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Lambda: The Constant That Refuses to Die
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1. Introduction

Einstein’s general theory of relativity (GTR) was only a little over a year old when
he added a “cosmological term” to his gravitational field equations. From the beginning,
Einstein was not happy with this term because, it seemed to him, it marred the beauty
of his theory, and over the years he found its presence increasingly distasteful, eventu-
ally referring to it as his “biggest blunder.”1 But although the cosmological term has,
from time to time, been perceived to give off a bad odor, it has stubbornly refused to go
away – partly because (Einstein notwithstanding) there is a logical place for it in GTR,
partly because it has always had its champions, and partly because it gets periodically
called upon to solve problems and resolve crises in cosmology. And as I write, the
observational evidence is mounting that the actual universe is characterized by a posi-
tive cosmological constant (�), or something that acts like one. Thus, the time seems
ripe to review the history of the oft reviled but never defeated�.2

The plan of the paper is as follows. Section 2 provides a taste of the nineteenth century
antecedents of�. Section 3 discusses Einstein’s (1917a) “Cosmological Considerations
on the General Theory of Relativity” where� makes its debut. Einstein put� on stage
both to make room in his GTR for a static cosmological model and to harmonize the
GTR with Mach’s principle. The physical implications of� as a cosmic repulsive force
are explained in Sect. 4. Three developments that led Einstein to reject the cosmological
term are discussed in Sect. 5. After the rejection, Einstein had a “bad conscience” about
having introduced� in the first place and would have nothing further to do with it. But
as will be seen in Sect. 6, other physicists thought that once the genie had been let out
of the bottle it was not so easy to put it back again. Both R. C. Tolman and Georges
Lemâitre argued that� has a natural place in GTR and that only observation can decide

1 Attributed to Einstein by Gamow (1958, 66–67). Note that Gamow does not purport to be
quoting Einstein directly. He says: “Einstein remarked to me many years ago that the cosmic re-
pulsion idea was the biggest blunder he had made in his entire life.” The account given in Gamow’s
autobiographyMy World Line(1970, 44) is similar. The existing evidence is insufficient to decide
whether Einstein himself used the word “blunder” or whether this was Gamow’s embellishment.

2 Much relevant historical information on� is found in North (1965) and Kragh (1996). There
are a number of good review articles on the physics of�. Especially recommended are Carroll,
Press, and Turner (1992), Cohn (1998), and Sahni (1999).
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whether in fact its value is zero. As recounted in Sect. 7, there were also more positive
reasons for keeping� alive. First, a positive� offered a solution to the apparent par-
adox that the earth and stars are older than the expansion age of the universe, which is
bounded from above by the Hubble time. Second, Lemaître championed a cosmological
model with� > 0 that promised to explain cosmological structure formation. But as
time wore on and estimates of the Hubble time went up, the age problem seemed less
pressing, and more detailed investigations of Lemaître’s model deflated the promise
to explain structure formation.� was ready to be put back on the shelf. However, as
described in Sect. 8, the ghost of� was kept alive in steady state cosmology. And, as
detailed in Sect. 9, in the late 1960s� was explicitly invoked once more, this time to
explain the predominance ofz = 2 redshift measurements for quasi-stellar objects. This
revival lasted only a few years. However, particle physicists began to argue that it is
difficult if not impossible to put� back on the shelf since it is to be interpreted as the
vacuum energy density of quantum fields. The controversy about how to calculate the
value of this energy density is critically examined in Sect. 10. Section 11 takes a brief
look at inflationary cosmology which provides for an effective cosmological constant
in the very early universe of such a large value that the resulting accelerated expansion
(or inflation) produces observed features of the cosmos that are otherwise puzzling in
the standard big bang model. However, simple versions of inflation run into problems
unless� is present to make up for the “missing mass” in the universe. Evidence that�

is indeed with us is reviewed in Sect. 12. Recent redshift measurements for supernovae
indicate that the rate of expansion of the universe is increasing, which requires either a
� > 0 or else a strange form of matter (now called “quintessence”) that mimics some
of the features of�. Conclusions are presented in Sect. 13.

2. Prehistory ofΛ

In the 1890’s both von Seeliger and Neumann realized that standard Newtonian
cosmology did not provide for a consistent model of a cosmos with an infinite space
filled with a static uniform distribution of matter [see von Seeliger (1895, 1896) and
Neumann (1896)]. For in such a model the integrals corresponding to the Newtonian
gravitational potential at a point and the Newtonian gravitational force at a point are
divergent.3 Two options were contemplated. The first was to maintain standard Newto-
nian gravitational theory and conclude that a static homogeneous cosmos is forbidden.
What is permitted, for example, is an island universe in which there is a kind of center
where the mass densityρ reaches a maximum and then falls off more rapidly than 1/r2

asr → ∞ (wherer measures the distance from the center). Such a model allows the
relevant integrals to converge. The second option provides for a static homogeneous
cosmology by modifying Newton’s theory. In particular, Neumann proposed that the
Newtonian gravitational potentialϕ(r) = −κm/r for a point massm be multiplied by
the factor exp(−√�r), where� is a positive constant, while von Seeliger proposed to

3 For a detailed discussion of this and other problems in Newtonian cosmology, see Norton
(1999).
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add this term to Newton’s inverse square force law. Such a modification of Newton’s
law of gravitation had already been proposed a number of times for various reasons [see
North (1965, 17)]. By making� sufficiently small, deviations from standard Newtonian
predictions will be indistinguishable except at large distances. Von Seeliger’s version of
the modification carries with it a corresponding modification of Poisson’s equation

∇2ϕ = 4πκρ (1)

to

∇2ϕ −�ϕ = 4πκρ. (2)

Although Einstein does not refer to either von Seeliger or Neumann in the paper that
introduces the cosmological constant into GTR, it is certain that he knew about the
work of the former since it gets a mention in hisÜber die Spezielle und die allgeme-
ine Relativiẗatstheorie(1917b), which is dated December 1916, two months before he
communicated his cosmological paper (1917a) to the Berlin Academy.

3. Einstein’s embrace ofΛ

In “Cosmological Considerations on the General Theory of Relativity” Einstein
(1917a) used the problem which had exercised von Seeliger and Neumann as a spring-
board to launch the cosmological term. He rejected the option of an island universe on
the grounds that statistical mechanical considerations showed that, if the island is treated
as a gas whose molecules are stars, the system would depopulate.4 So, following von
Seeliger, Einstein chose the second option of modifying Newton’s law of gravitation.
Replacing (1) by (2), Einstein noted, allows a solution of the form

ϕ = −4πκρo
�

, ρo = const. (3)

i.e. a static uniform distribution of matter throughout space with a mean density ofρo.
Einstein then argued that, by analogy, the original gravitational field equations5

Gµν := Rµυ − 1

2
gµυR = 8πκTµν (4)

can be generalized to

Rµυ − 1

2
gµυR +�gµυ = 8πκTµν. (5)

The seeming analogy between the move from (1) to (2) and the move from (4) to (5) is
enhanced if one operates with Einstein’s sign conventions, on which the cosmological
term in (5) is prefixed by a minus rather than a plus sign. In any case, this bit of reasoning

4 This argument is questionable; see Norton (1999).
5 HereGµν is the Einstein tensor,Rµυ is the Ricci tensor,gµυ is the metric tensor,R is the

Ricci curvature scalar, andTµν is the stress energy tensor. The signature convention for the metric
is chosen to be(+++−).
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shows how slippery analogies are to handle, for the Newtonian limit of (5) isnot (2) but
rather

∇2ϕ +� = 4πκρ (2′)

[see Trautman (1965)].6 But however shaky the analogical reasoning, Einstein arrived
at the “right” result (5).7

What did the generalized field equations (5) accomplish for Einstein? Assume a
homogeneous, isotropic spacetime. The most general line element takes the form

ds2 = a2(t)dσ 2− dt2 (6)

wherea(t) is the scale factor, sometimes called the “radius of the universe” and thus
often denoted byR(t), anddσ 2 is the line element of a Riemann space of constant
curvaturek = 0 (flat space),k = +1 (closed space), ork = −1 (open elliptic space). In
such a setting the stress-energy tensor must take the form of a perfect fluid

T µν = (ρ + p)V µV ν + pgµν (7)

wherep is the pressure of the fluid andV µ is the normed four-velocity of the fluid. The
original form of the gravitational field equations (4) imply that

ä = −4πκ

3
(ρ + 3p)a (8)

and

ȧ2 = 8πκ

3
ρa2− k. (9)

The pair (8) and (9) are commonly referred to as theFriedmann equations. They do not
appear in Einstein’s (1917a), but the anachronism of using these equations can, perhaps,
be excused because it makes for a much cleaner and more perspicuous discussion.8

Conservation of energyT µν ;υ = 0, which is a consequence of (4), adds the equation

ρ̇ = −3(ρ + p) ȧ
a
. (10)

From (9) we see that a static solution (ȧ = 0 = ä) requires thatρ = const. –
which is no surprise – while (8) implies thatρ = −3p. If ρ > 0, the pressurep must
be negative, which we may surmise would have been unattractive to Einstein in 1917.

6 Trautman states but does not derive(2′). A derivation can be given on the basis of the
following assumptions. First, the metric can be written asgµυ = ηµν + εγµυ , whereηµν is the
Minkowski metric andγµυ is assumed to be time independent. Next, in calculating the Ricci tensor
it is assumed that terms of second order inεγµυ can be neglected. As for matter, it is assumed that
the proper densityρ is low and that in the expression for the stress-energy tensor terms of order
(v/c)2, ρ(v/c), andερ can be neglected. And finally, it is assumed that terms of the orderε� are
to be neglected.

7 The sense in which (5) is the correct generalization of the original Einstein gravitational
field equations will be discussed below.

8 The Friedmann equations were derived in Friedmann (1922) and Lemaître (1927).
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In any case, in 1917 he was assuming a dust model, i.e.p = 0, which means that a
static solution requiresρ = 0. That is, the only static dust model allowed by the original
gravitational field equations is the trivial empty one. And by (9) this trivial model cannot
be closed (k = +1).

For the generalized field equations (5), the conservation lawT µν ;υ = 0 continues
to hold, and (10) remains the same. However, (8) and (9) are replaced respectively by

ä = −4πκ

3
(ρ + 3p)a + �

3
a (8′)

and

ȧ2 = 8πκ

3
ρa2− k + �

3
a2. (9′)

As before, a static solutiona = aE = const. requiresρ = const. And for dust matter,
(8′) requires

� = 4πκρ. (11)

Together (11) and(9′) give

� = k

a2
E

. (12)

Sinceρ is assumed to be positive,� must also be positive. Thus, by (12),k > 0 and
Einstein’s static universe is spatially closed.

The upshot is that introducing the cosmological term into his gravitational field equa-
tions allowed Einstein to achieve a static cosmological model, which he believed in 1917
– on the basis of very little evidence – was needed to represent the actual cosmos. But�

also apparently allowed him to fulfill two other closely related items on his agenda: the
“relativity principle” and “Mach’s principle.” The fact that Einstein’s static universe is
spatially closed obviated the need to specify any boundary conditions at infinity, a fea-
ture which Einstein found to be attractive: “[B]oundary conditions presuppose a definite
choice of the system of reference, which is contrary to the spirit of relativity” (1917a,
183). The version of Mach’s principle of which Einstein was then enamored held that
the distribution of matter energy should determine the metric structure of spacetime.
This has a corollary – never explicitly stated by Einstein but surely understood – that
the correct gravitational field equations should not admit a solution whenT µνvanishes
identically. But the original field equations (4) admit empty Minkowski spacetime as
a solution. The modified field equations (5) do not admit this solution when� �= 0.
This fact is not mentioned in Einstein’s (1917a), but it is made explicit in Pauli’s (1921)
influential encyclopedia article on relativity theory.

In sum, the introduction of� appeared in 1917 to be a master stroke: a simple
modification of the original gravitational field equations for GTR made room for the
desired static cosmology and at the same time seemed to harmonize GTR with the sorts
of overarching principles that Einstein had used to get from special to general relativity.
Whatever satisfaction Einstein derived from this apparent triumph was soon to evap-
orate. But before continuing with the historical narrative, I will pause to consider the
physical effects of a positive cosmological constant.
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4. The physical meaning ofΛ

A glance at Eq.(8′) shows that in expanding Friedmann models (ȧ > 0), the rate of
expansion is slowed by the presence of matter and (positive) pressure, whereas the rate
of expansion is speeded up by the presence of a positive cosmological constant. In this
sense the factor�a3 represents a cosmic repulsive force when� > 0. This conclusion is
reinforced when one examines the details of solutions to the gravitational field equations
(5) with cosmological term. Consider, for example, empty space solutions (T µν = 0).
In such cases the Ricci curvature scalarR is equal to 4�, and the field equations reduce
to Rµυ = �gµυ . When� = 0 the unique static spherically symmetric exterior field
solution is that first given by Schwarzschild:

ds2 = dr2

1− 2m
r

+ d&2−
(

1− 2m

r

)
dt2 (13)

whered&2 = (dθ2 + sin2 θ dφ2) andm is the mass of the central body. The general-
ization of the Schwarzschild solution for� > 0 is

ds2 = dr2

1− 2m
r
− 1

3�r
2
+ d&2−

(
1− 2m

r
− 1

3
�r2

)
dt2. (14)

In the Newtonian weak field, slow motion approximation, the Newtonian potentialϕ is
given by(−g44− 1)/2. In the case of (14) we get

ϕ = −κm
r
− κ

6
�r2. (15)

So even whenm = 0, a particle moving in the field (14) feels a repulsive radial force
proportional to�r

3 , assuming that� > 0. Solar system tests of GTR based on the
Schwarzschild metric are affected in principle. For instance, the presence of a posi-
tive cosmological constant induces an additional perihelion shift for Mercury of�/

(5× 10−42 cm−2) seconds of arc per century [see Rindler (1969, 208)]. If� is small,
this effect will be undetectable. But on a cosmic scale – that is, forr large enough – the
presence of a cosmological constant will manifest itself in other effects.

5. Three blows toΛ

The first blow fell almost immediately. De Sitter (1917) produced an empty space
(T µν = 0) solution to (5) with� > 0. The coordinate system in which De Sitter
expressed the line element gave the solution a static appearance:

ds2 = dr2+ R2 sin2
( r
R

)
[dψ2+ sin2(ψ)dθ2] − cos2

( r
R

)
dt2 (16)

whereR is a constant (not to be confused with the Ricci curvature scalar). Initially
then, the De Sitter solution seemed to satisfy Einstein’s desire for a static cosmological
model. The De Sitter model, however, was violently in conflict with Einstein’s under-
standing of Mach’s principle since the spacetime of the model is curved but without any
matter-energy to explain the curvature.
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Einstein’s first reaction was to defend Mach’s principle by dismissing De Sitter’s
solution on the grounds that it was singular and, he suspected, the singularities were
hiding the matter required by his version of Mach’s principle; in particular, Einstein
saw a singularity at the ‘equator’r = πR

2 where theg44 component of the metric of
(16) is 0. Writing to De Sitter on 22 July 1917, Einstein stated: “Such a singularity
in a finite world [obviously] is, in my opinion, to be discounted as physically beyond
consideration.”9 This criticism was repeated in print [see Einstein (1918)]. The linchpin
of Einstein’s original defense crumbled in the light of Felix Klein’s demonstration that
the singularity Einstein perceived at the equator is only a coordinate artifact. Einstein
conceded in a letter to Klein dated 20 June 1918: “You are entirely right. De Sitter’s
world is, of itself, free of singularities . . . My critical remark about De Sitter’s solution
needs correction; a singularity-free solution for the gravitation equations without matter
does in fact exist.”10 This concession never made it into print, and Pauli’s (1921) widely
cited encyclopedia article repeats Einstein’s singularity charge.

Klein’s technique for showing the ersatz character of the perceived singularity in the
De Sitter solution was to show how to smoothly extend the De Sitter metric through the
apparent singularity. What this extension revealed, however, was that De Sitter’s solution
is not static, the original appearance of staticity being due to the fact that the De Sitter co-
ordinates used in (16) cover only a piece of the fully extended spacetime. Einstein seized
on this fact as an alternative reason for dismissing the De Sitter solution. In the same
letter where he conceded to Klein, he wrote: “Under no circumstances could this [De
Sitter-Klein] world come into consideration as a physical possibility. For in this world
time t cannot be defined in such a way that the three dimensional sectionst = const do
not intersect and are equal to one another (metrically).”11 When Einstein later decided
that static cosmological models are not feasible, this second line of defense crumbled.
From this time onward, his allegiance to Mach’s principle gradually diminished to the
point where he said that we should no longer speak of this principle in GTR.12

The second blow came from Eddington (1930), who noted that Einstein’s static solu-
tion is unstable. With typical modesty Eddington credited the insight to Lemaître (1927,
1931a). “Although not expressly stated, it is at once apparent from his formulae that
Einstein’s world is unstable – an important fact which, I think, has not hitherto been
appreciated in cosmological discussions” (1930, 668). Settingp = 0 in Eq.(8′) gives

3ä = a(�− 4πκρ). (17)

Thus, for a static dust solution the value of� must exactly cancel the contribution
from matter. The slightest perturbation that would makeρ less than �

4πκ by any amount
whatsoever would start the universe expanding, and by (10) the expansion decreasesρ,
makingä increase. Similarly, the slightest perturbation that makesρ greater than�

4πκ

9 Schulmann et al. (1998, Doc. 363).
10 Schulmann et al. (1998, Doc. 567).
11 Ibid.
12 Quoted in Pais (1982, 288). More details on the Einstein-De Sitter and the Einstein-Klein

interchanges can be found in Earman and Eisenstaedt (1999).
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by any amount whatsoever will start a contraction that continually increases.13 There is
no evidence that Einstein read Eddington’s (1930), but he had read Friedmann’s (1922),
which showed that the Einstein field equations, with or without cosmological term, ad-
mit non-static solutions with a homogeneous and isotropic matter distribution. (Initially
Einstein thought that Friedmann had made an error in his calculations [see Einstein
(1922)], but later he decided that Friedmann was correct [see Einstein (1923)]). And in
1931 Einstein noted that the instability of his static solution follows from the Friedmann
equations [see Einstein (1931]).

But for Einstein the killing blow to� was Hubble’s (1929) redshift observations
which indicated that the universe is not static but expanding. Already in 1923 Einstein
was prepared to jettison the cosmological term. As he wrote to Weyl: “If there is no
quasi-static world, then away with the cosmological term.”14 As shown by the work of
Friedmann (1922) – and by Lemaître who is not cited in Einstein’s paper – Hubble’s
observations can be accounted for by the GTR in an “unforced manner,” namely without
the�-term (1931, 237). So away with�.

In hindsight we can see that some evidence for an expanding universe existed already
in the early 1920s. In the first edition ofThe Mathematical Theory of Relativity(1923)
Eddington opined that “One of the most perplexing problems of cosmogony is the great
speed of the spiral nebulae. Their radial velocities average about 600 km. per second
and there is a great preponderance of velocities of recession from the solar system”
(161). Eddington goes on to report measurements of radial velocities of spiral nebulae
made by V. M. Silpher of the Lowell Observatory, noting that “the great preponderance
of positive (receding) velocities is very striking” (162). But Eddington was cautious in
drawing conclusions both because of the “lack of observations of southern nebulae” and
because two of Silpher’s data points were from nebulae that are approaching the solar
system at high speeds. And in any case, the expanding universe models of Friedmann
(1922) were apparently unknown to Eddington in 1923. He therefore tried to explain
Silpher’s data on spiral nebulae by means of De Sitter’s model.

6. Einstein’s denunciation ofΛ

Physicists in Einstein’s orbit tended to follow his lead in rejecting the cosmological
term. A silent but eloquent affirmation of Einstein’s attitude is found in Peter Berg-
mann’sIntroduction to the Theory of Relativity(1942), which was read and approved
by Einstein: the book contains not one mention of�. In 1958 Pauli added a footnote to
hisTheory of Relativity: “Einstein. . . completely rejected the cosmological termas su-
perfluous and no longer justified. I fully accept this new standpoint of Einstein’s” (1958,
220). We have seen that from the beginning Einstein was uneasy about� because it

13 Since (17) applies only to a homogeneous universe, the instability in question arises only if
God created a homogeneous universe with a bit too much or a bit too little matter. The real worry
(as John Norton kindly reminded me) concerns thelocal instability of the matter distribution, and
Eddington’s analysis did not resolve this issue.

14 Quoted in Pais (1982, 286).
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was “gravely detrimental to the formal beauty of the theory [GTR]” (1919, 193). After
Hubble’s observations indicating that the universe is expanding he seems to have felt
that� was tainted with the original sin of a faulty motivation. Both of these feelings are
expressed in a letter of 26 September 1947 to Lemaître:

Since I have introduced this [�] term, I had always a bad conscience. But at that time
I could see no other possibility to deal with the fact of the existence of a finite mean
density of matter. I found it very ugly indeed that the field law of gravitation should be
composed of two logically independent terms which are connected by addition. About
the justification of such feelings concerning logical simplicity it is difficult to argue. I
cannot help to feel it strongly and I am unable to believe that such an ugly thing should
be realized in nature.15

It is indeed difficult to argue about simplicity and beauty.16 But the question of whether
or not Einstein should have had a bad conscience for introducing� is irrelevant to the
issue of whether� has a natural place in GTR. And it indisputably does. On the right
hand side of the original gravitational field equations stands the stress-energy tensor
T µν . Thus, in order to have conservation of energy-momentum in the formT µν ;υ = 0 it
is necessary that the left hand side of the equation have vanishing covariant divergence.
So one can look for the most general symmetric second rank tensorXµν, concocted
from gµυ and its derivatives, such thatXµν ;υ = 0. If, as is suggested by the Newtonian
limit, Xµν is a functional ofgµυ and its first and second derivatives, and if it is linear in
the second derivatives, thenXµυ must be equal toRµυ − 1

2gµυR +�gµυ . It is then an
empirical question as to whether or not� is zero.

This point of view was put to Einstein by R. C. Tolman in a letter dated 14 September
1931:

With regard to the question of setting� equal to zero, I think there are a number of argu-
ments in favor of it but one fairly strong against it. On one hand, by giving� the definite
value zero, the fundamental equations are simplified, the conclusions drawn from them
are rendered less indeterminate, and it becomes no longer necessary to inquire into the
significance and magnitude of what would otherwise be a new constant of nature. On the
other hand, since the introduction of the�-term provides the most general possible expres-
sion of the second order which would have the right properties for the energy-momentum
tensor, a definite assignment of� = 0, in the absence of experimental determination of
its magnitude, seems arbitrary and not necessarily correct.17

15 Einstein to Lemâitre 26 September 1947 (Einstein Archives Doc. 15 085). Quoted by per-
mission of the Albert Einstein Archives, the Jewish National University Library, the Hebrew
University of Jerusalem, Israel.

16 From 1915 on Einstein relied more on considerations mathematical simplicity and beauty
and less on physical heuristics – with diminishing returns! See Norton (2000).

17 Tolman to Einstein 14 September 1931 (Einstein Archives Doc. 23 031). Quoted by permis-
sion of the California Institute of Technology.
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Similar sentiments are found in Lemaître’s contribution to the Schilpp volume in Ein-
stein’s honor:

Even if the introduction of the cosmological constant “has lost its sole original justifi-
cation, that of leading to a natural solution to the cosmological problem,”18 it remains
true that Einstein has shown that the structure of his [gravitational field] equations quite
naturally allows for the presence of a second constant besides the gravitational one. This
raises a problem and opens possibilities which deserve careful discussion. The history of
science provides many instances of discoveries which have been made for reasons which
are no longer considered satisfactory. It may be that the discovery of the cosmological
constant is such a case. (1949, 443)

Only for someone of genius (which Einstein indisputably was) or someone pos-
sessed of a monstrous ego (which Einstein wasn’t) can sufficient grounds for reject-
ing a quantity be found in the fact thathe introduced the quantity for reasonshe later
regretted. In any case, despite Einstein’s denunciation of�, it refused to disappear
from cosmology. It was kept alive by a number of champions, some reluctant, some
enthusiastic. Before turning to these champions, it is worth noting a position that is
intermediate between that of Einstein on one hand and Tolman and Lemaître on the
other.

After reviewing various positions on the status of the cosmological constant, W. H.
McCrea (1971) reached the following disjunctive conclusion:

(a) If general relativity is to be treated as a self-contained theory, then the cosmical terms
should be omitted; this is because the theory itself cannot assign a meaning to a fixed di-
mensional physical constant, while if it attempts to admit an arbitrary constant it becomes
too indeterminate.
(b) If general relativity is to be treated as only part of what is required in order to
construct a theoretical model of the world of physical experience, then the cosmical
terms should be retained as providing additional freedom on connecting relativity theo-
ry with other parts of physical theory. The value to be assigned to the cosmical constant
may be expected to depend upon the part of the physical world being studied; this is
because the theoretical model can be a model only of some idealized representation of
the actual world and, in general different idealizations will have to be made in different
applications. (152–153)

Attempts have been made to seize McCrea’s option (b) by using� as a means of con-
necting GTR with particle physics. These attempts will be reviewed below in Sect. 10.

18 This is a reference to Einstein’sThe Meaning of Relativity(1946, fn 121). The full passage
reads:

If Hubble’s expansion had been discovered at the time of creation of the general theory
of relativity, the cosmologic member would never have been introduced. It seems now so
much less justified to introduce such a member into the field equations, since its intro-
duction loses its sole original justification, – that of leading to a natural solution to the
cosmologic problem [of allowing for a finite average density of matter].
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Fig. 1. A big bang model with� = 0

7. KeepingΛ alive

In addition to the point of view that theoretical considerations do not exclude a cos-
mological term from the gravitational field equations and that only observations can
decide whether� is zero, there were reasons of a more positive sort for keeping� alive.

The age problem. With ρ > 0 andp ≥ 0, it follows that for Friedmann cosmological
models with� = 0, ä < 0 [see Eqs. (8) and(8′)]. Redshift measurements tell us that
ȧo > 0 (where the naught subscript on a quantity indicates its present value). Thus the
graph of the scale factora(t) is concave downwards witha(t) = 0 at some finite time
in the past, which will be designated ast = 0. It follows that the present ageto of the
universe is less than the Hubble timeτHo := H−1

o , whereH := (ȧ/a) denotes the
(unconstant!) Hubble constant (see Fig. 1). Hubble’s early measurements ofHo gave a
value around 465 km per sec per megaparsec, which translates into a value forτHo of
two billion years. This is too short compared either to the age of the earth, as determined
by radioactive decay, or to the age of stars, as determined by theories of stellar evolution.
This clash is stated clearly in the second edition of Spencer Jones’General Astronomy
(1934)19:

We thus have the apparent paradox that the stars seem to be much older than the Uni-
verse. The estimate of stellar ages at which we have arrived cannot be abandoned without
leaving the facts upon which it was based unexplained. On the other hand, if the Universe
has been in a state of progressive expansion following upon an initial disturbance when it
was much more compact than at present, the longer time scale is impossible. How the two
different time scales are to be reconciled is one of the outstanding problems of astronomy
at present. (414)

19 Spencer Jones was at the time the Astronomer Royal.
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This paradox was met in some quarters with a combination of obfuscation, wishful
thinking, and plausible but wrong conjectures. As an apparent example of the first, I
would cite De Sitter’sKosmos(1932):

I am afraid that all we can do is to accept the [age] paradox and try to accommodate
ourselves to it, as we have done to many paradoxes lately in modern physical theories. We
shall have to get accustomed to the idea of change of the quantityR [a] commonly called
the “radius of the universe,” and the evolutionary changes of stars and stellar systems are
two different processes, going on side by side without any apparent connection between
them. After all, the “universe” is an hypothesis, like the atom, and must be allowed free-
dom to have properties and to do things which would be contradictory and impossible for
a finite material structure. (133)

But contrary to the impression given in the semi-popularKosmos, De Sitter did have a
coherent proposal that fits somewhere between the categories of wishful thinking and
plausible-but-false-conjecture. The idea was that when the idealization of a homoge-
neous and isotropic matter distribution is replaced by a more realistic assumption, the
initial singularitya(0) = 0 of the Friedmann expanding models will be replaced by a
“near approach of the galaxies during a short interval of time” neart = 0, from which
the stars would emerge intact. De Sitter was quite confident that this idea would work:

We must therefore accept the paradox that the stars are older than the universe, if by “the
age of the universe” we mean the time elapsed sincey [the scale factora] passed through
its minimum. It has been shown, however, that this minimum must not be conceived as
“the beginning of the world,” but as a transitory episode in the history of the universe, so
that there is nothing paradoxical left of the paradox. (1933, 632)

Tolman (1934) was also hopeful that the age paradox is an artifact of the idealization of
a homogeneous universe:

[I]n connexion with this apparent difficulty as to time scales, it is to be emphasized that the
highly idealized homogeneous models which we have employed can hardly be regarded
as adequate for drawing any exact conclusions as to the precise state of the actual universe
say 109 years ago. Thus, as already mentioned earlier . . . it is evident that the unique
singular state at the lower limit of volume from which the expansion would appear to start
in the case of certain models must be regarded as property of the homogeneous model
rather than a character that could actually be found in the real universe. (1934, 485)

Here Tolman was certainly influenced by Einstein’s (1931), where a similar sentiment is
found, and by his correspondence with Einstein.20 Over thirty years would elapse before
a series of theorems due mainly to Roger Penrose and Stephen Hawking made it clear

20 On 14 September 1931 Tolman wrote to Einstein:

I was very glad to find your letter of June 27th waiting for me . . . andalso to receive
the reprints on the cosmological problem [Einstein (1931)] and the unified field theory.

When I first saw your proposed quasi-periodic solution for the cosmological line el-
ement, I was very much troubled by the difficulties connected with the behavior of
the model in the neighborhood of the points of zero proper volume. The remarks of
your letter, however, pointing out that the actual inhomogeneity in the distribution of
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that singularities in cosmology and gravitational collapse are not artifacts of idealized
models but are generic to the solutions to Einstein’s gravitational field equations.21 In
many instances there is no physically reasonable way to extend the solution through the
singularities; in particular, there seems to be no physical meaning in talking about what
happens “before” a big bang singularity or “after” a big crunch singularity.

Another approach to resolving the age problem involved an appeal to�. For a Fried-
mann dust universe (p = 0) the conservation law (10) implies thatρa3 = const. Thus
for a spatially closed universe (k = +1), the Friedmann Eq.(9′) can be rewritten as

ȧ2 = �

3
a2+ C

a
− 1 (18)

whereC is a constant. Starting with (18) and setting� = �E := 9/4C2 (where the
subscriptE is used to denote the value of� in the Einstein static universe), there are
three possibilities, depending on the value of the constant of integration: (i) the Einstein
static universe whereaE = 2

3C, (ii) A big bang model which expands froma(0) = 0 and
asymptotically approaches the Einstein static model, and (iii) the Eddington-Lemaître
model which in the future direction of time is forever expanding and which in the past
direction asymptotically approaches the Einstein static model ast →−∞ (see Fig. 2).
The last model “solves” the age problem all too well!

The case� = �E(1+ δ) with δ > 0 corresponds to what are called the Lemaître
models, although Lemaître (1927, 1931a) himself allowed for a positive pressure. These
are big bang models which expand forever but which contain a stage where the expansion
rate slows down, reaching a minimum value whenam = (3C/2�)1/3.Not only does the
expansion rate slow down, but by takingδ sufficiently small,a(t) can be made to linger,
for as long as one desires, close to the value at whichȧ(t) is a minimum. Assuming
that the present timeto post-dates this “coasting phase,” the longer the coasting phase,
the more the age of the universe exceeds the Hubble time (see Fig. 3). Here then is a
ready made solution to the age problem which does not get rid of the initial singularity
a(0) = 0 – a feature that became highly desirable once the evidence for a big bang
began to accumulate.

In the glare of hindsight wisdom it may seem strange that in the 1930s cosmologists
were willing to perform theoretical contortions in order to solve the age problem but
were apparently unwilling to challenge the basis of the problem: Hubble’s value forHo.
But it must be remembered that at the time Hubble had the only telescope capable of
fixingHo [see North (1965, 228–229)]. Over the years estimates ofHo have dropped by
a factor of 5 to 10, and the corresponding rise in the Hubble time has removed some of

matter might make the idealized treatment fail in that neighborhood seem to me very
important. . . (Einstein Archives Doc. 23 031)
Quoted by permission of the California Institute of Technology.

21 Introducing a positive (respectively, negative) cosmological constant tends to decrease (in-
crease) the prevalency of singularities among the solutions of the field equations. For an account
of the history of the singularity theorems in GTR, see Earman (1999).
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Fig. 2. � = �E models

Fig. 3. A Lemâitre model

urgency from the age problem. But as we will now see, the age problem wasn’t the only
way to motivate the Lemaître models and a positive�.

Structure formation. Lemâitre championed� not only because, as embodied in the
Lemâitre models, it offered a way out of the age problem but also because it promised
to help explain the formation of galaxies and nebulae. He assumed that prior to the
coasting phase density perturbations – whose source he did not attempt to explain – left
matter arranged in a kind of super-gas, the individual molecules of which form clouds
of matter. During the coasting phase the near balance of the attractive force of gravity
and the repulsive force due to� amplifies density perturbations, causing them to grow
into proto-galaxies and galactic clusters. At the end of the coasting phase these galactic
condensates remain condensed while the universe resumes rapid expansion, producing
the presently observed recession velocities detected by Hubble.
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Lemâitre’s own treatment of structure formation [see Lemaître (1931b, 1933a, b,
1934)] was rather qualitative and subject to various objections [see McCrea and McVit-
tie (1931)]. But the general idea of tying structure formation to the coasting phase of the
Lemâitre model remained of interest through the 1950’s [see Bonnor (1957)] and the
1960’s [see Rawson-Harris (1969), and Brecher and Silk (1969)]. The idea seems to have
been killed by Brecher and Silk (1969) who argued that only under artificial constraints
can the Lemâitre models escape the following dilemma: either statistical fluctuations
will not produce galaxy formation, or else the formation will result in the collapse back
to a singularity.

Eddington’s views on�. Eddington rivaled Lemâitre as a champion of�, but the
motivations of these two men were quite different. InThe Expanding UniverseEdding-
ton averred that “I would as soon think of reverting to Newtonian theory as dropping the
cosmological constant” (1933, 35). Eddington had at least two distinct reasons for think-
ing that� was essential to cosmological models and to spacetime theories in general.
The first is based on the idea that the effective repulsive force of� is needed to explain
the recession of the galaxies. To be sure, GTR allows for an expanding universe even
when� = 0. But these models need to assume that large velocities of recession are built
into the modelab initio. “This might be true,” Eddington retorted, “but it can scarcely be
called anexplanationof the large velocities” (1933, 37). The notion that a scientific ex-
planation which has to posit special initial conditions to produce the desired effect is not
an acceptable explanation later helped to fuel to enthusiasm for inflationary cosmology,
which eschews special initial conditions in favor of an effective cosmological constant
in the very early universe (see Sect. 11). About the same time De Sitter, in a work entitled
“The Expanding Universe,” also endorsed the necessity of� for explaining expansion:

What is it then that causes the expansion [of the universe]? Who blows up the india-rubber
ball? The only possible answer is: thelambdadoes it. It is the presence oflambda, the
“cosmological constant” of Einstein, in the equations that not only closes up the universe,
making it of finite size instead of infinite, but also provides the possibility of its changing
size. (1931, 9)

De Sitter knew perfectly well that GTR allowed for this possibility without the help of
�. Perhaps he held some view of explanation similar to Eddington’s.

Eddington’s second reason for thinking that a positive� is essential to GTR derived
from his idea that length is relative to a standard of comparison. But “whatever embodies
this comparison unit isipso factothe space of physics”: “Physical space therefore cannot
be featureless. As a matter of geometrical terminology features of space are described
as curvatures (including hypercurvatures) . . . We havetherefore no option but to look
for the natural standard of length among the radii of curvature or hypercurvature of
space-time” (1933, 147). It follows, on Eddington’s reasoning, that� is indispensable:

When once it is admitted that there exists everywhere a radius of curvature ready to serve
as comparison standard, and that spatial distances are directly or indirectly expressed in
terms of this standard, the law of gravitation [for empty space] (Gµν = �gµν [−�gµν in
our sign convention]) follows without further assumption; and accordingly the existence
of the cosmical constant� with the corresponding force of cosmical repulsion is estab-
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lished. Being in this way based on a fundamental necessity of physical space, the position
of the cosmical constant seems to me impregnable; and if ever the theory of relativity
falls into disrepute the cosmical constant will be the last stronghold to collapse.To drop
the cosmical constant would knock the bottom out of space.(1933, 147–148)

In the empty space case (Tµν = 0) it follows from Einstein’s field equations that the Ricci
curvatureR is equal to 4�. When matter is present, however,R = 4�− 8πκT r(Tµν),
so that with a non-homogeneous matter distribution the radius of curvature is not every-
where of the same length. In that case, as De Sitter noted, the radius of curvature “can no
longer provide the electron with the means of knowing how large it ought to be” (1932,
129). InThe Nature of the Physical WorldEddington makes it clear that his doctrine
applies only to empty space. When space is not empty “the meter rod can find other
lengths besides curvature to measure itself against” (1929, 153). But since space isin
fact not empty, it hardly follows that dropping� would knock the bottom out of space
(or spacetime), even if we accept Eddington’s debatable doctrine that length is relative
to a standard of comparison found in the features of spacetime.

8. Steady state cosmology and the ghost ofΛ

From its inception in the late 1940s until the mid-1960s the steady state cosmology
of Bondi and Gold (1948) and Hoyle (1948) represented a viable alternative to big bang
cosmology.22 The ghost of� haunts the steady state model because of its reliance on
De Sitter spacetime. Considered as solution to Einstein’s gravitational field equations,
De Sitter spacetime requires either a positive� in an empty cosmos, or else a zero�
in a cosmos filled with a nonstandard fluid whose density is proportional to the
De Sitter value for� and whose pressure is proportional to the negative of this
value. De Sitter chose the former alternative. The steady state model uses a representa-
tion of De Sitter spacetime discovered independently by Lemaître (1925) and Robertson
(1928). In the Lemâitre-Robertson coordinates the De Sitter line element takes the form

ds2 = exp(Kt̃)(dx2+ dy2+ dz2)− dt̃2 (19)

where the constantK is proportional to the square root of the De Sitter value for�.
What neither Lemâitre nor Robertson – nor apparently the founders of steady state cos-
mology – realized was that these coordinates cover only half of the (maximally extended)
De Sitter spacetime. As a result, the steady state model is geodesically incomplete in
the past and, thus, it also implies a “beginning” for time, albeit of a very different kind
from that of big bang models.

According to steady state cosmology, matter follows the geodesics orthogonal to
the t̃ = const. hypersurfaces of (19). Because of the exponential expansion of the scale
factora(t̃) = exp(Kt̃), it would seem that the density of matter should decrease, belying
the label “steady state.” To compensate for the expansion, steady state theorists postu-
late that matter is continuously created at just the right rate to maintain constant density.

22 A detailed account of the rise and fall of steady state cosmology is to be found in Kragh
(1996).
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Bondi and Gold (1948) did not attempt to provide field equations for their model, but
Hoyle (1949) construed the steady state model as a solution to field equations which
are obtained by replacing the cosmological term in the standard Einstein equations by
a tensorCµυ whose presence is due to the ‘C’-field responsible for continuous creation
of matter:

Rµυ − 1

2
gµυR + Cµυ = 8πκTµν. (20)

These equations allow solutions other than the steady state model, but (in modern jargon)
Hoyle’s claim was that the steady state model serves as an attractor for solutions to (20).

In the form (20),Cµυ can be seen as a replacement for Einstein’s cosmological term
which nevertheless produces some of the same effects as a positive� – in particular, ex-
ponential expansion of the universe. This aspect was somewhat disguised when McCrea
(1951) proposed to moveCµυ to the right hand side of (20), in effect, redefining the
stress-energy tensor (see also Pirani (1955) and Hoyle and Narliker (1964)). In this role
Cµυ is the stress-energy tensor of a strange form of matter: strange in that its covariant
divergence does not vanish, and strange in that it arises from a scalar field whose ener-
gy density is negative. According to this way of viewing steady state cosmology, it is
this negative energy density, and not�, that produces a repulsive force that drives an
accelerating expansion of the universe.

9. A brief revival of Λ

By the end of the 1960s it was generally agreed that Lemaître’s model did not pro-
vide for a satisfactory explanation of structure formation, and with the downward trend
in the estimates of the Hubble constant the problem of the age of the universe became
less problematic and, thus, less of a motivation for taking the Lemaître models seriously.
However, the late 1960s and early 1970s saw the emergence of yet another reason for
breathing new life into these models. The redshift parameterz is defined by

z := λo − λ1

λ1
(21)

whereλo is the wavelength of light observed at the present timeto andλ1 is the wave-
length at the timet1 of emission. In Friedmann and in Lemaître models,

z = a(to)

a(t1)
− 1. (22)

The Lemâitre models were invoked by Petrosian, Salpeter, and Szekeres (1967) and
by Kardashev (1968) to explain the preponderance of redshifts for quasi-stellar objects
(QSOs) nearz = 2. Since during the coasting phase the scale factor remains near its
valueam for which ȧ is a minimum, the Lemâitre models would capture the redshift
observations if the preponderance of QSOs were present whenam ∼ ao/3. Only a few
years elapsed, however, before Petrosian (1974) was ready to abandon his proposal. In
particular, Petrosian and Salpeter (1970) had noted that when fitted to give a prepon-
derance ofz ∼ 2 redshifts, the Lemaître models predict a rapid fall off of the visual
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intensity of QSOs withz > 2.2. But Petrosian (1974) reported four redshift measure-
ments near 2.8 and 3.5, which “must be considered strong evidence against the Lemaître
models unless, because of the tendency nowdays of publishing only sources with larger
redshifts, these humps [at 2.8 and 3.5] are not as significant as they appear” (44).

Petrosian (1974) opined that although a range of Lemaître models had been killed
by observations, the evidence as it then existed did not rule out all Lemaître models, nor
did it force a zero value for�. But, he concluded, “in the absence of strong evidence in
favor of Lemâitre models we must once again send back the Lemaître models and along
with it [sic] the cosmological constant to the shelf until their next re-appearance” (45).
Petrosian may have spoken for cosmologists, but he certainly didn’t speak for particle
theorists. Their collective imagination had been fired by his proposal, and once fired it
focused not on cosmological observations but on how to interpret� as vacuum energy
density.

10. Energy density of the vacuum vs. vacuum energy density

In the gravitational field equations (5), move the cosmological term�gµυ to the right
hand side and writeT totµν = Tµν + T �µν , whereT �µν := − �

8πκ gµυ , making the cosmolog-
ical term correspond to the stress-energy tensor of a perfect fluid of a peculiar sort: the
energy density isρ� = �

8πκ and the pressure isp� = −ρ�.23 In this sense, the presence
of a non-zero cosmological constant corresponds to saying that the energy-density of
the vacuum (Tµν = 0) is non-zero, and if� > 0 (and, thus,ρ� > 0) the vacuum also
has associated with it a negative pressure. Note that the conservation law (10) implies
that ρ̇� = 0, as required for the consistency of this way of speaking.

The first reference in print to� as representing the energy density of the vacuum
is in Lemâitre (1934). Perhaps confused by sign conventions, Lemaître took� > 0
to correspond to a negative energy density!24 Sign conventions also seem to have led
Eddington (1939) to speak of� as “fixing the zero from which energy, momentum and
stress are reckoned” (233). On his conventions, the “reckoned” energy tensorTµν is
the difference,Gµν −�gµυ , between the actual “absolute” energyGµν and “absolute”
energy�gµυ of a standard zero condition.

Now enter from stage right the particle physicists, whose footprints on the cosmo-
logical literature are increasingly evident from the 1960’s onward. The tracks start in
earnest when Zeldovich (1967, 1968) read the proposals to resurrect� in order to explain
thez ∼ 2 redshifts of QSOs. Though somewhat skeptical of the proposals, Zeldovich
nevertheless found them stimulating because they raised for him an issue that connected
cosmology to particle physics; namely, if� corresponds to an energy density of the

23 Such a fluid violates the strong energy condition which requires thatTµνV
µV ν ≥

− 1
2T r(Tµν) for every unit timelike vectorV µ. For a perfect fluid this condition requires that

ρ + 3p ≥ 0. Thus, the strong energy condition is violated by an equation of statep = wρ if
w < − 1

3. This is the case for “quintessence” which has been postulated to drive accelerated
expansion of the universe (see Sect. 12).

24 So many different sign conventions for the spacetime metric and the stress-energy tensor
are used in the cosmological literature that the casual reader is easily confused.



Lambda: The Constant That Refuses to Die 207

vacuum, should it not be possible to calculate its value from quantum field theoretic
principles as the vacuum energy density? In contrast to the classical vacuum, the vacu-
um in quantum field theory is an arena of seething activity, so perhaps properties of this
vacuum can be used to do some real explanatory work that will have ramifications that
extend from the subatomic realm to the furthermost reaches of the universe. This was
the beginning of a minor industry which consists of trying to estimate the value of the
vacuum energy density, finding that it is many orders of magnitude (up to 120 orders!)
too large to accord with observational constraints on�, trying a series of increasingly
desperate moves to lower the estimate, and resorting if all else fails to the anthropic
principle.25 Steven Weinberg (1989), who believes that physics thrives on crises, has
been instrumental in promoting this problem to the status of a crisis for contemporary
physics. I want to explain why this ‘crisis’ needs to be viewed with some skepticism

The problem is supposed to arise as follows. The Poincaré invariance of the Minkow-
ski vacuum state|0M 〉 implies that the vacuum expectation valueT̄µν := 〈0M |Tµν |0M 〉
of the stress energy tensor is Poincaré invariant. But the only (non-zero) symmetric
second rank tensorXµν that is Poincaŕe invariant (in the sense thatX′µν = Xµν in any
two inertial frames) is proportional to the Minkowski metric, showing thatT̄µν must be
of the form of a cosmological term. This reasoning is of dubious applicability in cos-
mology where Poincaré invariance is lost in curved spacetime models. The loss is total
in some cases – in particular, thek = +1 Friedmann models where Lorentz invariance
cannot hold even in an asymptotic sense. When taxed with this observation, Weinberg
responded that although amodelof GTR may not be Poincaré invariant, thetheoryitself
is in the sense that the Poincaré group is retained as the symmetry group in local inertial
frames.26 Whatever Weinberg might mean by the claim that GTR is Poincaré invariant
is irrelevant to the issue at hand. The loss of Poincaré invariance of the spacetime model
means that a vacuum state cannot be picked out as the state that (among other things)
is Poincaŕe invariant.27 Indeed, in the cosmological setting not only cannot it not be
expected that the spacetime model will admit the Poincaré group as a symmetry group,
it cannot even be expected that the spacetime will admit a timelike Killing field.28 This
has the consequence that there is no natural way to identity a vacuum state for such mod-
els [see Wald (1994)]; and needless to say, an accurate portrayal of the actual universe,
whose spacetime is not stationary, will belong to this class.

25 The idea behind an anthropic explanation of the smallness of� is that such a value is forced
by the requirement that the universe be such that it allows stars and observers (such as can ask why
� has such a small value) to form. For examples of such reasoning as applied to the cosmological
constant problem, see Efstathiou (1995) and Martel et al. (1998). For a skeptical look at anthropic
explanations, see McMullin (1993).

26 The issue was raised by Carlo Rovelli. See Cao (1999, 262–263).
27 Positivity of energy is also needed to single out the Minkowski vacuum state.
28 Intuitively the existence of such a field means that the metric is “time independent.” For-

mally, the definition is this: a Killing field for a spacetimeM,gµν is a vector fieldV β such that
�µVν + �νVµ = 0, where�µ is the derivative operator determined bygµν . If there exists a
timelike Killing field, then (at least locally) a coordinate system (xi, t), i = 1,2,3, can be chosen
so that the metric components are functions of the spatial coordinatesxi alone.
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Whether or not the quantum state of the cosmos is a vacuum state, there remains
the problem of renormalization. The quantization of a scalar field in Minkowski space-
time can be understood heuristically in terms of an assemblage of harmonic oscillators.
Formally, the Hamiltonian operator has the form

Ĥ =
∑
k

ωk(â
†
k âk + âkâ†

k ) (23)

whereωk is the frequency of wave numberk andâ†
k andâk are respectively the associ-

ated creation and annihilation operators. The expectation value ofĤ in the Minkowski
vacuum state is12

∑
k ωk, which sums to∞ if there is no high frequency cut off. This

infinity can be removed by “normal ordering,” i.e. rewritinĝH so thatâk always stands
to the left of â†

k . This procedure is said to be permissible in quantum field theory be-
cause “absolute energies are not measured observables; only energy differences have
physical meaning” [Bjorken and Drell (1965, 30)]. However, in gravitational physics
absolute energies apparently do matter since they can give rise to gravitational fields.
Thus arises the worry of quantum field theorists about a vacuum energy density contri-
bution to the gravitational field. Before addressing this worry, I need to comment on the
renormalization problem in the spacetime setting.

Normal ordering corresponds in Minkowski spacetime to a point splitting procedure,
i.e. taking a coincidence limit of a bi-distribution, wherein the Minkowski vacuum|0M 〉
expectation value of the bi-distribution has been subtracted off before the limit is taken.
For example, calculation of the expectation value of the field operatorφ̂2(x) for a state
|ξ〉 involves taking the limitx′ → x of [〈ξ |φ̂(x′)φ̂(x)|ξ〉 − 〈0M |φ̂(x′)φ̂(x)|0M 〉]. But
in curved spacetime this procedure won’t yield a sensible result if one tries to subtract
off the bi-distribution expectation value for a fixed state; rather (as discussed in Wald
(1994)), a locally constructed bi-distribution that depends on the details of the spacetime
has to be subtracted off. This form of renormalization for curved spacetimes works for a
large set of states with the Hadamard property which characterizes the leading singular-
ity structure of the two-point functions. But to underscore the obvious, in this – the only
existing rigorous version of renormalization for a quantum field on a curved spacetime
– there is no sense in which the Minkowski vacuum state, or any fixed state, serves as a
reference point for energy calculations. And there is no sense in which the renormaliza-
tion procedure associates a finite non-zero energy with the Minkowski vacuum, or with
any other vacuum state on a curved spacetime.

The vacuum energy enthusiasts would respond that, formal procedures notwithstand-
ing, the vacuum energy density is real in the sense that it has measurable non-gravitational
effects, and so the GTR would lead one to expect that this energy density will also pro-
duce measurable gravitational effects as well. The example cited over and over again
to buttress this point of view is the Casimir effect, wherein two perfectly conducting
parallel plates are attracted to one another with a force proportional to 1/d4, whered is
the separation distance, when they are inserted into the Minkowski vacuum.29 The usual
explanation is that the insertion of the conducting plates lowers the energy density of the

29 The 1/d4 dependence can be derived from considerations of the classical van der Walls
force. But the numerical factor requires a quantum field theoretic explanation.
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vacuum between the plates because those electromagnetic field modes with wavelengths
too long to fit between the plates are excluded. To obtain a finite value for the attrac-
tive force a high frequency cutoff must be imposed, but the result is independent of the
details of the cutoff because what matters is the difference between the energy density
between the plates and the energy density outside, and this difference depends only on
the low frequency modes. Without in any way gainsaying the brilliance of Casimir’s
original derivation, it can be noted that there are alternative derivations of the Casimir
force which eschew vacuum energy density and rely only on the source fields of the
electrons in the conducting plates. In particular, a calculation of the change in the dipole
energy due to the fields of the dipoles acting back on themselves reproduces the Casimir
result when normal ordering of the field operators is imposed, setting the energy density
of the vacuum to zero [see Milonni (1994, Sects. 7.4–7.6)]. Unfortunately, the matter is
less than clear cut since in the perturbative expansion used in quantum electrodynamics,
normal ordering does not remove the vacuum energy density beyond zeroth order, and
to get rid of the concept of vacuum energy altogether while retaining an explanation of
the Casimir effect necessitates more drastic action such as Schwinger’s source theory.30

Typically, enthusiasts of the interpretation of� as vacuum energy density cite the
Casimir effect to bolster their position. But what they rarely say is that their position only
makes sense if the form of the high frequency cutoff matters, whereas, as we have just
seen, the Casimir effect is independent of the form of the cutoff. Returning to the case
of the quantization of a scalar field of massm in terms of an assemblage of harmonic
operators, one proceeds to calculateρvac by putting the oscillators in a box of volume
L3, imposing a cut off atkmax >> m/h̄, whereω2

k = k2 + m2/h̄2, and computing the
energyEL of the box.ρvac is then defined as limL→∞(EL/L3),which turns out to have
the valueh̄k4

max/16π2. Here is a typical comment on this calculation:

[W]e can estimatekmax as the energy scale at which our confidence in the formalism no
longer holds. For example, it is widely believed that the Planck energyE∗ ≈ 1019GeV ≈
1016erg marks the point where conventional field theory breaks down due to quan-
tum gravitational effects. Choosingkmax ≈ E∗/h̄ we obtainρvac ≈ 1074GeV h̄−3 ≈
1092 g/cm3. This is . . .approximately 120 orders of magnitude larger than allowed by
observation. [Carroll, Press, and Turner (1992, 503)]

Granting that classical GTR and conventional quantum field theory on curved space-
times both break down at the Planck scale where quantum gravity effects come into
play, how does it follow that the correct quantum theory of gravity will yield a finite
non-zero vacuum energy density, much less a density of 1092 g/cm3, in some appropriate
semi-classical limit?

Suppose for sake of argument that there is no non-sequitur here. Rather than conclud-
ing that there is a “cosmological constant problem,” one might alternatively conclude
that there is something suspect either in the very the notion of vacuum energy density
or else in the notion that this energy can serve as a source for the gravitational field.31

30 As noted by Rugh et al. (1999), who provide a detailed discussion of thisvexedsubject.
31 As argued by Rugh and Zinkernagel (2000). See also Enz (1974) for some additional skep-

tical remarks about the concept of zero-point energy.
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Of course, one can hold out hope that some cancellation mechanism deriving from a
symmetry principle in elementary particle physics will push the value of vacuum energy
density down to a tolerable range. But what is hard to understand is how such a mecha-
nism could push the value of� down to the very small but positive value indicated by
present observations (see Sect. 12) without cancelling it altogether.

11. Inflation

By the end of the 1960s the hot big bang cosmological model, based on the� = 0
Friedmann solutions to Einstein’s gravitational field equations, had enjoyed several suc-
cesses, including an account of primordial nucleosynthesis and the detection of the cos-
mic microwave background radiation. Its main rival, the steady state model, had been
discredited in the eyes of most cosmologists. Thus, the hot big bang model deserved to
be called the standard model for cosmology. But despite its exalted status, some the-
orists remained unconvinced, not because the standard model couldn’t accommodate
the available empirical data but because the explanations it afforded seemed to them
unsatisfying. A paradigm example of this explanatory malaise is given by the so-called
horizon problem, which can be illustrated by reference to the conformal diagram of the
k = 0 Friedmann model (see Fig. 4). Before the timet= of last scattering, the universe
is opaque to our optical and radiotelescopes. Using microwave detectors we can see the
cosmic 2.7◦K background radiation originating from this surface, and it looks very much
the same whatever direction we point our detectors. But for directions of sufficiently
great angular separation, the points of origination (such asx andy in Fig. 4) have no
common causal past (J−(x) ∩ J−(y) = ∅).32 Thus, it seems impossible to explain in
terms of causal interactions why the cosmic background radiation is uniform to one part
in 10−4 – in the standard model, the uniformity just has to be postulated as part of the
initial conditions.33

Alan Guth (1981) proposed that this and other perceived explanatory inadequacies
of the standard big bang model could be overcome by inserting in the very early uni-
verse an “inflationary” era which lasted only fromti = 10−35 sec. totf = 10−33 sec.
but which saw such accelerated expansion that Fig. 4 is changed to Fig. 5. The overlap
of the past lightcones ofx andy in Fig. 5 now allows for a normal causal explanation
of the uniformity of the cosmic background radiation. At the end of the inflationary era,
the universe resumes its more leisurely expansion as per the standard model. In sum,
Guth’s scenario promised to retain many of the good features of the standard big bang
model while overcoming its perceived shortcomings. Moreover, the mechanism Guth
proposed as the driver of inflation promised to unite cosmology and particle physics,
a promise that attracted into cosmology a number of workers trained in high energy

32 If M,gµν is a spacetime andx ∈ M, thecausal pastJ−(x) is defined as{p ∈ M: there is
a (possibly trivial) future directed causal curve from p tox}.

33 Compare to the complaint that led Eddington to declare that� is needed to give an expla-
nation of the rapid recession of galaxies (see Sect. 7).
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Fig. 4. Conformal diagram of a standard big bang model

Fig. 5. Inflationary modification of the standard big bang Model

physics. The “inflaton field,” as it came to be called, is an innocent looking scalar field
@. The stress-energy tensor for such a field has the form

T @µν = ∇µ@∇ν@− gµν
(

1

2
gαβ∇α∇β@+ V (@)

)
(24)

whereV (@) is the potential of the field. When@ is (approximately) constant, the stress-
energy tensor reduces to

T @µν ≈ −gµνV (@) (25)

which is the form of a cosmological constant term with�@ = V (@)
8πκ . If �@ is large

enough, its inclusion into the Einstein field equations generates the kind of behavior
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pictured in Fig. 5. Guth’s original inflationary scenario identified the inflaton field with
the Higgs field responsible for symmetry breaking of the strong and electro-weak forces
in a particular version of the grand unified theories (or GUTs) of elementary particles.
This hypothetical mechanism for inflation had to be abandoned because the exit from
inflation left the universe in too inhomogeneous a state to be compatible with obser-
vations. Much work has gone into finding another version of inflation that allows for a
graceful exit and at the same time does not involve such an unpalatable “fine tuning” of
the parameters of the model as to rekindle the original charge ofad hocexplanations.
But this is not the place to recount such work.34

What is relevant to present concerns, however, is the fact that the simple inflationary
model pictured in Fig. 5 seems to require the services of�. The dimensionless density
parameters associated with matter and� respectively are defined by

&M := 8πκρ

3H 2
, &� := �

3H 2
. (26)

It is easy to show that for the simple version of inflation, the presence of enough infla-
tion to solve the horizon problem forces the current value of the total density parameter
&tot
o := &M

o + &�
o to be very close to unity. But according to current dynamical es-

timates of matter,&M
o ≈ 0.3. Thus, either� has to assume its by now familiar fixer

role, or else more complicated models of inflation have to be invented that will solve
the horizon problem while allowing&M

o < 1 without the assistance of�. Such models
have been constructed [see, for example, Bucher et al. (1995)], but they seem somewhat
contrived. And in any case, there is mounting evidence that�, or some close cousin of
�, is in fact with us.

12. Lambdaredux

In the 1990s glimmerings of� began to appear in cosmological observations. For
example, models of structure formation from cold dark matter obtain a better fit to the
observed power spectrum of galaxy clustering if� > 0 (see Efstathiou et al. (1990),
Kofman et al. (1993)). But, of course, any doubts about the models are visited upon�.
Another glimmering came from Yoshii and Peterson’s (1995) analysis of galaxy number
counts as a function of apparent magnitude, which favored a low density universe with
a positive�. However, the case for� is rather delicate because it turns on the issue of
how to handle the bias due to selection effects that are built into the methods used to
detect faint galaxies. Real excitement about� began to build only recently with the use
of supernovae to measure the deacceleration parameter.

The dimensionless deacceleration parameterq is defined by

q := −aä
ȧ2

. (27)

34 For a very readable account of the origins and development of inflationary cosmology, see
Guth (1997). For a somewhat more skeptical overview, see Earman and Mosterin (1999).
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Of course,̇a2 > 0 anda > 0. Thus,ä < 0⇐⇒ q > 0. A positiveq is then a measure
of the slowing down of the rate of expansion of the universe, while a negativeq is a
measure of the speeding up of expansion.

For a Friedmann model with� included, Eq.(8′) gives

q = 1

2
&M

(
1+ 3p

ρ

)
−&� (28)

where the density parameters&M and&� for matter and� respectively were defined in
the preceding section. When� ≤ 0 and the matter is not strange (ρ > 0, p ≥ 0),q > 0
and the rate of expansion must slow down. To getq < 0, or speeding up of expansion,
one must have either a big enough� > 0 or else a strange form of matter.

Let us for the moment ignore strange forms of matter. The present epoch is matter
dominated, i.e.(p/ρ) 1, allowing us to set

qo ≈ 1

2
&M
o −&�

o . (29)

For sake of illustration, takek = 0, the case of flat space preferred by most inflationary
models. Then

&tot
o := &M

o +&�
o ≈ 1. (30)

Combining (29) and (30) gives

qo ≈ 1

2
− 3

2
&�
o . (31)

As already noted, current observational evidence favors&M
o ≈ 0.3, which together with

(30) implies that&�
o ≈ 0.7. Inserting this value in (31) givesqo ≈ −0.55, so that the

expansion rate of the universe should be speeding up.
Recent red shift vs. distance measurements on Type Ia supernovae indicate thatqo is

indeed negative for these distant objects [see Riess et al. (1998), Schmidt et al. (1998),
and Perlmutter et al. (1999)].These supernovae are thought to serve as “standard can-
dles” in that their intrinsic brightness serves as a reliable indicator of their distance. Their
apparent brightness is significantly less than would be expected ifqo ≥ 0. The case for
a positive� is subject to doubts due to selection effects, extinction effects (due to the
presence of cosmic dust), and possible evolutionary effects of the Type Ia supernovae.
However, the case is considerably strengthened when the supernovae measurements are
combined with measurements of the power spectrum of the anisotropies in the cosmic
background radiation. The two types of measurements show “cosmic complementarity”
in that they break each other’s degeneracies [see Tegmark et al. (1998)]. The upshot
favors the inflationary prediction (30), with a low mass density universe and a� > 0.
The preliminary analysis of the recent Boomerang data is consistent with this situation
[see Lange et al. (2000)]. The wiggle room here is constrained by gravitational lensing
of distant QSOs: Moaz and Rix’s (1993) analysis gives the bound&�

o ≤ 0.7 while
Kochanek (1996) obtains&�

o ≤ 0.66 (at the 95% confidence level for a flat model).
In sum, when the evidence from the Type Ia supernovae is combined with that from
the cosmic microwave background radiation, the dynamical estimates of matter, and the
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other measurements mentioned at the beginning of this section, the case for a positive
� is quite impressive.

It would be premature, however, to anticipate a happy ending to the story of�’s
long struggle for respectability. Astrophysicists who are unable to swallow� have pos-
tulated a new hypothetical form of matter called “quintessence” that will mimic some
of the key of the effects of� [see Turner and White (1997), Carroll (1998), Cornish
and Starkman (1998), Huey et al. (1999), Spergal and Steinhardt (1999), Zlatev et al.
(1999), Zlatev and Steinhardt (1999), Wang et al. (1999)]. Quintessence is supposed
to be smoothly distributed up to scales of galaxy clustering so that the amount of this
new form of matter is not constrained by the current dynamical estimates. Thus, on the
quintessence scenario, the dynamical constraint should be written&

MC
o ≤ 0.3, where

MC stands for ordinary gravitationally clustering matter, allowing for the possibility that
quintessential matterMQ makes up for all of the missing mass required by the standard
inflationary scenario in that&tot

o := &
MC
o + &

MQ
o ≈ 1 without any help from�. The

equation of state for quintessence (construed as a perfect fluid) ispQ = wQρQ, where
−1 < wQ < 0. In the simple case wherewQ is constant, the energy densityρQ(t) of
quintessence scales asa−3(1+w), wherea(t) is the cosmic scale factor. The boundary
case ofw = −1 corresponds, of course, to a non-zero energy density of the vacuum
due to a real cosmological constant. “Phantom matter” has an equation of state with
wP < −1. Its densityρP grows with time, and as a result a cosmology that uses phan-
tom matter rather than� to make up the missing mass gives predictions for the age of
the universe, horizon distance, and gravitational lensing of quasars that differ from those
of the analogous� model [see Caldwell (1999)].

In addition to providing a solution to the missing mass problem without invoking�,
quintessence also offers an alternative explanation of an accelerating expansion of the
universe. Rewriting (28) to take into account the different forms of matter, we have

q = 1

2
&MC(1+ 3wC)+ 1

2
&MQ(1+ 3wQ)−&� (32)

wherewC ≥ 0. In the present era wherewC = (pC/ρC)  1, we have as before
that&MC

o (1+ 3wC) ≈ &
MC
o . So if� = 0,

qo ≈ 1

2

[
&MC
o +&MQ

o (1+ 3wQ)
]
. (33)

Thus, whenwQ < −1
3, qo is negative if quintessence dominates ordinary gravitationally

clustering matter, as it must in order to have&MC
o +&MQ

o ≈ 1 and&MC
o ≈ 0.3.

A number of microphysical models for quintessence have been constructed, most of
them using a scalar field evolving in a shallow potential to generate the quintessential
mass, but at the present stage of development, these models are purely postulational and
have not been related to fundamental physics. Depending upon the shape of the potential,
the equation of state for quintessence can give awQ that may either be a constant or time
varying, and in the latter case it can display oscillatory behavior or simple monotonic
change. The so-called “tracker models,” in which the amount of quintessence tracks
the amount of ordinary matter as the universe expands would help to explain why the
current value of the part of the density parameter (apparently) due to the cosmological
constant is of the same order of magnitude as the current value of the part of the density
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parameter due to ordinary matter [see Zatlev and Steinhardt (1999)]. Cosmic microwave
background measurements that are within present and planned experimental capabilities
can in principle distinguish between�models and a wide range of quintessence models.
The differences in predictions trace to the facts that the energy density of quintessence
varies with time and that quintessence can gravitationally clump at very large scales,
while vacuum energy density displays neither of these features. Perlmutter, Turner, and
White (1999) argue that present observational evidence favors� over quintessence.
However, Huey et al. (1999) conclude that new observational techniques may be needed
to rule definitively in favor of� or quintessence.

13. Conclusion

� has the most checkered history of any constant in physics. It has been alternately
reviled and praised, and it has been counted out many times, only to stage one comeback
after another. At one extreme there are those who, like Einstein, feel that a cosmological
term in the gravitational field equations is an ugly thing, so ugly that they cannot believe
such a thing would be realized in nature. About such feeling it is hard to argue. But one
might argue, as did McCrea (1971), that more than esthetics is involved; for if GTR is to
be considered a self-contained theory and if it admits� as an arbitrary constant, then its
predictions become “too indeterminate.” But both Newtonian gravitational theory and
GTR already contain an arbitrary constant – the gravitational constant. This does not
render their predictions indeterminate; indeed, once one solar system test fixes the value
of this constant, the predictions for other tests become perfectly determinate. Similarly,
once the value of� is fixed by one cosmological test, the predictions of GTR for other
cosmological tests become perfectly determinate. At the other extreme is the view that,
like it or not,� is inevitable because it is to be interpreted as the effect of the vacuum
energy density of quantum fields [see Carroll, Press, and Turner (1992)]. While some
version of this view may prove viable, the ones given to date are less than convincing,
and some of the arguments for a non-zero vacuum energy density border on incoherency.
Between these two extremes is the more pragmatic stance that� is to be taken off the
shelf when and only when it is needed to fix a problem in cosmology. Much of�’s
career has been spent in this fixer role: first used by Einstein to make possible a static
general relativistic cosmology, it was later invoked to solve the age problem, to explain
structure formation, and to explain redshifts of QSO’s. Still later inflationary cosmology
invoked an effective cosmological constant to overcome the horizon problem and other
perceived inadequacies of the standard big bang model. At the present time a positive�

– or a strange form of matter that imitates some of the effects of a positive� – seems to
be needed to explain an accelerating expansion of the universe and to make up for the
missing mass required by the spatially flat universe favored by inflationary cosmology.
Whether or not�will survive in this role remains to be seen. But if the past is any guide
to the future,� will always return in some form or other.
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