diaries.
For otherwise the limits of the functions would not be as close to the complatiedm
® and 4A from @ as they are (again setting asidé of System B of Jupiter and the
minimum of System B of Mars). How this was done, | do not know. Presumably it
involved the analysis of some number of observations, and the resdhimig1 A, in the
vicinity of the limits, first to eliminate gross errors, then to decide upon correct limits
within the range oft1 or £2 tithis or degrees still remaining. For this last step, might
one suggest the use of simple statistical techniques by taking mean values in the zodiacal
signs in which the limits occur?

The second point is that, even with careful selection of the limits, the resulting
functions were intended only as approximations to the true behavior of the phenomena.
This can be seen in the different limits of Systems A and B of Jupiter, both of which
cannot be uniquely correct, and in the differences between Systems A and System B in
general. In System At and 4 are strictly a function of longitude, but in System B
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they are a function of the number of the phenomenon in the period. The differences in
the correspondence dfft and 41 to longitude are not great for Saturn and Jupiter, but
are very large for Mars, which could explain why only a single fragment of a System
B ephemeris for Mars is known. Another approximation concerns the relation of the
computed functions to the observations themselves, for which the only reasonable check
throughout the zodiac must bie. The observations contain many large errors that could
be identified from the resultings, but most are also in error by a day or two, resulting

in similar errors in4t, and rather than consider almost all the observations wrong and
the computed function uniquely correct, the computation may have been considered
an approximation to phenomena that were strictly too complex to compute with full
accuracy. This also seems a way of reconciling the concurrent use of Systems A and B
for Jupiter.

Yet another approximation is that the same functions are used for all phenomena of
the superior planets, exceptand ¥ of Mars, which also raises a question about the
use of®. Here there is no problem for Saturn and only a small error for Jupiter, but in
the case of Mars the errors forreach—30° and —40" for the long synodic periods,
which seems intolerable. Then, the longitude®addre computed by auxiliary methods
rather than by synodic periods; and in the one ephemeris from which there is evidence,
ACT 500, the interval of time betweeah and® is taken as constant. Thus, taking limits
of 4z, and thus4x, from ©, or of 41, and thus4z, from ® harmsT', and the method
of computation compromise® although notd. It is possible that the long synodic
times of Mars were thought to be the result of late, that is, not normal, first appearances,
whether due to observational error or for other reasons, and thus not taken account of
in the ephemerides. Still, as these long periods occur every 15 or 17 years, their regular
recurrence should have been noticed. Perhaps it was simply thought preferable to take
the narrower range aofr and4 that would fit acronychal risings and stations, rather than
the wider range of heliacal risings and settings, even at the cost of introducing errors into
dates and longitudes of heliacal risings and settings, for the most serious errors would
be only near the maximum limit. | really have no explanation for these problems, which
would remain no matter which phenomena were used for the derivations.

The conversion between synodic arc and synodic time in the ephemerides of the
superior planets is taken as constafif, — A2 = C, or eliminating complete years,

At — Al = ¢, wherec is the difference between the mean valuedond4x. This pro-
duces notable errors at heliacal rising of Mars, but is far smaller for all other phenomena.
The errors are greatest near, but not necessarily exactly at, the limits of the synodic arc
and time, the minimuni4z — A1)y, and maximuni{4t — 41)u. In Table 2 we give these

to 0;30 computed from the values in Table 1 with the constant convergmminutes,

and in parentheses the errqur — A1) — ¢ to 0;30. The changes for Saturn are too
small to be significant, since 11 and 12 are just the integers closediubthe reduction

for (4t — Ax)wm of Jupiter fromH-3 for I” to O for the other phenomena shows that they
are more compatible with the constant conversion with small residual errors. The most
striking reduction is the large error for Marslirof +-12;30, reduced greatly for the other
phenomena, especially to 0 fér. By coincidence, the minimum @ is exactly 23;38,

but the maximum, with an error af6 shows that is not a satisfactory conversion, and
this is true of all four phenomena of Mercury, as shown in our original study.
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Table 2. Errors of constant conversion of synodic time and arc

Planet (At — AX)m c At — A
Saturn T 12 (+0;30) 11;27 12 (+0;30)
(0] 12 (+0;30) 11;30 (0)
® 12 (+0;30) 11,30 (0)
P 12 (+0;30) 11;30 (0)
Jupiter T 11(-21) 12; 5 15 (+3)
o) 11(-1) 12 (0)
® 11(-1) 12 (0)
P 11(-1) 12 (0)
Mars T 20(—3;30 23;38 36 (+12;30)
(0] 22(-1;30 27 (+3;30)
® 23;30 (0) 29;30 (+6)
P 22;30(-1) 23;30 (0)

We may also investigate the elongations@ffrom the mean sun implicit in the
ephemerides as we did for the other phenomena in Part 3 of our study (Swerdlow,
1998, esp. 152-60) using intervals of tieand longitudesA for the subdivision of
the synodic arc and time in the intervats - ® — W from ephemerides (ACT),
templates of undated longitudes (DCL), and procedure texts (ACT). It should, however,
be noted that these are not consistent and produce different results depending upon the
combination in which they are used. Also, the conditions that determine the elongation of
© are sufficiently constraining that it may not be significant as an independent parameter.
First, limits of the total retrograde a$é. and times for ® — W without the division by
® are given in Table 3 from various sources and from modern computation for the same
number of synodic periods used earlier: Saturn 29, Jupiter 34, Mars 38. In each case one
limit for arc is quite accurate, perhaps derived from two measured distances from a single
normal star for each planet (although the one example of this | have found in the Diaries,
distances of Jupiter from Piscium in -70 1V 23 and VIII 20, gives a very erroneous
arc of only—4,;25° if 1 cubit = 2;30°). But the range for Saturn and Jupiter, adjusted
in the ratios of the fast and slow zones, is too large, and the range for Mars is far too
small; the times are very schematic and cannot be pressed closely. The peculiar values
for 6 of Saturn from ACT 801.4-5 and 802.2-3 result from multiplying a velocity per
day by an interval of time. Note that in the modern computation, for Saturn and Jupiter
the variation of the arcs is very slight and the shorter times go with the longer arcs.

The method of finding the elongation 6fis as follows: For the interval of timé
for ® — ® we compute the mean motion of the sty = §r - vs, where the mean
velocity of the survs = 6,0°/6;11,4% ~ 0;5812,38°/*. There is little or no distinction
of 5t for ® — ® — W in the slow and fast zones in the procedure texts or ephemerides,
although there are variant values—in fact the variation of time of retrogradation in days
far exceeds the variation of arc in degrees—which is further evidence of the uncertainty
of determining the time of stations. Then, indicating the slow and fast zones=b¥
andi = 2, the difference of elongation in tinde is §nj = A5 — §A; and the elongation



Acronychal Risings in Babylonian Planetary Theory 59

Table 3. Total retrograde arc and time — W

Ancient 8 m Modernsiy
Planet Source SAm SAm 8t 8t 8t
Saturn | DCL A —6;40° -8 —-6;38 —658
ACT 801.4-5,802.2-3 —7; 157,30 —8;2620 152;30 | 142/43" 133/34
Jupiter| DCL D, ACT 813.2 -10 —-12 -9;48 -10;%
ACT 810.3-6,813.9 | —8;20 -10 22" 123/24 117/18
Mars | Sin DCL G-J -15 -18 -10;00 —19;30
ACT 501, 501a ~ 1,23 | 60/61¢ 81/82

of ® is ne; = ne; + dn;, whereng; is taken from our earlier determination, but here
as a positive rather than a negative elongation. Using the same procedure, we may then
extend the computation fro® to ¥ to find the elongation a® by finding §»; for
® — V¥ and thenyy; = ne; + 8n;, which we compare with our earlier determination,
given here in the form ®° — ny; so thaty; increases througlh — ® — W. What
follows are examples of various possible computations.
We begin with Jupiter System A, witdr from ACT 813.23,30 and equal divisions
of 61 in the retrograde arc, as in DCL Text D:

Interval &t Shs SA1  SA2 dm 3n2
>0 58 5616 -5 -6° 11;16 1,2;1¢
®—-Vv 1,4 1,25 -5 -6 1,7;5 18;5
Then, takingye1 andne2 from our earlier determination:
Ne1 Nd2 ne1 ne2 nw1 nw2

153,42 152,46 2,54,58 2,552 42,3 4,3,

We earlierfound fony1 4,2;4° and forpy2 4,3;8°, the slight difference due to roundings,
and here we see thap ~ 2,55°, about 3 short of mean opposition.

With the samér but unequal divisions afi in the retrograde arc, as in ACT 813.2
and 814.2, we have:

Interval &t Shs SA1 SAo 1 812
d -0 58 56;16 —4° —-4;48 1,016 11; &
®Oe—-Vv 1,4 1 2,5 -6 -712 18, 5 1917
And again with the same values@$1 andneo:
ULoxk No2 nei ne2 nwi nw2

1,53;42 152,46 2,53,58 2,53,50 42;3 4,3;7"

Now ng ~ 2,54°, about 6 short of mean opposition.

There is less information on the division of the interdal> ® — W for System
A’, but ACT 611 contain® — ©, although with the rather higsr of 1,17 or 1,2%, and
ACT 612 contain® — W with the very lowsr of 527 or 53 . Since the two texts are
not consistent in dates or longitudestfthey cannot be used together and so we shall
consider only® — ® in ACT 611, taking the slow and fast arcs 1 and 3 and omitting
the equal transitional arcs 2 and 4:
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Interval 8¢ SAhs O A3 dn n3
d—-0 627 10, —4° —448 14,9 1457

And takingne for System A,

Nol No3 nNe1 nNe3s
1,53;3% 152,37 257,44 2,57;3%4

Now ng ~ 2,58, only 2° short of mean opposition. Because of the high valué of
am particularly suspicious of this result.

For Saturn System A, we talde andsx as given or implied in ACT 801.4-5 and
802.2-3, and round to minutes, from which:

Interval 8t Shs SAq P n1 3n2
®—- 0O 52,30 5056 -—-342 —426 54,38 55,22
®—Vv 1,0 58;13 —-3;20 -4 1 1;33 1 2;13

Note that, surprisingly, the longeét. occurs in the interval with the shortér. And
takingne1 andne2 from our earlier determination:

ULoxk No2 nei ne2 nwi nw2
2,2:8 21,266 2,56;46 2,56;48 3,58;19 3,59;I°

Herene ~ 2,57°, about 3 before mean oppositiomjy cannot be compared with our
original derivation, for which we used DCL Text A in whiéh extends througkp — W
without ® and differs fromé\ used here. Note, however, tha is close to 20° and
ny is close to 40°, which shows the simple assumptions underlying the treatment of
stations and retrogradations.

For Mars, although mean elongations of each phenomenon and mean vadues of
in the intervalsQ — I' - ® — Q are known from ACT 811a, angh is known for
® — O from the four methods R, S, T, U—artdl — W is also known from S—there
is little information ond¢ in the retrograde arc. In ACT 500 for & — © is a constant,
and rather long, 47;587, and by taking corresponding synodic periods for Seleucid Era
170-187 in ACT 501 and 501a, which is not really secure since the resulting retrograde
arcs are far too longjt for ® — W is 1,227, 1,23 or 1,247, also nearly constant
but in excellent agreement with the maximdmw 1,23 by modern computation (the
minimum{: ~ 1,17 is not found in any source). Still, with this information it is possible
to find an elongation fo®, although the result may not be significant. We shall tajke
from ACT 811a4t for ® — ® from ACT 500, andsA from T and U, as they have the
widest range, using only the limits for zones 1 and 4. We thus have:

Interval 8t SAs SA1 SAa Sn1 814
® - ©® 47,554 4627 -7;30 —6° 53,59 52;29

Since the mean value, the only one knowg,= 2,0°,
ne1 = 2,53;59, nesq = 2,52;29,

and acronychal rising is about 6r 7;30° before mean opposition.
We may also investigate the implied elongationlofising onlysiy = —18° from
S andsr =~ 1,23°. The results are:
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Interval ot s SAMm 8y No Ny
®—-06 123 1,20;3r -18 1,383 2,0° 3,38;3r

ny is about 21;30from symmetry to;¢ at 4,0°. The reason is thaty is too small, for
correctly it extends from about @ near aphelion to,26° near perihelion, the smaller
elongations thus corresponding to the longerandszs. Hence, if we takejp ~ 2,9°
anddén ~ 1,39, ny ~ 3,48, only 3 from symmetry at $1°. More accurate modern
parameters produce still closer symmetry;gfandny around aphelion and perihelion,
as is to be expected.

In summation, we have found that acronychal rising for each superior planet falls
short of mean oppositiom, = 180°, by the following amounts, which are only approx-
imate:

Saturn: 3 Jupiter: 5,6°,2° Mars: 6,7;30°

| do not know whetheany of these results is significant—they cannot all be signifi-
cant and yet other computations can produce different results—except for showing that
acronychal rising occurs at a mean elongation less thaf. 188e true elongations

by modern computation, given in the Appendix, are larger and, for Mars, highly vari-
able.) The reason is that the elongation@fis determined by the elongation df,
perhaps also the elongationwf and the length and division of the retrograde arc and
time, some of which seem to be chosen as convenient values of strictly unknown quanti-
ties, perhaps with the condition f@rthat its elongation be less than £8Blevertheless,

the elongation of9 could be used to establish a longitude for the phenomegdsy
addition to the computed mean longitude of the sgrihat is, A, = As+ ne, whereneg

may differ for each planet or be taken as some conventional value for all three. In this
way, an acronychal rising, just as a heliacal rising, with a known elongation, assumed
to be fixed, could be used to find an epoch. The subdivisions of the synodic arc could
then be used to set the initial longitudes of the remaining phenomena in an ephemeris,
just as if heliacal rising were used as the primary phenomenon.

Appendix: computation of acronychal risings

For the rising of a planet to be visible, the sun must be below the horizon a minimal
distance, called tharcus visioniswhich is illustrated in Figure 4 for both heliacal and
acronychal risings of a superior planet. The observer @ ahd the planeP is rising
at the eastern horizon. In a heliacal rising, which takes place before sunrise, thie sun

p 'f East ) Horizon West\
hr h

)
Se

Sr

Fig. 4. Heliacal and acronychalrcus visionis
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Fig. 5. Elongation of acronychal rising and opposition

is below the eastern horizon by a distage and in an acronychal rising, which takes
place after sunset, the si§g is below the western horizon by a distarice. The arcus
visionishg is less tharh because (1) the planet is brighter at acronychal rising, near
opposition, than at heliacal rising, near conjunction, and (2) the eastern horizon is darker
in the evening, when the sun is below the western horizon, than in the morning, when
the sun is at an equal distance below the eastern horizon.

The relation of elongation at acronychal rising and opposition is shown in Figure 5,
which is not a horizon diagram. The planet at acronychal risiRpighe true sun iSe,
and the projection of the true sun to the ‘antisolar point’, for which the elongation of the
planet at acronychal rising is to be computedy'idf we let elongationPe S’ = 7', then
the elongation from the true sufy S¢ = n = 180° — »’. We may then find;’ using
the method described by Neugebauer (HAMA, 234ff.) and van der Waerden (1942) for
heliacal risings and settings, which is in fact Ptolemy’s method and, as is worth noting, is
still used in tables for heliacal phases without essential change in over eighteen hundred
years. To reach opposition, which follows acronychal rising, the sun moves a distance
8Xs to So and the planet moves retrograde a distafigeto Po; it can be seen that
SAs+ 8Ap = 1’ and alwaysiis >> Sip.

Figure 6 shows the configuration for acronychal rising at the eastern horizon for
both positive and negative latitudes of the planet. The ecliptic intersects the horizon at
the horoscopug? with the horizon angley, and the sun, which is below the western
horizon, is projected to the antisolar poisi; abovethe eastern horizon by thecus

Po

Horizon

Ecliptic
+A PH

Fig. 6. Computation of elongation of acronychal rising
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visionish = S’A. The planetPg, shown at the horizon with positive latitudes
and negative latitude-8, is projected to ecliptic longitude &’. Since the arcs are
small, we may use plane triangles. In trian§let H, S'H = h/sinv, and in triangle
HP'Pg, P’H = B/tanv. Thus, for both positive and negative latitudes of the planet,
the elongation at acronychal rising from the antisolar pdift, = ', and the interval

of time 8¢ between opposition and acronychal rising are given by

h B
/
p— 5 1
7 sinv + tanv (1)
/
5t =L )
Uy

whereuv, is the velocity of elongation, found from the velocities of the sun and planet,
v, = vs — vp; Since the planet is moving retrogradg > vs. Given the dates of two
oppositionsTy andT», the synodic time between oppositian$, = 7> — Ty; and with

the intervalsit; andsr, from opposition to acronychal rising, the synodic time between
acronychal risingsi T is

AT = (To — 6t2) — (T — 8t1) = ATy + (811 — 612). 3)

There are various approximations in this method. One is the use of plane for spherical
triangles. A second is that the longitudeff used for finding, is taken as the longitude
of opposition, which actually lies at a lesser longitude tRarsay, at O, since the planetis
moving retrograde. One can compensate for this by an iterative computation, first finding
v for Ay = Ao and computing,’ andsr from (1) and (2). Then compute the motion®f
from §ip = 8t - vp, andiy, = Ao — 82p, Noting thatirp, < 0. Next findP’H = g/ tanv,
observing the sign o8, and therky ~ A, — P’H. The computation of’ andéz is then
repeated with the better value offor the corrected.y. However, the iteration makes
virtually no difference for computing synodic times from acronychal risings. Hence, in
computing4z in the figures, we have takenfor Ay = Ao without further correction.

This approximation is not safe for dates of heliacal risings and settings, particularly of
Mars, and van der Waerden (1942) provides a table for making the correction from the
longitude of the sun.

A more important question concerhsthearcus visionisor acronychal rising, for
which there are, to my knowledge, no established values. For heliacal rising and setting,
the modern values of are those of Schoch, which are the basis of the tables of P.V.
Neugebauer (1938) and van der Waerden (1942). Those for the superior planets are:

Saturn Jupiter Mars
ris Q1o ro Q7v.5° ris Q1o

The values foi® must be less, but by how much? From P.V. Neugebauer (1932), the
range of magnitudes & and® is:

m r M m ® M
Saturn 16 11 12 0.6
Jupiter —1.2 -18 -2 —2.7

Mars 21 13 -0.7 -25
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Since the planets, Mars in particular, are brighter ri@#nan neatl”, and since for
the same value df the eastern horizon is darker after sunset than before sunrise, | have
usedh = 8° for Saturn and: = 6° for Jupiter and Mars. It is possible thais low for
Saturn and high for Jupiter, and no single value would seem to be adequate to the wide
variation of brightness of Mars.

As for the effect ofr, we have computed: for eight synodic periods of Mars, just
over one rotation of phenomena through the zodiacd; fioom 12° to 0° in 2° steps for
the latitude of Babylon, 38°. We find that, althouglh can produce intervals between
opposition and acronychal rising of as much-as4 days forh = 12°, its effect on4r
between acronychal risings is far smaller. Thus, to take the maximum synodic time in
tithis over 1207, which shows the greatest change dué:to

Opp. h=12 10 8 6 4 2 0
1,44 1,44 144 145 146 147 148 148

Three synodic times vary by 2, 3by 1, and 1 by 0 duk, talthough there are differences
of up to —6 from A4 at opposition due to latitudg. Hence, even for the large range
of synodic times of Mars, it does not matter greatly what valué: ¢ used. From
checkingh = 10°, 8, 6°, 4° for the greatest and least synodic times, we have found a
variation due td: of about—0.3% to +0.3% for Saturn and+0.79 to —0.1¢ for Jupiter,
although other synodic periods may show greater variation. Heliacal risings and settings
are more sensitive, particularly at higher geographical latitudes, and the entire method
of computing heliacal and acronychal phenomena is not exactly secure. Finally, it can
show only what could have been observed, not what was actually observed.

Itis of interest to examine the range of elongatigdrinterval of timess, and motion
of the plane® between opposition and acronychal rising, and of the changethe
synodic time4:. The limits that we have found in computinfy for the figures are:

Nm v Ofm Stm SAm  SAm dtm dtm
Saturn 8&° 105° 819 1019 062 0760 —02¢ +0.3¢
Jupiter 63 84 58 73 07 098 -04 406
Mars 14 113 11 79 03 31 -53 +34

Note that Saturn has the longest interdalbut the least chang# in 4¢, and the limits
of dt do not correspond to the limits éf, but occur wheré: is changing the most
rapidly. The locations of the limits are also of interest. The minimum’p8¢, andsa
for Jupiter are near aphelion and the maximum near perihelion, while for Mars these
are reversed. For Saturn the predominant effect is latitude, and the minimum values are
(roughly) near the northern limit and the maximum near the southern.

To summarize what we have done: The synodic times from acronychal risings in
Figures 1-3 B are computed from formulds-3) with 2 = 8° for Saturn and: = 6°
for Jupiter and Mars, taking from Table 6 in van der Waerden (1942) for the latitude
of Babylon, 325°, and assuming thaty = A, without adjustment. The range 8Ky
between opposition and acronychal rising for the valugswé have used is, as above:
Saturn, 06°-0.8°, Jupiter, 07°-1°, Mars, 03°-3, all positive, and the large values for
Mars occur in the shortest synodic arcs. Rather than compute these individually, we
have advanced longitudes for Saturn and Jupiter and® 2or Mars from opposition.
Anything more refined would not be noticeable in the scale of the figures.
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Corrections to Swerdlow, 1998:

p. 121. 35: for stand read stands.

p. 124 1. 10: for 0 to from 10 read 0 to 10.

p. 163 1. 26: for 27;43« 28 read—27;43~ —28.

p. 195 Table 1.5: Saturd? = 4,16 Y = 4,25.

p. 199 Table 2.2A. 1. 21: for-124 VI 12 read-123 VI 12; Per= 1.

p. 202 Table 2.3: 1. 122 —663: At = 48; correct Fig. 2.4 accordingly.

p. 203 Table 2.4: Saturd? = 4,16.

. 206 Table 2.7A: |. 3: for -306 read -308; . 5: aftét omit ‘d’.

Bibliography p. 242: Thompson, R.C.: for Ninevah read Nineveh.

add: Botéro, J. 1992Mesopotamia. Writing, Reasoning, and the Gdglsicago.
Brown, D.R. 1995Neo-Assyrian and Neo-Babylonian Planetary Astronomy-Astrology (747-

612 B.C.) Dissertation, Cambridge University.
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