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Abstract
The Jeffreys–Lindley paradox exposes a rift between Bayesian and frequentist hypoth-
esis testing that strikes at the heart of statistical inference. Contrary to what most
current literature suggests, the paradox was central to the Bayesian testing method-
ology developed by Sir Harold Jeffreys in the late 1930s. Jeffreys showed that the
evidence for a point-null hypothesis H0 scales with

√
n and repeatedly argued that it

would, therefore, be mistaken to set a threshold for rejectingH0 at a constant multiple
of the standard error. Here, we summarize Jeffreys’s early work on the paradox and
clarify his reasons for including the

√
n term. The prior distribution is seen to play a

crucial role; by implicitly correcting for selection, small parameter values are identi-
fied as relatively surprising underH1. We highlight the general nature of the paradox
by presenting both a fully frequentist and a fully Bayesian version. We also demon-
strate that the paradox does not depend on assigning prior mass to a point hypothesis,
as is commonly believed.
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Introduction

The Jeffreys–Lindley paradox (e.g., Bartlett 1957; Jeffreys 1935; Lindley 1957) refers
to the fact that, as sample size increases indefinitely and the p value remains constant
at any non-zero value (e.g., p = 0.005), we inevitably arrive at a conflict between
p values and Bayes factors, in the sense that the p value suggests that the point-
null hypothesis H0 should be rejected, whereas the Bayes factor indicates that H0
decisively outpredicts the alternative hypothesisH1. This conflict will arise regardless
of the p value under consideration and regardless of the prior distribution on the test-
relevant parameter inH1 (under regularity conditions). Thus, a frequentist statistician
may specify any non-zero α-level whatever, a Bayesian statistician may specify any
continuous prior distribution on the test-relevant parameter underH1, and a third party
could then infallibly construct data sets for which the point-null hypothesisH0 would
be simultaneously rejected by the frequentist and accepted by the Bayesian.1

Although the paradox is often associated with Lindley (1957), and sometimes with
Bartlett (1957), it was already derived, demonstrated, explained, and emphasized by
Sir Harold Jeffreys in his articles and books on Bayesian hypothesis testing from
the second half of the 1930s (i.e., Jeffreys 1935, p. 205; 1936a, p. 345 and p. 353;
1936b, p. 417; 1937a, p. 494; 1937b, pp. 250–251 and p. 259; 1937c, p. 1004; 1938a,
pp. 377–381; 1938b, p. 161; 1938c, p. 148; 1938e, p. 114; 1938d, p. 310; 1939,
pp. 194–195 and pp. 359–360—see p. 248 and pp. 435–436 in 1961). The paradox
has remained a source of inspiration for statisticians and philosophers alike (e.g.,
Bernardo 1980, 2011; Berrar and Dubitzky 2017; Colquhoun 2019; Cornfield 1966;
Cousins 2017; Edwards et al. 1963; Good 1980a; Jefferys 1990; Leamer 1978; Nasir
et al. 2020; Ormerod et al. 2017; Robert 2014; Royall 1986; Senn 2001; Shafer 1982;
Spanos 2013; Sprenger 2013; Villa andWalker 2017; Yin and Shi 2020;Wagenmakers
2007; Zellner 1971/1996, Chapter 10), but we believe that the neglect of Jeffreys’s
original work on the paradox has led to considerable confusion. Indeed, the paradox
has caused statisticians to question the usefulness of Bayesian statistics as a whole
(e.g., Shafer 1982; Spanos 2013), to reject Bayes factor hypothesis testing in favor of
Bayesian parameter estimation (e.g., Bernardo 1980), and to develop alternative forms
of Bayesian hypothesis testing (e.g., Aitkin 1991; Andrews 1994; de Bragança Pereira
et al. 2008; Kamary et al. 2014; Vehtari et al. 2017). We do not wish to disparage this
work but we do believe the original arguments by Jeffreys have been underappreciated
if not entirely forgotten (for a notable exception see Cousins 2017).

The goal of this paper is, therefore, threefold. First, we aim to demonstrate the extent
to which the paradox had already been treated by Jeffreys prior to the 1957 articles
by Lindley and by Bartlett. The appendix lists Jeffreys’s discussions of the paradox
after 1957. Contrary to popular belief, our analysis reveals that the paradox played a
central role in Jeffreys’s system of Bayes factor hypothesis tests, and did so from the
outset. Although Jeffreys often downplayed the practical ramification of the paradox
for moderate sample sizes, he also repeatedly stressed that his Bayesian hypothesis

1 Note that the Jeffreys–Lindley paradox is a veridical paradox: it is an apparent contradiction (e.g., Jeffreys
1938d, p. 310). A sufficiently knowledgeable and confident statistician may, therefore, rightly proclaim that
the Jeffreys–Lindley paradox is not at all paradoxical (to them). Veridical paradoxes are in the eye of the
beholder. See also Cousins (2017) and Pericchi (2011).
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History and nature of the Jeffreys–Lindley paradox 27

test depended not just on how many standard errors the maximum likelihood estimate
is away from zero (as in the classical method) but also involved a

√
n term. Crucially,

this means that the criterion for “significance” in Jeffreys’s tests is not given by a
constant multiple of the standard error. Jeffreys presented almost every Bayes factor
he proposed in the same form, with a

√
n factor outside of an exponential term and

a multiple-of-the-standard-error factor inside the exponential term; these expressions
leave no doubt about the large-n conflict between Jeffreys’s Bayes factors and p values.
Moreover, throughout his publishedwork Jeffreys highlighted the effect of sample size
on his tests by means of tables; he discussed the reasons for the appearance of the

√
n

term, and he explicitly stated that including this term was both desirable and dictated
by the application of Bayesian probability theory to the problem of hypothesis testing.
The common notion that Jeffreys mentioned the paradox only in passing is, therefore,
seriously incorrect.

The second goal of this paper is to revive Jeffreys’s original line of argumentation,
which was that the paradox, instead of being “certainly embarrassing to the Bayesian”
(Szabó and van der Vaart 2019, p. 17), or “difficult to accept” (Bernardo 2009, p.
174) was rather the inevitable consequence of any reasonable definition of evidence.
In other words, Jeffreys felt that no sensible measure of evidence can be based on a
constant multiple of the standard error, independent of sample size.

The third goal of this manuscript is to highlight the general nature of the paradox.
Specifically, we demonstrate that the paradox can be given both a fully frequentist
interpretation and a fully Bayesian interpretation. Moreover, and in contrast to popu-
lar belief, we show that the essence of the paradox does not depend on the fact that
the model comparison involves a sharp null hypothesisH0 with a point-mass at zero.
Instead, the paradox will manifest itself for any Bayes factor where the prior distribu-
tion for effect size under the sceptic’s H0 is more heavily concentrated around zero
than the prior distribution for effect size under the proponent’sH1, a condition so mild
as to be almost tautological.

Statistical background

In the early twentieth century, Sir Ronald Fisher promoted the idea of null hypothesis
significance testing (NHST) using p values. Informally, the p value is the chance under
the null hypothesis of finding a test statistic at least as extreme as the one obtained
(e.g., Wasserstein and Lazar 2016). The idea of NHST is loosely similar to that of a
proof by contradiction: to show that there exists an effect, one assumes the opposite
(i.e., the null modelH0) and demonstrates that the data make this assumption unlikely
(Wagenmakers et al. 2017). In NHST, the data are believed to cast doubt onH0 when
the obtained p value is sufficiently small. Fisher deemed a p value of 0.05 or lower
sufficient grounds to reject the null hypothesis. In Chapter 3 of Statistical Methods for
Research Workers, Fisher discusses the normal distribution and notes that

“The value for which P = .05, or 1 in 20, is 1.96 or nearly 2 ; it is convenient
to take this point as a limit in judging whether a deviation is to be considered
significant or not. Deviations exceeding twice the standard deviation are thus
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28 E-J. Wagenmakers, A. Ly

formally regarded as significant. Using this criterion, we should be led to follow
up a false indication only once in 22 trials, even if the statistics were the only
guide available. Small effects will still escape notice if the data are insufficiently
numerous to bring them out, but no lowering of the standard of significance
would meet this difficulty.” (p. 45, Fisher 1934)

Despite constant criticism from within the statistical community, Fisher’s rule has
since been institutionalised in academic practice. Researchers routinely conclude that
results constitute a significant deviation from the null model whenever p < 0.05, that
is, whenever the observed value of the test statistic falls more than two standard errors
away from the value postulated by the null model.2

As an alternative to p value significance testing, Sir Harold Jeffreys developed and
advocated a series of Bayesian hypothesis tests whose key outcome is now known as
the Bayes factor (e.g., Kass and Raftery 1995). The philosophical foundation of the
Bayes factor goes back to Jeffreys’s work with Dorothy Wrinch in the early 1920s
(Wrinch and Jeffreys 1919, 1921, 1923), but the concrete statistical development was
initiated and largely completed by Jeffreys in the second half of the 1930s (e.g., Jeffreys
1935, 1939; for a modern appreciation, see Etz andWagenmakers 2017; Howie 2002;
Ly et al. 2016a, b, 2020; Robert et al. 2009). To learn from data Jeffreys proposed to
assign prior model probabilities P(M0) and P(M1) to the null hypothesis and the
alternative hypothesis, respectively. In light of data y, these probabilities can then be
updated to posterior model probabilities using Bayes’ rule. The ratio of the posterior
models probabilities then leads to

P(M1 | y)

P(M0 | y)
︸ ︷︷ ︸

posterior model odds

= p(y |M1)

p(y |M0)
︸ ︷︷ ︸

BF10(y)

× P(M1)

P(M0)
︸ ︷︷ ︸

prior model odds

, (1)

where p(y |Mk) is known as the marginal likelihood, that is, the likelihood function
of the free parameters θk underMk integrated out with respect to a prior distribution
π(θ |Mk):

p(y |Mk) :=
∫

�k

f (y | θk,Mk)π(θk |Mk) dθk . (2)

The purpose of the Bayes factor BF10(y) is to “grade the decisiveness of the evidence”
(Jeffreys 1961, p. 432). In contrast to the p value, this pertains to both M0 and M1.
Specifically, a BF10(y) much larger than 1 indicates evidence for M1 over M0; a
BF10(y) near 0 indicates evidence for M0 over M1 (i.e., “evidence of absence”);
and a BF10(y) near 1 indicates that the data are insufficiently diagnostic (“absence of
evidence”; Keysers et al. 2020). Note that for the construction of a Bayes factor a pair
of priors needs to be selected, one for each model. Jeffreys did so with great care for

2 As noted by Cornfield (1966, pp. 18–19), the α-level (i.e., the critical value below which the p value is
deemed to indicate a statistically significant deviation from the null model) is often viewed as a “universal
yardstick” and the underlying intuition is that “All hypotheses rejected at the same critical level have equal
amounts of evidence against them.” (i.e., Cornfield’s “α-postulate”, which he sought to undercut).
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History and nature of the Jeffreys–Lindley paradox 29

various statistical models and documented the results in his magnum opus Theory of
Probability (Jeffreys 1939, 1948, 1961).3 As will become apparent below, one of the
defining features of the Bayes factor is that it does not depend on a constant multiple
of the standard error. The additional involvement of sample size is what generates the
paradox.

To set the stage, we start by discussing the 1957 article from Dennis Lindley. We
then list Jeffreys’s work on the paradox as expressed in a series of 16 articles and two
books from 1935 to 1957. In order to drive home the point that the paradox was central
to Jeffreys’s tests, our treatment aims to be comprehensive. The included quotations
are unusual both in their number and in their length, but we believe this is necessary in
order to (1) irrevocably refute the common misconception that Jeffreys had ignored or
neglected the paradox; (2) support the claim that the paradox in fact presents a defining
feature of the Bayes factor hypothesis test; (3) demonstrate the different ways in which
Jeffreys explained why a measure of evidence cannot depend on a constant multiple
of the standard error.

The 1957 contribution by Lindley

Dennis Lindley (1957) started his famous article A statistical paradox as follows:

“An example is produced to show that, if H is a simple hypothesis and x the
result of an experiment, the following two phenomena can occur simultaneously:
(i) a significance test for H reveals that x is significant at, say, the 5% level;
(ii) the posterior probability of H , given x , is, for quite small prior probabilities
of H , as high as 95%.
Clearly the common-sense interpretations of (i) and (ii) are in direct conflict.
The phenomenon is fairly general with significance tests and casts doubts on the
meaning of a significance level in some circumstances.” (p. 187)

Later in the article, Lindley elaborates:

“Now in our example we have taken situations in which the significance level
is fixed because, as explained above, we wish to see whether its interpretation
as a measure of lack of conviction about the null hypothesis does mean the
same in different circumstances. The Bayesian probability is all right, by the
arguments above; and since we now see that it varies strikingly with n for fixed
significance level, in an extreme case producing a result in direct conflict with the
significance level, the degree of conviction is not even approximately the same
in two situations with equal significance levels. 5% in to-day’s small sample
does not mean the same as 5% in to-morrow’s large one.” (Lindley 1957, p. 189,
italics added for emphasis)

Lindley explicitly acknowledges the fact that Jeffreys noted the paradox earlier:

3 For his Bayes factor tests, Jeffreys proposed prior distributions that did not reflect strong advance knowl-
edge and that obeyed several logical desiderata (e.g., Bayarri et al. 2012; Consonni et al. 2018; Ly et al.
2016a). Note that the paradox manifests itself regardless of how the prior distribution is defined, under
regularity conditions.
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30 E-J. Wagenmakers, A. Ly

“The paradox is not, in essentials, new, although few statisticians are aware of
it. The difference between the two approaches has been noted before by Jeffreys
(see, in particular, 1948, Appendix), who is the originator of significance tests
based on Bayes’s theorem and a concentration of prior probability on the null
value. But Jeffreys is concerned to emphasize the similarity between his tests
and those due to Fisher and the discrepancies are not emphasized.” (p. 190)

We believe that Lindley’s assessment requires revision. Below we demonstrate that
Jeffreys repeatedly emphasized the theoretical difference between the two approaches
throughout 16 articles and two books published from 1935 to 1957.

The contributions by Jeffreys from 1935 to 1957

In order to follow the quotations from the works cited below, note that Jeffreys uses
K to refer to the Bayes factor forH0 overH1, that is, K ≡ BF01. In addition, Jeffreys
denotes H0 by q and H1 by ∼q or q ′. For a modern-day reader, it may be confusing
that Jeffreys used Greek letters for observed data—in particular, he often used θ to
denote observed data rather than an unobserved parameter. Finally, Jeffreys often
conditioned all probability statements on background knowledge, which he denoted
by h orH (‘history’)—not to bemistaken for themodern-day use ofH for ‘hypothesis’.
A complete translation of Jeffreys’s notation can be found in Table D.4 of Ly et al.
(2016a).

1. The 1934 letter to Fisher

The first hint that Jeffreys is interested in developing a Bayesian significance test is
found in a 1934 letter to Fisher:

“The sort of thing that bothers me is this. In seismology we get times of trans-
mission to various distances, and fit a polynomial of degree 3, say, to them. The
significance of the last term really involves the prior probability that such a term
will be present. The usual thing is to keep it if it is some arbitrary multiple of its
standard error, but I think it ought to be possible to frame a rule with some sort
of argument behind it...”
Sir Harold Jeffreys, in a letter to Sir Ronald Fisher, 1934 (Bennett 1990, p. 156)4

The Bayes factor rule that Jeffreys later derived turned out to be different from “the
usual thing”: the strength of the Bayes factor is not proportional to a constant multiple
of the standard error, but also involves sample size. This is the paradox. Thus, the 1934
letter to Fisher shows that the seeds of the paradox were sown even before Jeffreys
had started to develop his tests.

4 Curiously, the letter as given in Bennett is incomplete. The original, complete letter can be found at
https://digital.library.adelaide.edu.au/dspace/bitstream/2440/67780/109/1934-03-21.pdf.
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History and nature of the Jeffreys–Lindley paradox 31

2. The 1935 article Some tests of significance, treated by the theory of probability

This was the first article in which Jeffreys developed a series of concrete Bayes factor
hypothesis tests. The introductory paragraph immediately sets up the key issue, in
similar fashion to the 1934 letter to Fisher:

“It often happens that when two sets of data obtained by observation give slightly
different estimates of the true value we wish to know whether the difference is
significant. The usual procedure is to say that it is significant if it exceeds a certain
rather arbitrary multiple of the standard error; but this is not very satisfactory,
and it seems worth while to see whether any precise criterion can be obtained
by a thorough application of the theory of probability.” (Jeffreys 1935, p. 203)

First Jeffreys turns to a comparison of two proportions:

“Suppose that two different large, but not infinite, populations have been sampled
in respect of a certain property. One gives x specimens with the property, y
without; the other gives x ′ and y′ respectively. The question is, whether the
difference between x/y and x ′/y′ gives any ground for inferring a difference
between the corresponding ratios in the complete population.” (Jeffreys 1935,
p. 203)

Jeffreys (p. 204, Eq. 11) then shows that the posterior odds for q over ∼q is given
by

P(q | θ, h)

P(∼q | θ, h)
= (x + x ′)! (y + y′)! (x + y + 1)! (x ′ + y′ + 1)!

x ! y! x ′! y′! (x + x ′ + y + y′ + 1)! ,

where θ denotes the observed data and h (‘history’) denotes background knowledge.
For large samples, Jeffreys obtains the following approximation (p. 205, Eq. 15):

P(q | θ, h)

P(∼q | θ, h)
∼

{

(x + x ′ + y + y′)(x + y)(x ′ + y′)
2π(x + x ′)(y + y′)

} 1
2

exp

{

− 1
2

(x + x ′ + y + y′)(xy′ − x ′y)2

(x + x ′)(y + y′)(x + y)(x ′ + y′)

}

.

Jeffreys then continues and identifies the phenomenon that lies at the heart of the
paradox:

“The theory therefore shows that a small difference between the sampling ratios
may establish a high probability that the ratios in the main populations are equal,
while a large one may show that they are different. This is in accordance with
ordinary practice, but has not, so far as I know, been related to the general theory
before. In one respect, however, there is a departure from ordinary practice. It
would be natural to define a standard error of xy′−x ′y in terms of the coefficient
of its square in the exponential; but the range of values of the exponent that make
the ratio of the posterior probabilities greater than 1 is not a constant, since it
depends on the outside factor, which increases with the sizes of the samples.
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32 E-J. Wagenmakers, A. Ly

Table 1 Table reproduced from
Jeffreys (1935, p. 205) x + y P(q)/P(∼q) x ′ − y′ (x ′ − y′)/(x + y)

1
2

40 3.57 14.3 2.26

100 5.65 26.4 2.64

200 7.97 40.8 2.89

400 11.3 61.5 3.07

1000 17.8 107.3 3.39

10,000 56.4 401 4.01

100,000 178 1440 4.57

This variability is of course connected directly with the fact that agreement
between the two populations becomes more probable if the samples are large
and the difference of the sampling ratios are small; when the ratio is large at
xy′ − x ′y = 0, a larger value of the exponent is obviously needed to reduce the
product to unity.
Some numerical values are given by way of illustration. In each case x = y,
x ′ + y′ = x + y, but in general x ′ �= y′. The table gives x + y, the maximum
value of the ratio of the posterior probabilities, and that of x ′ − y′ needed to
make the ratio equal to unity.

The ratio of the critical value of x ′ − y′ to (x + y)
1
2 is given in a further column to

show how little it varies when the sizes of the samples change by a factor of 2500.”
(Jeffreys 1935, pp. 205–206; italics added for emphasis)

Later on Jeffreys draws the same conclusion for a test between two means with the
standard error known:

“It is therefore not correct to say that a systematic difference becomes significant
when it reaches any constant multiple of its standard error” (Jeffreys 1935, p.
207)

Jeffreys returns to this theme several times throughout the article, for different tests
(e.g., correlation, periodicity). The overall impression is that in the 1935 article Jeffreys
emphasized the theoretical aspect of the paradox but at the same time downplayed its
practical ramifications.

3. The 1936 articleOn some criticisms of the theory of probability

One year later, Jeffreys again raises the key issue:

“The results show that the probability that such a term is needed is increased or
decreased according as the coefficient is more or less than a certain multiple of
its standard error; the multiple needed, however, increases with the number of
observations.” (Jeffreys 1936a, p. 345; italics added for emphasis)

Jeffreys elaborates and discusses the problem of a least-squares fit to a regression
equation:

123



History and nature of the Jeffreys–Lindley paradox 33

Table 2 Table reproduced from
Jeffreys (1936a, p. 352)

n. b/σb. n. b/σb. n. b/σb.

5 1.07 200 2.20 10,000 2.96

10 1.36 500 2.40 20,000 3.07

20 1.59 1000 2.54 50,000 3.22

50 1.86 2000 2.67 100,000 3.33

100 2.04 5000 2.84

Here b/σb indicates the ratio of a least squares point estimate b to its
standard error σb that results in a Bayes factor of 1. This critical ratio
increases with n

“When one unknown is determined at a time by least squares the criterion5 that
the last determined shall be supported by the observations is that

b2

σ 2
b

> loge
2n

π
,

where n is the number of observations.” (Jeffreys 1936a, p. 352)

As b is the least-squares parameter point estimate, and σb is the standard error, the
equation shows that for support to remain constant as n increases, the multiple of the
standard errorwill need to increase aswell. To underscore this point, Jeffreys provides a
table, reproducedhere asTable 2,which “gives the critical ratios that an unknown found
by least squares from n observations shall be supported by the observations.” (Jeffreys
1936a, p. 352). For instance, when n = 10, we have b/σb = √

loge 20/π ≈ 1.36, and
for n = 100, we have b/σb = √

loge 200/π ≈ 2.04.
Jeffreys then explains the consequences of this sample-size induced increase of the

critical ratio, and explicitly discusses the paradox:

“The usual practice has been to regard a departure from a simple law as genuine
if it amounts to some constant multiple of the standard error, usually 2 or 3 times.
The ratio given above is not constant, but depends on the number of observations.
If a ratio of 2 or 3 is really needed when the number is small, it expresses a prior
belief in the simple law to the extent of saying that the odds in its favour are 6 to
1 or 90 to 1, or else a criterion of convenience that we must not complicate future
computations except for specially strong reasons. In either case corresponding,
but smaller, increases would be needed throughout the table. When the number
of observations is large the critical ratio exceeds the arbitrary standard, which
will thus for 100, 000 observations lead to coefficients between 2 and 3.33 times
their standard errors being accepted as genuine, when in fact the observations
render them less probable than before. Thus there will be mistakes in all cases
where there is no real departure and yet the computed departure is between 2
and 3.33 times its standard error. Fortunately the latter event does not occur very

5 For this result, Jeffreys includes a footnote to Jeffreys (1936b) (relevant pages: 432–440) which was in
press at the time.
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34 E-J. Wagenmakers, A. Ly

often; nevertheless it has arisen.” (Jeffreys 1936a, pp. 353–354; italics added for
emphasis)

Jeffreys concludes the article by demonstrating and explaining the paradox in the
field of astronomy with a concrete example.6 In a regression model for the motion of
the node of Venus, there were 12, 319 observations. The Bayes factor is about 6 in
favor of H0. However,

“On the usual theory the probability of an accidental variation exceeding 3.5
times its standard error is 4× 10−4, and the anomaly would have to be taken as
real. Such a value will in any case be exceptional, but with the actual number
and accuracy of the observations it is more exceptional on the hypothesis that it
is real than on the hypothesis that it is due to accidental error.” (Jeffreys 1936a,
p. 445)

4. The 1936 article Further significance tests

In the same year, Jeffreys again stresses the same issue:

“The results are usually of the form αn
1
2 exp(− 1

2 x2/σ 2), where n is the num-
ber of observations and x is the difference found statistically, which may be a
difference of two sampling ratios or measurements, a correlation or a harmonic
coefficient. σ is the standard error of x as found from the usual statistical theo-
ries. α is usually a moderate coefficient. The form of the results can be explained
simply in general terms. Suppose that the difference which we are trying to find
might have had any value within a range m. It is actually found to be within a
certain small range of length τ about x . Then, on the hypothesis that there is
a real difference, the probability that the results would be in this range is τ/m.
But on the hypothesis that there is no real difference the corresponding probabil-

ity is τ(2πσ 2)− 1
2 exp(− 1

2 x2/σ 2). Hence by the theorem of inverse probability
the probabilities of no real difference and of a real difference are in the ratio

(m/σ)(2π)− 1
2 exp(− 1

2 x2/σ 2). But if the accuracy of the observations remains

constant the standard error of the mean decreases like n− 1
2 ; hence the outside

factor is of order n
1
2 . (...)

To put the matter in other words, if an observed difference is found to be of order
σ , then on the hypothesis that there is no real difference this is what would be
expected; but if there was a real difference that might have been anywhere within
a range m it is a remarkable coincidence that it should have happened to be in
just this particular stretch near zero. On the other hand if the observed difference
is several times its standard error it is very unlikely to have occurred if there
was no real difference, but it is as likely as ever to have occurred if there was
a real difference. In this case beyond a certain value of x the more remarkable
coincidence is for the hypothesis of no real difference, and as we have to decide
from the facts as presented we shall accept the difference. The theory merely

6 This example also features in later papers, discussed below.

123



History and nature of the Jeffreys–Lindley paradox 35

develops these elementary considerations quantitatively and evaluates the factor
α. If P(q | θh) > 1

2 , we shall expect the difference found to persist with more
and more accurate observations; if it is less than 1

2 we shall expect the estimated
difference to diminish.
The usual statistical method is to evaluate the observed difference and its stan-
dard error, and to say that it is not significant if it is less than a certain constant
multiple of this error. No explanation of this rule is given, the probability of
the observations being found only on the hypothesis that there is no difference,
and not compared with that on the alternative hypothesis. The present method
provides an explanation; but the multiple found is not constant, depending on
the number of observations and on the ratio of the standard error of one obser-
vation to the whole difference possible, but since it involves these numbers only
through the square roots of their logarithms the variation in actual cases is not
very large. ” (Jeffreys 1936b, p. 417; italics added for emphasis)

These quotations show that in 1935 and 1936, Jeffreys had already discovered, under-
stood, published, emphasized, explained, and illustrated the paradox.

5. The 1937 article The tests for sampling differences and contingency

In this article, Jeffreys’s final paragraph again describes the phenomenon:

“Attention is called to the fact that in my tests the ratio of the critical value of
a difference to the standard error of the latter varies a little with the number of
observations. A difference of twice the standard error may be just significant
[in the sense of Jeffreys’s Bayes factor test – EWAL] when it rests on five
observations, but not when it rests on 100. For application of the tests it is
therefore necessary to know the number of observations, and in many cases this
is not given explicitly in published work and can be disentangled with great
difficulty, if at all. In other words a difference of 1.0 ± 0.5 units may be worth
considering further if it rests on five observations each with a standard error of
1.2 units; if it rests on 100 observations each with a standard error of 5 units
it is not. This comes from pure probability theory and does not allow for the
possibility of systematic error of observation, which might be considered at a
later stage and would accentuate the effect.” (Jeffreys 1937a, p. 494)

6. The 1937 addenda to the first edition of Scientific inference

Jeffreys’s book Scientific Inference first appeared in 1931, before Jeffreys had started
to work on Bayes factors in earnest. A 1937 reissue Scientific Inference, however,
contains addenda that describe the Bayes factor hypothesis test and a description of
the reasoning that underpins the paradox (cf. Jeffreys 1936b above):

“Suppose we consider as a serious possibility that a quantity x may be zero;
denote this proposition by q, with prior probability 1

2 . The proposition that x is
not zero is denoted by ∼ q, also with prior probability 1

2 ; but if x is not zero
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it may be anywhere in a range of length m. An actual determination from data
θ suggests a value of x0 ± σ . Now, if x is really 0, the probability of finding

a mean in a range dx0 about dx0 is 1√
(2π)σ

exp

(

− x20
2σ 2

)

dx0. But if x is not 0,

the probability that it would be in such a range is dx0/m. Given then that x0 has
actually been found in such a range, the posterior probabilities of q and ∼q are
in the ratio of these two expressions, namely

P(q | θh)

P(∼q | θh)
= m√

(2π)σ
exp

(

− x20
2σ 2

)

.

When x0 is large compared with σ , this is small, q has a small posterior prob-
ability, and we can assert with confidence that x is different from zero. But σ ,

the standard error of the mean, is proportional to n− 1
2 , where n is the number

of observations; hence if n is large the first factor is large of order
√

n, and the
ratio will be large if x0 is less than σ . Thus a discrepancy less than a certain
amount increases the probability that the parameter sought is zero; one more
than this amount decreases it and indicates that the parameter is needed. In the
cases examined the critical value, with ordinary numbers of observations, ranges
from about 1.5 to 3 times the standard error, increasingwith the number of obser-
vations. The larger the number of observations the stronger the support for the
simple law x = 0 if the empirical value turns out to be within its standard error.
To put the argument in words, if x0 is of order σ , this is what we should expect if
x is zero, but if x might be anywhere in a range m it is a remarkable coincidence
that it should be in just this one. On the other hand, if x0 is substantially more
than σ , we should not expect it if x is zero, but we should expect it if x is not
zero; in both cases we adopt the less remarkable coincidence.” (Jeffreys 1937b,
pp. 250–251)

A few pages later, Jeffreys provides a concrete example of the paradox (cf. Jeffreys
1936a, p. 445 above):

“In current statistical practice the word “significance” appears to be used in
several different senses, corresponding to different questions, but it is apparently
often supposed that they will have the same answers. I have used it in the case
where we want to know whether the observations support a new parameter;
this is one that regularly occurs, for instance, in astronomy. The multiple of
the standard error used to indicate a statistical difference is about the same as
my theory gives for ordinary numbers of observations, but it is taken constant.
My fuller theory shows that it should increase somewhat with the number of
observations. I have only once come upon a case where the difference between
the criteria would affect the decision, namely the excess motion of the node of
Venus, which, if genuine, is inconsistent with Einstein’s law of gravitation. It is
3.5 times the standard error, and by the usual rules would have to be taken as
real. But the number of observations used is so large that by my rule it is even
more likely to be a random error. In fact Sir Arthur Eddington, who does not
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accept the theory of probability, adopted the decision it gives and not that given
by his own theory.” (Jeffreys 1937b, p. 256, italics added for emphasis)

Jeffreys then draws the explicit comparison to p values:

“A constant significance limit, in relation to the standard error, would however
be equivalent to saying that the prior probability of a zero value varies with the
number of observations, which is absurd; or, alternatively, that the chance of a
real difference exceeding the standard error is the same no matter how small the
standard error is made by increasing the number of observations. Actually, how-
ever, my significance limit varies very slowly with the number of observations
and with ordinary numbers does not differ much from Fisher’s limits based on
the arbitrary 5 per cent. and 1 per cent.; in the great majority of actual cases the
decisions will be the same. Accordingly it appears that Fisher’s practice does not
follow from his postulates, but it, or something very like it, follows from mine.”
(Jeffreys 1937b, p. 259)

It is noteworthy that the two “absurdities” that Jeffreys identifies in this fragment
(i.e., as n increases, either lower the probability of H0 or narrow the prior parameter
distribution under H1) would later be proposed by Robert (1993) (see also Burnham
and Anderson 2004) and Bartlett (1957), respectively.

7. The 1937 correspondence with Fisher

The sample-size induced discrepancy between Bayes factor and p values was also
noted explicitly in a 1937 letter that Jeffreys wrote to Fisher (note that this example
was also presented in Jeffreys 1936a, p. 445 and in Jeffreys 1937b, p. 256, as discussed
above):

“A question has just arisen about the excess motion of the node of Venus. It is
3.5 times the standard error, the probability of a random deviation exceeding
which is 0.00041. Eddington says that as it is one of 15 it can be accepted as
normal. The p. that one of 15 would exceed 3.5σ is 0.006. What I should like
to know from you is whether there is another case on record where a statistician
has accepted at sight a deviation beyond your 1% limit as random? (The other
14 give a χ2 of 15).
By my test the thing is probably random on account of the large number of
observations combined, but there’s not much to spare, and the situation would
be altered if some specific systematic error was before the House.”
Sir Harold Jeffreys, in a letter to Sir Ronald Fisher, 1937 (Bennett 1990, p. 161;
italics in original)

Later that year, Fisher replied as follows:

“I should be inclined, naturally, to accept Eddington’s judgement on an astro-
nomical point, especially as your own test seems to confirm it. On the other
hand, prima facie, i.e. on an assumption ordinarily made, the probability 0.006
is amply small enough to claim significance, and would be used for this pur-
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pose with complete confidence, I have no doubt, if anyone had a theory which
required such a deviation.”
Sir Ronald Fisher, in a letter to Sir Harold Jeffreys, 1937 (Bennett 1990, p. 162;
italics in original)

Fisher’s answer is somewhat ambiguous, but it does appear as if he believed a
p value of 0.006 to be sufficiently compelling for declaring a deviation significant,
regardless of sample size. Instead of pushing Fisher on the issue, Jeffreys’s response
strikes a conciliatory tone:

“Your letter confirmsmy previous impression that it would only be once in a blue
moon that we would disagree about the inference to be drawn in any particular
case, and that in the exceptional cases we would both be a bit doubtful. (...)
I am writing this because there is a tendency about to attribute what I believe to
be an entirely exaggerated idea of our disagreement to us, for which we are both
possibly partly responsible, and I think an occasional mention of cases where
we agree would be for the good of the subject.”
Sir Harold Jeffreys, in a letter to Sir Ronald Fisher, 1937 (Bennett 1990, pp.
162–163; italics in original)7

8. The 1937 articleModern Aristotelianism: Contribution to Discussion

In this one-page discussion on the role of induction in science, Jeffreys mentions the
common elements in the statistical frameworks advocated byKarl Pearson and Ronald
Fisher, and then states:

“I should expect the decisions by my methods to lead to the correct decisions
most rapidly, because the method contains more explicit provision for allowing
for the whole of the data; but many rules given by Fisher, and others accepted
by him, are of exactly the same form as mine [EWAL: point estimates] and
would in practice be used in the same way, while in other cases where there are
differences [EWAL: Bayes factors vs. p values] the actual limits recommended
are such that it would be extremely rarely that the decisions would differ in any
specific application, and then we should both be doubtful.” (Jeffreys 1937c, p.
1004)

As in the 1935 article, Jeffreys downplays the practical ramifications of the
paradox—a theme that will recur in the appendix of Jeffreys’s book Theory of Prob-
ability. In later sections, we speculate about Jeffreys’s reasons for doing so.

7 In a 1983 interview with Dennis Lindley, Jeffreys referred to this exchange as follows: “[the correspon-
dence with Fisher] was after I’d said that on most things we should agree and when we disagreed we would
both be doubtful. After that, Fisher and I were great friends.” (“Transcription of a Conversation between Sir
Harold Jeffreys and Professor D.V. Lindley,” Exhibit A25, St John’s College Library, Papers of Sir Harold
Jeffreys).
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Table 3 Table reproduced from
Jeffreys (1938a, p. 379)

n (Fisher’s n + 1) K n (Fisher’s n + 1) K

5 0.610 9 0.519

6 0.551 10 0.522

7 0.529 20 0.612

8 0.520 30 0.719

9. The 1938 article The comparison of series ofmeasures on different hypotheses
concerning the standard errors

In this article, Jeffreys (1938a, p. 378) gives the Bayes factor in the case of a t test:

K =
(

2n

π

) 1
2

(

1 + x̄2

σ 2

)− 1
2 (n−3)

=
(

2n

π

) 1
2

(

1 + t2

n − 1

)− 1
2 (n−3)

,

as t2 = (n−1)x̄2/σ 2. This is followed by a table that shows the values of K associated
with Fisher’s 5% values of t for various sample sizes n, reproduced here as Table 3.

Jeffreys then mentions the paradox:

“For the first few entries my formula may be appreciably inaccurate, but for
n = 8 and more it should be fairly good. It appears therefore that the 5% point
of the t distribution never corresponds to a value of K less than about 0.5, or
to 2 to 1 odds on the need for the new parameter. If we are entitled to interpret
this as indicating at what value of K we may consider a new parameter as worth
introducing, the value should be about 0.5; but there will then be just about
as much confidence in the need for it as in a statement that an estimate of a
parameter, whose relevance is not in doubt, is right within its standard error.
The inequality is reversed at large numbers of observations; thus for K = 1 and
large n we have the approximation

t2 = loge 2n/π,

whereas the 5% point of the t distribution tends to t = 1.96. The properties
of the logarithm make the rise very slow; when n = 100,000, t is still only
3.32. But if the 5% rule was used habitually there would be cases, with large
numbers of observations, when a new parameter is asserted on evidence that
is actually against it. Users of the rule usually advocate it with considerable
caution, which would agree with the indications of the present theory up to
about 30 observations, but at large numbers it is definitely too lax.” (Jeffreys
1938a, pp. 379; italics added for emphasis)

Jeffreys then explains
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“It may be worth while to call attention again to the reason for the increase of t
and its analogues in other tests when the number of observations is very large.
If we start with the minimum of information about the new parameter, which is
quite likely to be zero but might account for most of the outstanding variation
until we have actually analysed the data, then as we increase the number of
observations the standard error of the estimate steadily falls. If the parameter
is not zero, however, it is independent of the number of observations, and will
ultimately become several times the standard error of its estimate and asserted to
be genuine. If the estimate persists within the order of magnitude of its standard
error, our confidence that this is because the parameter is really zerowill naturally
increase, on the ground that with a large number of observations it is increasingly
unlikely thatwe should have failed tofind it if itwas there. This of course is awell-
known phenomenon in physics, where an estimated difference, always in doubt,
strengthens that doubt by diminishing every time the number of observations is
increased or the experimental technique improved; and it is represented in the
present theory by the increase of the outside factor in K . When the number of
observations is small, this factor is not much more than 1, and it is impossible to
obtain strong support for q however well the observations may agree with it; and
in sampling problems in similar conditions it is also impossible to obtain strong
support for∼q. It may be recalled that in the problem of sampling to test an even
chance it took an 80:80 sample to give 10 to 1 support for q and a 7:0 one to give
10 to 1 support for ∼ q. It is in such cases that we say that there is not enough
evidence to make a decision, and any definite rule will make a considerable
number of mistakes of one kind or the other. Mathematically, the ratio of the
estimate to its standard error must increase with the number of observations
because it has to counteract this factor to reduce K to any fixed value. In general
terms, it must increase because the number of cases where q is still acceptable
remains the same, but those where it is untrue and its falsehood still undetected
become fewer. (I am not here considering cases where selection of an extreme
value, or previous knowledge indicating a restriction on the possible values of a
new parameter, needs to be taken into account; they only complicate the matter
without altering the general principle.)” (Jeffreys 1938a, pp. 379–380)

10. The 1938 article Significance tests when several degrees of freedomarise
simultaneously

Here, Jeffreys first describes the Bayes factor and immediately points out its depen-
dence on sample size:

“If a set of observations are analysed for a new parameter a, which is initially
as likely as not to be zero, and the possible range of whose values is s if it is
not zero, we can denote the proposition that it is 0 by q, and the proposition
that it is not 0 by ∼ q. [EWAL: Here Jeffreys inserts the following footnote:
“My q is always what Fisher (1935) calls a “null hypothesis”.”] Then the prior
probabilities of q and ∼q are given by

123



History and nature of the Jeffreys–Lindley paradox 41

P(q | h) = P(∼q | h) = 1
2 , (1)

and the posterior probabilities on data θ are shown, by an approximate argument
(Jeffreys 1937b, p. 250 [EWAL: This refers to the fragment from Scientific
Inference provided earlier]), to be given by

K = P(q | θh)

P(∼q | θh)

/ P(q | h)

P(∼q | h)
= s√

(2π)σα

exp

(

− α2

2σ 2
α

)

, (2)

where α is the maximum likelihood solution for a and σα its standard error.
Since s is initially fixed and σα decreases like n− 1

2 when n, the number of
observations, increases, the outside factor is proportional to

√
n. If K is less

than 1, the observations support the introduction of the new parameter; if K is
more than 1 they do not. In the cases so far examined the critical value of α/σα

ranges from about 1.8 to 3 as the number of observations rises from 5 to 5000.”
(Jeffreys 1938b, p. 161)

Later in the same article, the dependence of the Bayes factor on sample size (as√
n) plays a crucial role. For instance, on p. 164 Jeffreys remarks that “the outside

factor in the support for q is of order n
1
2 ; this factor would be the support provided

if the estimates happened to agree exactly with the predictions made by q.” (see also
p. 172). However, in this article, Jeffreys does not engage in an explicit comparison
between Bayes factors and p values.

11. The 1938 articleMaximum likelihood, inverse probability and themethod of
moments

In this article, Jeffreys hints at the paradox but underplays its practical importance:

“(...) a moderate fraction of the prior probability of a [i.e., a parameter] is con-
centrated in a particular value a0. This is the case where a possible value of
a is already assigned and the observations are to be used to test whether this
value is correct. (...) The result, which I had hardly expected to find, was that if
α − a0 is less than a certain multiple of σa (varying somewhat with n and the
type of problem), the observations increase the probability that a is equal to a0.
This connects up significance tests with the principle of inverse probability, but
the results do not differ greatly from those that statisticians have found to work
well in practice. The relation to the method of maximum likelihood is that the
apparently arbitrary rejection of small differences found by that method is now
explained in terms of the general theory.” (Jeffreys 1938c, p. 148)
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12. The 1938 article Significance tests for continuous departures from suggested
distributions of chance

This article features a more explicit comparison to p values. Here Jeffreys sets out to
test the null hypothesis that a set of frequencies are uniformly distributed. He arrives
at the familiar

√
n form of his test and then engages explicitly with the paradox:

“Hence (...)

K = P(q | θh)

P(∼q | θh)
=

√

( n

2π

)

c exp(− 1
2na2

0). (15)

The term in f (t) will therefore be supported if a0 [the MLE—EWAL] is such

as to make this less than 1. The standard error of a0, in this notation, is n− 1
2 , so

that the exponential factor has the usual form exp(− 1
2χ

2).
The following table, for various values of n, gives K for a0 = 0 for the two

values of c, and the values of χ2 and a0n
1
2 that make K = 1. For comparison

we may notice that Fisher’s (1936, Table III) 5% and 1% limits, for one degree
of freedom, are at χ2 = 3.84 and 6.64; the former would agree in the first
case at about 200 observations, the latter at about 4000. In the second case the
agreements would come at about 100 and 1700 observations. His test, of course,
does not mean quite the same thing; it says when an observed result would be
surprising on hypothesis q, whereasmine, for the larger numbers of observations,
may admit this and yet say that it would be still more surprising on ∼q. In any
event cases where the observed a0 would come in the disputable region would be
expected to be rare if either of the hypotheses compared was correct, and some
third alternative may suggest itself.” (Jeffreys 1938d, p. 310; italics in original;
table reproduced as Table 4)

13. The 1938 article Aftershocks and periodicity in earthquakes

In this article, Jeffreys studies the hypothesis that earthquakes are independent events
that do not excite one another. Jeffreys first elaborates on standard practice:

“The usual statistical procedure, recommended in particular by R. A. Fisher, is
to reject the trial hypothesis if the contribution to χ2 examined is such that the
probability of a larger χ2, if the hypothesis was correct, is less than 0.05; if high
confidence is required the trial hypothesis will be rejected (and correspondingly
the modified one accepted) if this probability is less than 0.01. The former
criterion is somewhat mild, since it would imply the acceptance as genuine of
all discrepancies more than twice their standard errors.” (Jeffreys 1938e, p. 114)

Jeffreys then describes his own significance test and mentions the paradox:

“The type of significance test that I have introduced depends on the general
theory of probability; the observed values appear in the results only through the
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Table 4 Table reproduced from
Jeffreys (1938d, p. 310)

n
K

︷ ︸︸ ︷

a0n
1
2

︷ ︸︸ ︷

χ2
︷ ︸︸ ︷

5 1.03 1.55 0.25 0.94 0.06 0.88

10 1.46 2.19 0.87 1.25 0.76 1.57

20 2.06 3.09 1.20 1.50 1.45 2.26

50 3.26 4.89 1.54 1.78 2.36 3.17

100 4.61 6.92 1.75 1.97 3.06 3.87

200 6.51 9.76 1.94 2.13 3.75 4.56

500 10.31 15.46 2.16 2.34 4.67 5.48

1000 14.6 21.9 2.32 2.48 5.36 6.17

2000 20.6 30.9 2.46 2.62 6.05 6.86

5000 32.6 48.9 2.46 2.79 6.97 7.78

10,000 46.1 69.2 2.77 2.86 7.66 8.19

Increases in sample size n need to be accompanied by increases in the
χ2 value so that the Bayes factor K remains constant at K = 1

contributions to χ2 from the degrees of freedom actually considered, so that
the tests provide an explanation of the importance of χ2, which was introduced
somewhat arbitrarily by Pearson, though it has properties of symmetry under
transformation that would make it commendable by themselves. For a given
number of degrees of freedom, the value of χ2 that makes it more probable
than not, on the data, that a new parameter or set of parameters is required, is
found to vary somewhat with the number of observations2). In the case of a
periodicity inferred from observed frequencies, I find that for 200 observations
the periodicity is just supported if χ2 = 7.1; for 500, 8.3; for 1000, 8.9. To
establish a 10 to 1 probability that the periodicity is genuine these values must
be increased by 5.1. Fisher’s 5 per cent. limit for two degrees of freedom is at
χ2 = 5.99, his 1 per cent. one at 9.21. With these numbers of observations
his 5 per cent. criterion would therefore sometimes accept a periodicity that
mine would reject, though the agreement is good at somewhat smaller values.”
(Jeffreys 1938e, p. 114)

Jeffreys’s footnote 2 lists several of his earlierworks inwhich the paradox is evident:

“2) Scientific Inference, 1937, 249–252 and 266–9 (General Discussion and
Summary of Results). – Proc. Camb. Philos. Soc. 31 (1935) 213–217 (Correla-
tion). – Proc. Camb. Philos. Soc. 32 (1936) 432–445 (Representation of a Series
of Measures by Assigned Functions and Tests of Randomness). – Proc. Camb.
Philos. Soc. 33 (1937) 35–40 (Comparison of Series of Measures). – Proc. Roy.
Soc. London (A) 162 (1937) 479–495 (Contingency and tests for agreement
of Sampling Ratios. Improved discussions of some problems treated in earlier
papers are given.)” (Jeffreys 1938e, p. 114)
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14. The 1939 first edition of Theory of Probability

The first edition of Jeffreys’s magnum opus Theory of Probability describes a scenario
similar to that covered in the addenda of the 1937 reissue of Scientific Inference.
Specifically, Jeffreys introduces the Bayesian hypothesis test by defining the null
hypothesis q and the alternative hypothesis ∼q. Under ∼q, there is a new parameter
α. Let m denote the possible range of values for α about 0 within which the prior
probability may be taken as uniformly distributed, and let a denote the maximum
likelihood estimate and s its standard error. Then, if s is much smaller than m, Jeffreys
approximates the Bayes factor K (i.e., BF01) as

K = P(q | aH)

P(∼q | aH)
= m√

(2π)s
exp

(

− a2

2s2

)

,

where H indicates background knowledge. Jeffreys then continues:

“If a is s or less, and s is much less than m, K will be large and the observations
support q, that is, they say that the parameter α is probably not needed. But if
a is much larger than s, the exponential will be very small and the observations
will support the need for the new parameter. There will be a critical value of a/s
such that K = 1 and no decision is reached.
In most cases s, being the standard error of a, diminishes with increasing n like
n−1/2; hence the first factor in K increases like n1/2. Thus the larger the number of
observations the stronger the support for q will be if a < s. This is a satisfactory
feature; the more thorough the investigation has been, the more ready we shall
be to suppose that if we have failed to find evidence for α it is because α is really
0. But it carries with it the consequence that the critical value of a/s increases
with n (though that of a of course diminishes); the increase is very slow, since
it depends on

√

(log n), but it is appreciable. The test does not draw the line at a
fixed value of a/s.” (Jeffreys 1939, p. 194; echoed in Jeffreys 1948, pp. 221–222
and Jeffreys 1961, p. 248)

In Appendix I, Jeffreys again explicitly compares the Bayes factor against the p
value. Jeffreys concludes:

“In spite of the difference between the nature of my tests and those based on the
P integrals, and the omission of the latter to give the increases of the critical
values for large n (dictated essentially by the fact that in testing a small departure
found from a large number of observations we are selecting a value out of a long
range and should allow for selection), it appears that there is not much difference
in the practical recommendations. Users of these tests speak of the 5 per cent.
point in much the same way as I should speak of the K = 10−1/2 point, and of
the 1 per cent. point as I should speak of the K = 10−1 point; and for moderate
numbers of observations the points are not very different. At large numbers of
observations there is a difference, since the tests based on the integral would
sometimes assert significance at departures that would actually give K > 1.
Thus there may be opposite decisions in such cases. But they will be very rare.”
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(Jeffreys 1939, pp. 359-360; echoed in Jeffreys 1948, p. 399 and Jeffreys 1961,
p. 435)

Appendix I then concludes with four tables associated with different statistical scenar-
ios. Each table shows that a constant level of Bayes factor support requires that larger
sample sizes yield a higher multiple of the standard error.

15. The 1940 article Note on the Behrens–Fisher formula

In this article, Jeffreys briefly outlines his hypothesis test and adds that the threshold
for accepting the alternative hypothesis is not a constant ‘as usually defined’:

“A definite limit is then found for z, such that larger values support the need for
the new parameter while smaller ones support the null hypothesis, but this limit
is not given by any single value of P(t) as usually defined.” (Jeffreys 1940, p.
49)

16. The 1942 articleOn the significance tests for the introduction of new functions to
representmeasures

In this article, Jeffreys oncemore emphasizes the dependence of the Bayes factor K on
sample size. After providing the equation for K in its familiar form, Jeffreys provides
a table that shows how K increases with n when t is fixed at 0, and how t2 increases
with n when K is fixed at 1. Jeffreys remarks

“It is interesting that the values of t2 for K = 1 increase steadily with n, just as
the corresponding values of χ2 do. This of course is the level where the test is
quite indecisive.” (Jeffreys 1942, p. 260)

17. The 1948 second edition of Theory of Probability

Although this second edition is 31 pages longer than the 380-page first edition, the
paradox-related content (i.e., pp. 221–222, p. 399) has remained mostly unchanged,
except for a small change in notation and for a partly adjusted and expanded set of
tables in the appendix.

18. The 1950 article Bertrand Russell on Probability

In this article, Jeffreys describes his generic Bayes factor, including the
√

n term that
exposes the paradox:

“But if we are at liberty to modify a law arbitrarily to any extent we can fit any
set of observations exactly, and some of these possibilities would fit any further
observation whatever; consequently if there is no limitation on the choice of laws
noprediction fromobservations is possible. (...) [a solution] is given inmyTheory
of Probability, Chapters 5 and 6. This is that where a suggested modification of
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a law involves an increase in the number of adjustable parameters, half the prior
probability is concentrated in the old law; in other words, when a modification
is suggested it is as likely to be needed as not. This has been shown to lead to
satisfactory significance tests in the standard problems of statistics, though there
is much more to be done. The results are of the approximate form

P(q/θ H)

P(q ′/θ H)
= √

(An)e− 1
2 a2/s2a

Here if the new parameter considered is α, it is defined so as to be zero on the old
law q, but on the modified law q ′ it has to be estimated from the observations;
H is the previous information and θ the observational evidence. A is a constant
usually of order 1, n the number of observations, a the estimate of α by the usual
statistical methods, and sa its standard error. The expression is of order

√
n if

a/sa is less than 1, but very small if a/sa is large. Consequently observations
support the old law for a/sa < 1 and the new one if it is large. This choice of
the prior probability is what I call the simplicity postulate.” (Jeffreys 1950, p.
316; italics in original)

19. The 1953 comment on Lindley’s article Statistical inference

Historically, the 1953 Lindley article Statistical inference is particularly relevant, as
it can be considered the conceptual forerunner to the 1957 paradox article. Inspired
by the work of Abraham Wald, Lindley studied statistical procedures that minimize a
weighted sum of Type I and Type II errors.8 Lindley showed that for consistency to
hold regardless of the weight assigned to the errors, the critical value has to increase
with sample size: “...the critical value (...) increases with n, although very slowly. In
this it agrees with the test proposed by Jeffreys (1948).” (Lindley 1953, p. 60).

In a comment published alongside Lindley’s original article, Jeffreys elaborates on
the agreement:

“The appearance of log n [in Lindley’s tests – EWAL] is interesting in relation to
my significance tests. At first sight the origins of this term look quite different,
since in mine it expresses an allowance for selection; we reasonably discount
an exceptional result if we have looked specially hard for one. In Mr. Lindley’s
it is an allowance for the cost of installing a new plant when the benefit would
be small.

It is easy to see, however, that a similarity might have been expected. If the
prior probability distribution for a parameter μ is P(dμ | H) = f (μ) dμ, the
likelihood of a set of data θ is L(μ, θ), and the benefits of two courses of
action, depending on μ, are K1(μ), K2(μ), the posterior probability distribu-
tion of μ is P(dμ | θ H) ∝ f (μ)L(μ, θ) dμ, and the expectations of benefit are

8 At this time, Lindley was still a frequentist, as witness statements such as “...the use of inverse probability
solutions as a general rule can hardly be considered satisfactory, though in special circumstances they may
be adequate.” (Lindley 1953, p. 45; see also Fienberg 2003).
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∫

K1(μ) f (μ)L(μ, θ) dμ,
∫

K2(μ) f (μ)L(μ, θ) dμ. Thus K enters in combi-
nation with f , as Mr. Lindley finds. This might have been expected, since Bayes
defined probabilities in terms of ratios of expectations of benefits, and in an
economic application K and f will always be combined.” (Jeffreys 1953, p. 72;
italics added for emphasis)

Lindley then replied to Jeffreys as follows:

“His connection between the log n term in our two derivations ismost interesting,
and in conjunction with his statement that, in some circumstances, one should
maximize the expected benefit, it makes me realize that my ideas on inference
are much closer to Professor Jeffreys’ than I had thought.” (Lindley 1953, p. 76)

It should not go unmentioned that, in a different comment, Lindley’s contribution
was evaluated positively by Egon Pearson himself:

“We see at once the practical “hunch” to which Lindley’s approach is here trying
to give expression. If we keep α fixed as n increases from 20 to 100 we have a
rapidly increasing chance of establishing that a difference is significant when,
say, μ − μ0 = 0.4. Could we not well afford to sacrifice some of this additional
power in order to reduce the risk of rejecting the null hypothesis when it is true,
i.e., of making the decision d1 wrongly? (...)
Lindley points out that the test proposed by Jeffreys has similar properties to
his tests (...). The same practical objective may be attained if desired by the
quite legitimate device of reducing α as n increases. If the exponents of usually
accepted test theory had not thought of this possibility before, it only serves to
illustrate the value of looking at a problem of statistical inference from several
points of view andmaking numerical comparisons.” (Pearson 1953, p. 69; italics
added for emphasis)

In a later section, we will elaborate on the idea that the paradox undercuts only
the Fisherian interpretation of a p value as ‘evidence against the null hypothesis’; in
the Neyman–Pearson paradigm, however, the brunt of the paradox can be avoided by
adopting a lower value of α when power is known to be high.

20. The 1955 article The present position in probability theory

Here, Jeffreys again presents his generic Bayes factor equation including the
√

n term:

“In most cases the results are of very similar form when the number of observa-
tions, n, is large. If the straightforward estimate ofαm , apart from the significance
question, would be am ±sm , we usually get (θ standing for the data collectively)

K = P(q|θ H)

P(q ′ |θ H)
� An

1
2

f (0)
exp

(

− a2
m

2s2m

)

.

A is a constant of order 1.Wemust have f (0) > 0, otherwise the null hypothesis
would always be asserted [see also Jeffreys (1961, p. 251—EWAL]. If f (0) > 0
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and |am | < sm , K is large and q has a high probability. If |am | greatly exceeds
sm , K is small and q

′
has a high probability in comparison with q. In practice s2m

usually decreases with n like 1/n, and K = 1 for a moderate value of |am |/sm ,
usually 2 to 4.” (Jeffreys 1955, p. 282)

21. The 1957 second edition of Scientific Inference

In the second edition of Scientific Inference, Jeffreys now presents the generic approx-
imate Bayes factor in the main text (p. 72; as he did in the first and second editions of
Theory of Probability), where it was previously presented in the addenda of the 1937
reissued first edition. In contrast to that first edition, Jeffreys no longer engages in an
explicit comparison between Bayes factors and p values, and only hints a the paradox
when he writes:

“The main point is that the null hypothesis is in general strongly supported if the
maximum likelihood estimate of the new parameter is less than its standard error;
but the introduction of the new parameter is strongly supported if the estimate
is much more than the standard error. With ordinary numbers of observations
(from 20 to 1000) the transition comes at about 3 times the standard error in
most problems.” (Jeffreys 1957a, p. 72; italics added for emphasis)

22. The 1957 article Probability theory in astronomy

Jeffreys again presents his approximate form:

“The theory leads to rules of significance for the introduction of new parameters
in laws. They are usually approximately of the form

K = P(q|θ p)

P(q ′|θ p)
� (An)1/2 exp

(

− a2

2s2a

)

.

Here q is the hypothesis that the new parameter α is zero, that is, that the previous
law needs no alteration; q ′ the hypothesis that α is needed, having a value to be
estimated from the observations; a and sa are the estimate of α and its standard
error as given by the method of least squares; n is the number of observations;
and A is a constant, usually not far from 1. If |a| < sa , the factor n1/2 makes
K > 1 and the old law is supported; but with ordinary numbers of observations,
if |a| > 2sa or 3sa , K < 1 and the new law is supported. To apply a test of this
sort it is of course of the first importance that the number of observations shall
be stated. This is in fact not often done by physicists, but thanks mainly to the
work of Fisher (with whom I do not always agree) biologists usually do it, but
with different rules.” (Jeffreys 1957b, p. 349)

In sum, it appears that at the time of writing, Lindley was unaware of the extent to
which Jeffreys had already identified, explained, and explored the paradox. The single
reference to the appendix from the 1948 edition of Theory of Probability certainly does
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not do justice to the central position that the paradox occupied in Jeffreys’s philosophy;
nor is the reference to the 1948 edition historically accurate, as Jeffreys had completed
his work related to the paradox already in the second half of the 1930s. The idea that
Lindleymay not have been fully aware of Jeffreys’s prior work on the paradox receives
support from the following fragment of Lindley’s obituary of Jeffreys:

“He was one of the finest writers of scientific English, with an accurate, yet
almost melodious, style. Like Joyce, he used the language sparingly, condens-
ing many ideas into few words. A paradox that has been much discussed, and
erroneously associated with my name, occupies two sentences in the Theory (p.
248).” (Lindley 1989, p. 417)

As outlined above, Jeffreys devotedmanymore than two sentences to the paradox. The
fact that Lindley was only somewhat aware of the extent of Jeffreys’s contributions is
also consistent with the following remark:

“Having produced MEU [maximization of expected utility – EWAL] as the
constructive device for producing statistical methods, we tried to apply it to
standard problems, finding sometimes that it agreed, as in the use of sufficient
statistics, but more often finding that it did not, for example in the use of the tail
area in a significance test. (Interestingly Jeffreys had pointed this out in 1939 but
none of us had fully appreciatedwhat hewas saying. This is especially ridiculous
in my case since I had attended Jeffreys’s lectures in Cambridge in 1947; the
only excuse I can offer, apart frommy own stupidity, is that he was a bad lecturer.
But that is not valid since his book is, at least seen through today’s eyes, lucid
and still worth reading.)” (Lindley 2000, p. 8)

As outlined above, Jeffreys’s pointed out the paradox as early as 1935, returning to
the same theme many times prior to the first edition of Theory of Probability.

The 1957 contribution from Bartlett

For over 2 decades, Jeffreys had repeatedly pointed out the potential conflict between p
values and Bayes factors. However, Jeffreys’s work on Bayes factors had been largely
ignored. Instead, it was the 1957 article by Lindley that brought the paradox into the
limelight. Although Lindley’s conclusions were qualitatively correct, he did omit an
important term from his equations, an oversight that was quickly corrected by Bartlett
(1957):

“I would agree that he [Lindley – EWAL] establishes the point that one must
be cautious when using a fixed significance level for testing a null hypothesis
irrespective of the size of sample one is taking. However, there is a slip, in his
expression for K under his equation (1), that appears to me, unless corrected,
to lead to an overstatement of his point. The prior distribution for θ , given that
θ �= θ0, was assumed to be uniform over an interval I , and hence its density
function should be 1/I in this interval. This leads to the extra factor 1/I in the
second term in the expression for K .[Here Bartlett adds a footnote: “There is
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also a further dropping of a factor 1/σ in the last formula on p. 191, but this
is a more trivial slip.” – EWAL] This expression then becomes consistent with
Jeffreys’s equation (10), §5.0 in his book (second edition, 1948) [This is the
equation for K given above in the section on the 1939 first edition of Theory of
Probability – EWAL].” (Bartlett 1957, p. 533)

In an editorial note following Bartlett’s paper, Sir Maurice Kendall stated that “Mr
Lindley agrees and apologizes” for omitting the 1/I term from his first equation. How-
ever, Kendall points out that this oversight affects neither Lindley’s general argument
nor his concrete examples.

After including the 1/I term omitted by Lindley, Bartlett notes that a uniform prior
on the entire real line (“the most natural prior”, p. 533) will yield infinite support in
favor of the null hypothesis, a “silly answer” (p. 533). Moreover, in order to escape
from the paradox, Bartlett argues that in the planning stage of an experiment, sample
size may be chosen such that

√
n is proportional to 1/I (i.e., researchers who expect

small effects will collect many observations).
Based on our reading, we conclude that both Lindley and Bartlett unwittingly

presented a slightly confused version of Jeffreys’s earlier work. As far as Lindley
is concerned, he indeed omitted the 1/I term that is correctly included in Jeffreys’s
equations (e.g., see above: Jeffreys 1936b, p. 417; 1937b, pp. 250–251; 1938b, p. 161;
1939, p. 194; 1948, pp. 221–222). In addition, Lindley appears to have been unaware
of Jeffreys’s general approximate

√
n form of the Bayes factor. Lindley does present

this form at a later stage of his paper, but without the 1/I term, and preceding it with
an attribution to Barnard: “An alternative interpretation of the paradox was suggested
to me by Prof. Barnard.” (p. 189). Lindley then notes that this

√
n form shows that

“Clearly (...) for fixed significance level the likelihood of the null hypothesis increases
indefinitely with the sample size.” (p. 189). As mentioned above, the form of this
equation and its conclusion were already presented two decades earlier by Jeffreys
(1936b, p. 417).

As far as Bartlett is concerned, his conclusion that a uniform (improper) prior leads
to the “silly answer” of infinite support for the null hypothesis was anticipated by
Jeffreys in 1935:

“To apply this theory it is therefore necessary that we should have previous
knowledge of the range of possible values of y. (...) Since m enters only through
its logarithm its effect is in any case not great in practical cases, and it does not
need to be determined very accurately (...)
It may happen, however, that we have no previous information about the range
of admissible values of y; then m is effectively infinite, and it appears that
no matter how many observations we have we shall never be able to infer a
systematic difference.” (Jeffreys 1935, p. 207)

Jeffreys also discussed the problem of improper priors for testing in the 1948 second
edition of Theory of Probability, in the section Required properties of f (α):

“It might appear that on q ′ the new parameter is regarded as unknown and
therefore that we should use the estimation prior probability for it. But this leads
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to an immediate difficulty. Suppose that we are considering whether a location
parameter α is 0. The estimation prior probability for it is uniform, and (...) we
should have to take f (α) = 0, and K would always be infinite. We must instead
say that the mere fact that it has been suggested that α is zero corresponds to
some presumption that it is fairly small.” (Jeffreys 1948, p. 225; Jeffreys 1961,
p. 251)

Thus, the popular belief thatBartlettwas thefirst to point out the problemwith improper
priors for Bayes factor testing (e.g., O’Hagan and Forster 2004, p. 78) is incorrect.

Bartlett also commented on a “more trivial slip” in Lindley’s paper, that is, “a further
dropping of a factor 1/σ in the last formula on p. 191”. This is the offending equation:

√

( n

2π

)

exp

{

−n(x̄ − θ0)
2

2σ 2

}

.

However, this equation is in fact similar to those presented by Jeffreys. As noted in
Cousins (2017), the unit-information prior (e.g., Kass and Wasserman 1995) sets the
range m equal to the uncertainty associated with a single observation, meaning that
after dividing the m and the 1/σ terms, only the

√
n term remains.

Finally, Bartlett suggests to reduce the spread of the prior as
√

n (see also Andrews
1994; Cox 2006, pp. 106–107, as noted by Cousins 2017). In other words, he assumes
that researchers who collect a large sample do so because they expect the effect to be
relatively small—the sample size, therefore, provides a clue about the spread of the
prior distribution for the test-relevant parameter underH1. There are several problems
with this suggestion. First and foremost, Bartlett’s scaling solutionmakes it impossible
for theBayes factor to produce convincing evidence in favor of the null hypothesis; as n
increases, the alternative hypothesiswill increasingly resemble the null hypothesis, and
consequently the null hypothesis can never reach a compelling level of support. This is
a key objection, as a cornerstone of Jeffreys’s philosophy of testing is that “An adequate
theory of scientific investigation must leave it open for any hypothesis whatever that
can be clearly stated to be accepted on amoderate amount of evidence.” (Jeffreys 1961,
p. 129). This notion harks back to Jeffreys’s early workwith DorothyWrinch, in which
they argued that in order for a universal generalization (e.g., propositions such as “all
ravens are black”) to attain a compelling degree of plausibility it is necessary to adjust
Laplace’s idea of uniform prior distributions and assign point mass to the general law
(i.e., Wrinch and Jeffreys 1921; Ly et al. 2020). Second, Bartlett’s solution does not
apply to observational studies, where the issue of sample size planning is irrelevant.
Third, researchers may collect larger samples for a variety of other reasons including
feasibility (e.g., the presence of sufficient funding), ease of data collection (e.g., via
online surveys), scientific or societal importance of the topic under study, personality
characteristics of the researcher, and so on. Finally, as indicated above, in 1937, Jeffreys
already mentioned and rejected Bartlett’s 1957 proposal (Jeffreys 1937b, p. 259).

In sum, the arguments presented in Lindley (1957) and Bartlett (1957) were already
discussed 2 decades earlier by Jeffreys, in more detail and without errors. The main
difference is in the evaluation of the practical ramifications of the paradox; whereas
Jeffreys downplays the discrepancy between Bayes factors and p values for practical
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data analysis (“curiously”, according to Cousins 2017, p. 400), Lindley stresses it.
In a later article, Lindley doubles down: “There is therefore a serious and system-
atic difference between the Bayesian and Fisherian calculations, in the sense that a
Fisherian approach much more easily casts doubt on the null value than does Bayes.
Perhaps this is why significance tests are so popular with scientists: they make effects
appear so easily. Notice that this result depends on a ‘sharp’ prior being used, with
p(θ = 0) > 0.” (Lindley 1986, p. 502, italics added for emphasis). The reason for this
difference in perspective is arguably due to the fact that Jeffreys calibrated a p = 0.05
result to a Bayes factor of 1 (reasoning that these were the watershed values in the
two statistical paradigms), whereas Lindley sought to compare the p value and the
posterior probability for the null hypothesis directly.

The root of the paradox: a summary of Jeffreys’s argument

Jeffreys generally explained the paradox in two ways. The first way is to note that
the p value focuses on the predictions from H0, whereas the Bayes factor compares
the predictions from H0 against those from a composite H1. At hand is the scenario
where sample size n increases but the multiple of the standard error is constant, such
that θ̂/se(θ̂) = c, ∀n → ∞. In this case, the predictive adequacy ofH0 is unaffected—
and consequently the p value remains constant also, but the predictive adequacy of
H1 gradually deteriorates. The reason for this deterioration is that, as n increases,
an increasingly smaller set of parameter values provides acceptable predictions. An
ever increasing part ofH1 is found wanting, and this decreases the average predictive
performance across all parameter values underH1. This phenomenon does not occur
if the predictive adequacy ofH1 is based only on the maximum likelihood estimate θ̂ ;
however, this is a cherry-picked value that is in need of amultiplicity correction, for else
the null hypothesis could never be supported by any data. The correction for cherry-
picking (or selection, as Jeffreys called it) is achieved automatically through the prior
distribution (see also Cousins 2017, pp. 401–402 and Jaynes 2003, Chapter 20). The
“correction for selection” explanation for the deteriorating predictive performance
of H1 was prominently presented in the Theory of Probability, for instance in the
fragments cited above (i.e., Jeffreys 1938a, pp. 379–380; Jeffreys 1939, pp. 359–360,
Jeffreys 1948, pp. 399–400, and Jeffreys 1961, pp. 435–436; see also Jeffreys 1953,
p. 72) and also in the following:

“The possibility of getting actual support for the null hypothesis from the obser-
vations really comes from the fact that the value of α indicated by it is unique. q ′
indicates only a range of possible values, and if we select the one that happens
to fit the observations best we must allow for the fact that it is a selected value.
If |a| is less than s, this is what we should expect on the hypothesis that α is 0,
but if α was equally likely to be anywhere in a range of length m it requires that
an event with a probability 2s/m shall have come off. If |a| is much larger than
s, however, a would be a very unlikely value to occur if α was 0, but no more
unlikely than any other if α was not 0. In each case we adopt the less remark-
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able coincidence.” (Jeffreys 1961, p. 248, italics added for emphasis; echoed in
Jeffreys 1939, pp. 194-195 and Jeffreys 1948, p. 222)

Jeffreys’s second, related explanation for the paradox refers to the need for con-
sistency under H0. As mentioned in the above fragment, Jeffreys argues that when
the estimate is of the order of the standard error, this constitutes increasingly strong
evidence in favor of H0 as sample size grows. The idea is intuitive: for instance, 5
heads out of 10 tosses yields less evidence in favor of the fair coin hypothesis θ0 = 1/2

than would 500 heads out of 1000 tosses (cf. Berkson 1942, p. 332). This implies,
however, that the Bayes factor break-even point BF01 = 1 has to be at a multiple
of the standard error that increases with n. This effectively creates the paradox (e.g.,
Wagenmakers, Gronau, Dablander, & Etz, in press).

Two examples by Jack Good

Across several articles, Jack Good attempted to explain why it is problematic to use a
significance threshold that is a constant multiple of the standard error. A first example
was presented in Good (1980b):

“Dr. Deborah Mayo raised the following question. How could one convince a
very naive student, Simplissimus, that a given tail-area probability (P-value),
say 1/100, is weaker evidence against the null hypothesis when the sample is
larger? Although this fact is familiar in Bayesian statistics the question is how
to argue it without (explicit) reference to Bayesian methods.
One can achieve this aim, without even referring to power functions, in the
following manner.
Take a very concrete example, say the tossing of a coin, and count the number
r of heads (“successes”) in N trials. Ask Simplissimus to specify any simple
non-null hypothesis for the probability p of a head. Suppose he gives you a value
p = .5+ε. First compute a value of N so that a ε value of r approximately equal
to N(.5 + ε

7 ) would imply a tail-area probability close to 1/100. Then point out
that the fraction .5 + ε

7 of successes is much closer to .5 than it is to .5 + ε and
thereforemust support the null hypothesis as against the specific rival hypothesis
proposed by Simplissimus. Thus, for any specified simple non-null hypothesis,
N can always be made so large that a specified tail-area probability supports the
null hypothesis more than the rival one. This should convince Simplissimus, if
he had been listening, that the larger is N the smaller the set S of simple non-
null hypotheses that can receive support (as compared with p = 1/2) in virtue of a
specified P-value. If the tail-area probability, for example 1/100, is held constant,
the set S converges upon the point p = 1/2 when N is made larger and larger.”
(Good 1980a, pp. 307–308; italics in original)

As elaborated in Ly and Wagenmakers (in press-b):

“For instance, assume Simplissimus specifies their simple non-null hypothesis
as θ = 0.57 with ε = 0.07. Then our target value for the number of successes
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s equals n(0.5 + 0.07/7) = n × 0.51. So for a sample proportion of 0.51
we now seek n such that the two-sided tail area probability equals .01. We
find that n = 16700 –consisting of 8517 heads, for a sample proportion of
s = 8517/16700 = 0.51, as stipulated– yields a tail-area just below .01. But the
sample proportion of 0.51 is much closer to the null hypothesis (i.e., θ = 0.50)
than to the non-null hypothesis specified by Simplissimus (i.e., θ = 0.57).”

In a later article, Good present a second example:

“In the course of discussion of Good (1980b), Dr. Golde Holtzman suggested
that instead of considering a binomial model in which all values of the binomial
parameter p are considered, we think of a bag known to contain exactly 1000
balls, some white and some black. The null hypothesis, by definition, is that
there are 500 of each. The sampling is to be random, with replacement, with N
drawings.
For definiteness suppose that the outcome is 1/2N + √

N white and therefore
1/2N − √

N black balls. (We can suppose N is a perfect square.) Then P, taken
as a double tail, is about .05; and the fraction of white balls drawn is 1/2+ N−1/2.
If N is large enough, the closest possible rival to w = 500 is w = 501, where
w is equal to the number of white balls in the bag. If therefore N−1/2 is much
smaller than 1/1000, that is, if N/1, 000, 000 is large, the probability of the
observed outcome will be much larger assuming the null hypothesis than if any
other hypothesis is assumed, even w = 501. Thus the tail-area probability of
.05 will then support the null hypothesis, and the larger N is (above a certain
threshold) the more the support will be if the tail-area probability is the same in
each case. Moreover, if we were fairly confident of our model in the first place,
the tail-area probability of .05 would not be small enough to cause us to suspect
the model.” (Good 1983, pp. 312–313)

For simplicity, suppose the bag contains just 10 balls. Drawing 120/200 white balls
yields θ̂ = 0.60 and gives p ≈ .006; Drawing 429/780 white balls yields θ̂ = 0.55
and also gives p ≈ 0.006; and drawing 9690/19,000 white balls yields θ̂ = 0.51 and
again gives p ≈ 0.006. To rejectH0 based on a sample proportion of 0.55 (exactly in
between the expected proportion for 5 and 6 white balls out of 10) seems premature,
and to do so for a sample proportion of 0.51 seems preposterous, as the data are
much more likely under H0 : 5/10 white balls than under even the most likely of the
alternative compositions (i.e., 6/10 white balls; for similar examples, see, e.g., Freeman
1993; Pericchi and Pereira 2016). The problem becomes even more severe when the
bag contains only two balls. In this case, any sample of mixed composition, no matter
how lopsided (e.g., 1 white ball and 100 black balls) decisively falsifiesH1 and thereby
proves H0.

Note that for this particular example, a frequentist may argue that the details of the
problem necessitate the choice of a different test statistic, such as the likelihood ratio
between H0 : θ = 1/2 and a specific H1 (e.g., the one closest to θ̂ ).
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Frequentist considerations

Jeffreys demonstrated that the evidence provided by the data for a point hypothesis
H0 vis-a-vis a composite hypothesis H1 scales with

√
n; consequently, any evidence

threshold cannot be a constant multiple of the standard error. This result undercuts the
popular interpretation of the classical p value in terms of a fixed, sample-size inde-
pendent measure of evidence againstH0. This interpretation was promoted by Fisher
himself, who argued explicitly that the interpretation of the p value is independent of
sample size:

“It is not true (...) that valid conclusions cannot be drawn from small samples; if
accurate methods are used in calculating the probability, we thereby make full
allowance for the size of the sample, and should be influenced in our judgment
only by the value of probability indicated. The great increase of certainty which
accrues from increasing data is reflected in the value of P, if accurate methods
are used.” (Fisher, 1934, p. 182).

Berkson agreed with Fisher’s assessment and stated that “small P’s are more or less
independent, in the weight of the evidence they afford, of the numbers in the sample.”
(Berkson 1942, p. 333; cf. Royall 1997, p. 70). Jeffreys’s work and the associated
paradox cast doubt on this evidential interpretation of the p value.

However, in the Neyman-Pearson paradigm the
√

n scaling of the evidence can be
accommodated by reducing α when n is high. This possibility was already suggested
by Jeffreys in 1938:

“It [the 5% rule – EWAL] would mean drawing the line at such a limit as to
give a fixed percentage of what Neyman and E. S. Pearson call errors of the first
kind, with respect to the number of cases where q is true; but as the limit is at
our disposal we are entitled to take it further out and reduce this percentage still
further if there is no special reason to expect values of the new parameter in the
range affected. To reject the null hypothesis in any cases at all where it is true
is not a desirable action for its own sake. It is an evil that becomes necessary
if we are to have any criterion for detecting cases where q is untrue, and we
are justified in taking such steps as will reduce its importance to a minimum.”
(Jeffreys 1938a, p. 379)

A similar remark appears in Appendix I of the first edition of Theory of Probability:

“(...) if we assert a genuine departure whenever P is less than 0.01 we shall
expect to be wrong in the long run in 1 per cent. of the cases where q is true.
According to my theory we should expect to make fewer mistakes by taking the
limit further out; when K = 1 lies above P = 0.01 there will be a smaller risk
of rejecting q wrongly, partly counter-balanced by a slight increase in the risk of
missing a small genuine departure.” (Jeffreys 1939, p. 360, echoed in Jeffreys
1961, p. 435)

In the main text of Theory of Probability, Jeffreys also pointed out that—if the
prior distribution for the test-relevant parameter under H1 is well-calibrated—the
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total number of errors (i.e., α + β) is minimized using BF01 = 1 as the criterion for
accept/reject decisions:

“It may, however, be interesting to see what would happen if the new parameter
is needed as often as not, and if the values when it is needed are uniformly
distributed over the possible range. Then the frequencies in the world would be
proportional to my assessment of the prior probability. Suppose, then, that the
problem is, not knowing in any particular case whether the parameter is 0 or not,
to identify the cases so as to have a minimum total number of mistakes of both
kinds. (...)
Hence, with world-frequencies in proportion to the prior probability used to
express ignorance, the total number of mistakes will be made a minimum if the
line is drawn at the critical value that makes K = 1.
Now I do not say that this proportionality holds; all that I should say myself is
that at the outset we should expect to make a minimum number of mistakes in
this way, but that accumulation of information may lead to a revision of the prior
probabilities for further use and the critical value may be correspondingly some-
what altered. But whatever the frequency law may be (...) K would be altered by
a factor independent of the number of observations. We should therefore get the
best result, with any distribution (...), by some form that makes the ratio of the
critical value to the standard error increase with n. It appears then that whatever
the distribution may be, the use of a fixed P limit cannot be the one that will
make the smallest number of mistakes. The absolute best is of course unknown
since we do not know the distribution in question except so far as we can infer
it from similar cases.” (Jeffreys 1939, pp. 326-328, echoed in Jeffreys 1961, pp.
396-397; italics added for emphasis)

Thus, if the prior distribution is calibrated then the Bayes factor provides an optimal
frequentist decision criterion. This also holds when the frequentist purpose is to mini-
mize aweighted sumof errors,λα+β (Cornfield 1966). Thus, fromaNeyman–Pearson
perspective, the conflict with a Bayesian assessment of evidence arises specifically in
the common scenario where the researcher fixes the probability α of a Type I error
(say to 5%) and then tries to minimize the probability β of a Type II error. However,
as pointed out above, in high-n situations, the researcher may prefer to sacrifice some
power in order to lower the probability of a Type I error. As indicated above Egon Pear-
son himself judged this strategy “quite legitimate” (Pearson 1953, p. 69). Applying this
strategy substantially reduces the discrepancybetween the frequentist and theBayesian
results.9 For related work, see for instance DeGroot and Schervish (2012, Chapter 9),
Good 1992, Kim and Choi 2021, Leamer (1978, Chapter 4), Lehmann (1958), Lindley
(1953),Maier and Lakens (in press),Mudge, Baker, Edge, andHoulahan (2012), Pérez
and Pericchi (2014), Pericchi and Pereira (2016), Savage et al. (1962, pp. 64–67), and
Savage (1964, Section 5).

In sum, the Jeffreys–Lindley paradox may be given a purely frequentist interpre-
tation as a discrepancy between (a) minimizing β for fixed α; versus (b) minimizing

9 Also note that under this strategy, the frequentist results obey the likelihood principle and the stopping
rule principle (e.g., Cornfield 1966; Lindley 1953; Pericchi and Pereira 2016).
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the weighted sum of errors, λα + β.10 A purely Bayesian version of the paradox will
be provided in the next section.

A fully Bayesian version of the paradox

It is well known that the one-sided p value is asymptotically equal to the posteriormass
lower than the point of test (e.g., Casella and Berger 1987; Lindley 1965; Pratt 1965;
Marsman and Wagenmakers 2017 and references therein); for some problems, the
relation is exact. This means that the p value can be given a Bayesian interpretation as
the (approximate) probability that the observed effect has the wrong sign. Specifically,
the odds form (1 − p)/p is an approximation for BF+−, that is, the Bayes factor for
H+ : δ > 0 versus H− : δ < 0: a Bayesian test for the direction of an effect size δ.
Jeffreys considered this a problem of estimation rather than of testing:

“It should be said that several of the P integrals have a definite place in the present
theory, in problems of pure estimation. For the normal lawwith a known standard
error, or for those sampling problems that reduce to it, the total area of the tail
represents the probability, given the data, that the estimated difference has the
wrong sign-provided that there is no question whether the difference is zero.(...)
They give the correct answer if the question is: If there is nothing to require
consideration of some special values of the parameter, what is the probability
distribution of that parameter given the observations?” (Jeffreys 1961, pp. 387-
388; see also Jeffreys 1939, pp. 317-318)

The relation between the one-sided p value and the Bayesian test for direction sug-
gests that the Jeffreys–Lindley paradox can be given a fully Bayesian interpretation.
Specifically, data may be constructed which will convince the Bayesian that the popu-
lation effect is positive rather than negative (i.e., p(δ > 0 | y,H1) � p(δ < 0 | y,H1),
whereas this same Bayesian will also be convinced that the population effect is
absent rather than present (i.e., p(δ = 0 | y) � p(δ �= 0 | y)). Let BF+− denote
p(δ > 0 | y,H1) / p(δ < 0 | y,H1). Suppose data are constructed such that BF+− is
constant. As n increases, the evidence that the effect is absent rather than present will
increase without bound, and this ensures that, with sufficiently high n, the Bayesian
will believe that the effect is positive rather than negative, and simultaneously believe
that it is absent rather than present. This state of knowledge is not incoherent, but it
may be counter-intuitive.

A concrete demonstration of the fully Bayesian version of the paradox is given in
Fig. 1. Each panel concerns the same Bayesian one-sample t test (Jeffreys 1948) and
shows prior and posterior distributions on effect size δ = μ/σ ; the prior distribution
on δ is a zero-centered Cauchy with scale 1/

√
2 (e.g., Gronau et al. 2020; Morey and

Rouder 2018). In all three panels, the t values and sample sizes were chosen such that
p(δ < 0 | y,H1) = 0.02041783; thus, BF+− = 47.9768, indicating strong evidence
that the population effect is positive rather than negative.

10 A reviewer suggested that the above considerations are moot in case the alternative hypothesis is com-
posite, as the test-relevant parameter cannot be averaged out in the frequentist paradigm.
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Fig. 1 Fully Bayesian version of the Jeffreys–Lindley paradox, illustrated with the t test. All panels have
the same posterior mass on negative effect size: p(δ < 0 | y,H1) = 0.02041783; thus, BF+− = 47.9768.
As sample size n grows, H0 receives increasing support from the data. Top: t = 2.321, n = 20. Middle:
t = 2.113, n = 82. Bottom: t = 2.062, n = 332. See text for details. Figures from JASP (jasp-stats.org)
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The top, middle, and bottom panels have 20, 82, and 332 observations, respectively.
As sample size increases from top to bottom, the posterior distribution narrows and
shifts towards zero. As a result, the Bayes factor increasingly favors H0 over H1. In
the top panel, BF10 = 2 (i.e., weak evidence in favor of the presence of an effect); in
the middle panel, BF10 = 1 (i.e., complete absence of evidence); and in the bottom
panel, BF10 = 1/2 (i.e., weak evidence in favor of the absence of an effect).11

The pattern shown in Fig. 1 can be appreciated by recourse to the Savage–Dickey
density ratio (e.g., Dickey 1971; Verdinelli andWasserman 1995;Wetzels et al. 2010).
Under mild assumptions, this density ratio states that BF10 = p(δ = 0 |H1) / p(δ =
0 | y,H1). In other words, the Bayes factor is given by the ratio of prior to posterior
ordinate for δ underH1 at the point of test. The ordinate of theCauchy prior distribution
at δ = 0 equals approximately 0.45. When BF10 = 2, this implies that the posterior
ordinate equals 0.45/2. This can be confirmed by a visual inspection of the two grey
dots in the top panel from Fig. 1: the data have shifted the posterior distribution away
from zero, lowering the ordinate at δ = 0; consequently, the data favor H1 over H0.
The middle panel shows that the prior ordinate equals the posterior ordinate, for a
Bayes factor of 1, whereas the bottom panel shows that the posterior ordinate at δ = 0
is now larger than the prior ordinate, indicating that the data favor H0 over H1.

The general rule is that when the observations accumulate indefinitely and the
posterior distribution for δ becomes more peaked, retaining the same posterior mass
on negative values of effect size (i.e., keeping BF+− at a constant value) entails an
increase of the posterior ordinate at δ = 0; by the Savage–Dickey density ratio, this
means more evidence for H0 (i.e., BF01 grows without bound). In sum, the paradox
is also relevant within the framework of Bayesian statistics.

Two attempts to escape from the paradox

The Jeffreys–Lindley paradox inconveniences many statisticians. For frequentist
statisticians, the paradox suggests that an epistemic interpretation of a p value requires
that sample size is somehow taken into account—with a very large sample, a p = 0.01
result may well indicate strong support in favor ofH0. For Bayesian statisticians, the
paradox suggests that the quantification of evidence hinges on the specification of the
test-relevant prior distribution underH1—this essentially prohibits the use of vague or
improper priors.12 Perhaps for this reason both frequentist and Bayesian statisticians
have sought to defang the paradox by questioning Jeffreys’s core assumptions. The
main objections fall in two categories that will be discussed in turn; the first objection
concerns the specification of H0, whereas the second objection finds fault with the
specification of H1.13

11 Top, middle, and bottom panels have a one-sided p value of .016, .019, and .020, respectively.
12 As mentioned in the section on Bartlett’s article, Jeffreys was well aware of this and suggested that
different prior distributions be used for testing vs. estimation (cf. Jeffreys 1935, p. 207; Jeffreys 1948, p.
225).
13 Robert and Rousseau (2011, p. 42).
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Objection 1: “downwith point masses!”

In Jeffreys’s original development, prior mass 1/2 is assigned to the point-null hypoth-
esisH0. One attempt to question the relevance of the paradox is to argue that the null
hypothesis is never true exactly, and it is unwise to assign separate prior mass to a
single point from a continuous distribution (e.g., de Bragança Pereira and Stern 1999,
p. 109). For instance, Bernardo (2009) argues that

“Jeffreys intends to obtain a posterior probability for a precise null hypothesis
and, to do this, he is forced to use a mixed prior which puts a lump of probability
p = Pr(H0) on the null, say H0 ≡ θ = θ0, and distributes the rest with a proper
prior p(θ) (he mostly chooses p = 1/2). This has a very upsetting consequence,
usually known as Lindley’s paradox (Lindley, 1957): for any fixed prior proba-
bility p independent of the sample sixe [sic] n, the procedure will wrongly accept
H0 whenever the likelihood is concentrated around a true parameter value which

lies O(n− 1
2 ) from H0. I find it difficult to accept a procedure which is known

to produce the wrong answer under specific, but not controllable, circumstances
(...)” (Bernardo 2009, p. 174; italics in original)

Moreover, in his paradox paper, Lindley (1957, p. 188) explicitly argues that prior
mass needs to be assigned to a point in order for the paradox to arise: “...the phe-
nomenon would persist with almost any prior probability distribution that had a
concentration on the null value and no concentrations elsewhere. (...) It is, however,
essential that the concentration on the null value exists, and it is this that has to be
considered.”

The impression that the paradox arises because H0 has separate prior mass is
strengthened by Jeffreys’s ownwork. Indeed, Jeffreys argued that hismajor conceptual
advance over Laplace was the insight that, with moderate sample sizes, a general law
can only ever receive compelling evidence when that law is assigned separate mass
from the outset (Wrinch and Jeffreys 1921). As summarized by Jeffreys when he was
89 years old:

“My chief interest is in significance tests. This goes back to a remark in Pearson’s
Grammar of Science and to a paper of 1918 byC.D.Broad. Broad usedLaplace’s
theory of sampling, which supposes that if we have a population of n members,
r of which may have a property ϕ, and we do not know r , the prior probability
of any particular value of r (0 to n) is 1/(n + 1). Broad showed that on this
assessment, if we take a sample of number m and find them all with ϕ, the
posterior probability that all n are ϕ’s is (m + 1)/(n + 1). A general rule would
never acquire a high probability until nearly the whole of the class had been
inspected. We could never be reasonably sure that apple trees would always bear
apples (if anything). The result is preposterous, and started the work of Wrinch
and myself in 1919–1923. Our point was that giving prior probability 1/(n + 1)
to a general law is that for n large we are already expressing strong confidence
that no general law is true. The way out is obvious. To make it possible to get a
high probability for a general law from a finite sample the prior probability must
have at least some positive value independent of n.” (Jeffreys 1980, p. 452)
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The objection to the role of the point-null consists of two separate arguments, both
of which need to hold: (1) the point-nullH0 is never true exactly, and should, therefore,
not be assigned separate mass; (2) only when H0 is assigned separate mass does the
paradox manifest itself. With respect to the first argument, Jeffreys argued that assum-
ing the falsity of the null without empirical evidence runs counter to scientific practice:
“The onus of proof is always on the advocate of the more complicated hypothesis.”
(Jeffreys 1939, p. 278; echoed in Jeffreys 1961, p. 343; but see Gelman 2009). In
addition, Jeffreys argued that assigning mass to the point-null hypothesis constitutes
the best practical way of progress, yields better predictive performance, and prevents
the haphazard inclusion of numerous parameters:

“Some feeling of discomfort seems to attach itself to the assertion of the special
value as right, since it may be slightly wrong but not sufficiently to be revealed
by a test on the data available; but no significance test asserts it as certainly
right. We are aiming at the best way of progress, not at the unattainable ideal
of immediate certainty. What happens if the null hypothesis is retained after
a significance test is that the maximum likelihood solution or a solution given
by some other method of estimation is rejected. The question is, When we do
this, do we expect thereby to get more or less correct inferences than if we
followed the rule of keeping the estimation solution regardless of any question
of significance? I maintain that the only possible answer is that we expect to get
more. The difference as estimated is interpreted as random error and irrelevant
to future observations. In the last resort, if this interpretation is rejected, there
is no escape from the admission that a new parameter may be needed for every
observation, and then all combination of observations is meaningless, and the
only valid presentation of data is a mere catalogue without any summaries at
all.(...)
The distinction between problems of estimation and significance arises in bio-
logical applications, though I have naturally tended to speak mainly of physical
ones. Suppose that a Mendelian finds in a breeding experiment 459 members of
one type, 137 of the other. The expectations on the basis of a 3 : 1 ratio would be
447 and 149. The difference would be declared not significant by any test. But
the attitude that refuses to attach any meaning to the statement that the simple
rule is right must apparently say that if any predictions are to be made from the
observations the best that can be done is to make them on the basis of the ratio
459/137, with allowance for the uncertainty of sampling. I say that the best is to
use the 3/1 rule, considering no uncertainty beyond the sampling errors of the
new experiments. In fact the latter is what a geneticist would do. The observed
result would be recorded and might possibly be reconsidered at a later stage if
there was some question of differences of viability after many more observa-
tions had accumulated; but meanwhile it would be regarded as confirmation of
the theoretical value. This is a problem of what I call significance.” (Jeffreys
1939, pp. 318-320; echoed in Jeffreys 1961, pp. 388-389; italics in original)

With respect to the second argument—that the paradox manifests itself only when
H0 is assigned separate mass, it should first be noted that the paradox may be formu-
lated not on the level of posterior probabilities but on the level of Bayes factors, as
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Jeffreys was wont to do. Thus, the paradox can be reformulated to state that data can
always be found such that the p value suggests that H0 should be rejected, whereas
the Bayes factor indicates that the same data provide strong support in favor of H0.
Since the Bayes factor equals the ratio of marginal likelihoods under H0 and H1 it
does not depend on the prior model probability that is assigned to H0 (cf. Pericchi
2011).

The second argument can also be countered directly: as we show below, the paradox
does not require the presence of a point-null hypothesis. This fact is almost universally
overlooked (for an exception see Cousins 2017). Thus, granting that the point-null
hypothesisH0 : δ = 0 is never true exactly, let us replaceH0 by a peri-null hypothesis,
say, ˜H0 : δ ∼ N (0, g0) with variance g0 small to reflect the skeptic’s belief that the
effect is near zero (e.g., Lindley 2011, Ly and Wagenmakers, in press-a; Morey and
Rouder 2011). The peri-null does not include point masses; yet, the Jeffreys–Lindley
paradox still applies. For instance, consider the z-test with data normally distributed

Yi
iid∼ N (μ, σ 2), where σ is known, say, σ = 1, and normal priors δ = μ/σ ∼

N (0, gk) for k = 0, 1 with g0 < g1. The peri-null Bayes factor is then

BF
˜01(z, n) =

√

1 + ng1
1 + ng0

exp

(

(g0 − g1)nz2

2(1 + ng0)(1 + ng1)

)

. (3)

Note that for the two-sided testwith theα-threshold fixed,we have that z = �−1(1−α)

where �−1 is the quantile function of a standard normal distribution. By definition
of the Z -statistic the fixed α threshold can be expressed in terms of the sample mean
and yields ȳ = σ√

n
�−1(1 − α). Observe that with a fixed α threshold, the value of ȳ

at which the null is rejected goes to zero as n increases. Plugging z = �−1(1 − α)

into Eq. (3) shows that limn→∞ BF
˜01(z, n) = √

g1/g0. Since g1 > g0 this implies
that BF

˜01 will eventually provide evidence in favor of the peri-null hypothesis, even
though p ≤ α suggests a rejection of the null. The limit

√
g1/g0 is the maximum

evidence for the peri-null that can be attained, as for all α ∈ (0, 1) the peri-null Bayes
factor starts at one. Depending on g0 and g1, small values of n may result in a value of
BF

˜01(z, n) that indicates some evidence for the alternative hypothesis; as n increases,
BF

˜01(z, n) will monotonically increase towards
√

g1/g0. A specific demonstration is
provided in Fig. 2.

The main effect of replacing the point-null hypothesis by a peri-null hypothesis
is that for a fixed p value, the evidence in favor of the null no longer grows without
bound. However, with g0 < g1, the peri-null evidence bound

√
g1/g0 still favors the

null over the alternative for any non-zero α attained.
In sum, the Jeffreys–Lindley paradox does not depend on the presence of a point-

null hypothesis, as is usually claimed. For fixed p = α, the data will inevitably support
a peri-null hypothesis over the alternative hypothesis as sample size grows large. The
strength of this support is bounded, but in favor of the peri-null, thus leaving the
conflict qualitatively intact. In other words, even when the point-null is replaced by a
peri-null hypothesis, “there would be cases, with large numbers of observations, when
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Fig. 2 Replacing the point-null hypothesis by a peri-null hypothesis does not avoid the Jeffreys–Lindley
paradox. In the case of the Bayes factor z test, increasing sample size n for a fixed attained value of α

inevitably results in positive evidence for the peri-null hypothesis. This evidence converges to an upper
bound

√
g1/g0 that is indicated by the horizontal dashed brown line. The black and blue curves correspond

to data that yield α = 0.05 and α = 0.01, respectively. Left panel: peri-null hypothesis with g0 = 0.1;
right panel: peri-null hypothesis with g0 = 0.05

a new parameter is asserted on evidence that is actually against it.” (Jeffreys 1938a,
pp. 379).

Objection 2: the paradox signals that the prior distribution was too wide

Whenever the paradox occurs, a natural objection to the Bayes factor outcome is
that the prior distribution for the test-relevant parameter under H1 was too wide,
wasting considerable prior mass on large values of effect size that yield poor predictive
performance. Thus, as implied by Bartlett (1957), the paradox reveals a fault in the
specification of H1 rather than H0.

This objection is valid in the sense that—as n increases and the p value remains
constant—the increasingly poor predictive performance ofH1 is indeed due to the fact
that an increasing proportion of prior mass is inconsistent with the data, and this is the
root of the paradox. For instance, the paradox would not arise if the predictions ofH1
were evaluated under the maximum likelihood estimator θ̂ (Cousins 2017). However,
as mentioned above, θ̂ is a cherry-picked value, and using it would favorH1 overH0
regardless of the data.

In general terms, the critique that the prior was too wide is made post hoc; after
observing a near-zero effect size, one may always argue that, in hindsight, the prior
was too wide—if such reasoning were allowed then the data could never undercutH1
and support H0. As long as the prior width does not shrink as a function of sample
size, the paradox arises under any non-zero prior width.

Concluding comments

In this paper, we examined the history and nature of the Jeffreys–Lindley paradox.
Our main conclusions are as follows:
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1. Contrary to what the current literature suggest (e.g., Bernardo and Smith 2000, p.
394; O’Hagan and Forster 2004, p. 78), the Jeffreys–Lindley paradox was central
to Harold Jeffreys’s philosophy of Bayesian testing; in Jeffreys’s tests, the critical
threshold is not based on a constant multiple of the standard error but instead
involves a

√
n term.14

2. From 1935 to 1936, Jeffreys had discovered, understood, published, emphasized,
explained, and illustrated the paradox. It remained a recurring theme throughout
his later articles and books.

3. The articles by Lindley (1957) and Bartlett (1957) echo earlier work by Jeffreys.
This is acknowledged by both authors, but they do not seem fully aware of the
extent to which Jeffreys had already studied the issue. The two 1957 articles also
introduced some mathematical errors and conceptual misunderstandings.15

4. The paradox is caused by the fact that as n increases and p remains constant, an ever
increasing set of parameter values underH1 is inconsistent with the observed data,
decreasing H1’s average predictive performance (i.e., the marginal likelihood).

5. A fully frequentist version of the paradox contrasts the inductive behavior of two
frequentists, one who fixes α andminimizes β, the other whominimizes a weighted
linear sum of α and β (e.g., Cornfield 1966; Lindley 1953; Lehmann 1958). As
n grows large, the same data that prompt the former frequentist to reject H0 will
prompt the latter frequentist to retain H0. The behavior of the latter frequentist is
qualitatively consistent with the tests proposed by Jeffreys.

6. A fully Bayesian version of the paradox contrasts the beliefs of two Bayesians, one
who testsH+ : δ > 0 versusH− : δ < 0 (i.e., the direction of the effect), the other
who tests H0 : δ = 0 versus H1 : δ �= 0 (i.e., the presence of the effect). As n
grows large, the same data that prompt the former Bayesian to conclude that the
data offer strong support for the hypothesis that the effect is positive will prompt
the latter Bayesian to conclude that the data offer strong support for the hypothesis
that the effect is absent.

7. Contrary to what the current literature suggest, the root of the paradox is not in
the assignment of prior mass to a point hypothesisH0; the paradox is also present
when the point-null hypothesis is replaced by a peri-null hypothesis (i.e., a relatively
peaked continuous distribution).

8. The Jeffreys–Lindley paradox is relatively robust: it holds whether or not H0 is
a point-null or a peri-null hypothesis, and it holds regardless of the width of the
prior distribution for the test-relevant parameter underH1—as long as the width is
larger than that of the prior distribution under the peri-null hypothesis, and as long
as it does not shrink with sample size.

9. The Jeffreys–Lindley paradox results from the discrepancy between two modes
of inference: (1) evaluating a single model (e.g., fixed-α decision making); (2)
contrasting twomodels, one ofwhich is relatively simple (e.g., the skeptic’sH0) and

14 For what it’s worth, a Google search for “Lindley paradox” or “Lindley’s paradox” yields about 6,190
results, whereas “Jeffreys–Lindley paradox” yields about 3.530 results; the phrase “Jeffreys’s paradox” or
“Jeffreys paradox” or “Jeffreys’ paradox” yields 964 results (July 5th, 2021).
15 In his later work, Jeffreys never cited the 1957 articles, perhaps because he felt these did not offer novel
insights.

123



History and nature of the Jeffreys–Lindley paradox 65

onewhich ismore complex (e.g., the proponent’sH1). In otherwords, the traditional
frequentist test is absolute, whereas Jeffreys’s Bayes factor test is relative.

We wish to emphasize that, when discussion the paradox, Lindley himself was
always careful to credit Jeffreys (e.g., Robert 2013, p. 119: “Dennis systematically
refereed [sic] to Jeffreys for stating the paradox, both in his paper and his personal com-
munications.”). However, it appears that Lindley did not fully appreciate the degree
to which Jeffreys had worked on the paradox in the 1930s already. This may appear
surprising, since Lindley had taken classes from Jeffreys; indeed, Lindley may be
considered one of only a handful of statisticians who were keenly aware of Jeffreys’s
statistical methodology. A hint at the reason for this blind spot is given by Lindley
himself, in a festschrift in honor of Jeffreys:

“There have been several occasions on which one of us statisticians has asked
Jeffreys about some point, and his answer has been “I dealt with that in the
Theory” and he would go on to point out where. The questioner would then
return to his room, take the book down from his shelf and sure enough, after
some thinking, he would realize that the point was discussed there and that the
discussion went some, if not the whole, way to answering the original question.
In that last sentence I say “after some thinking” because Jeffreys’s style does not
give immediate comprehension. It is necessary to work at it. In my experience
illumination usually appears and one wonders why it was so difficult to see at
first. That is one reason why the book, although widely bought, has not been
read or cited as much as it ought.” (Lindley 1980, p. 119; italics in original)

We share Lindley’s experience. In fact, we have studied Jeffreys’s work for many
years, and we have reread Theory of Probability several times over. Only recently did
it dawn on us that the paradox was a central element of Jeffreys’s statistical philosophy
on hypothesis testing. We cannot offer a compelling explanation for why this was so
difficult for us to see at first.

It is certainly the case that Jeffreys underplayed the differences between p values
and Bayes factors from a pragmatic point of view. For instance, Jeffreys stated that
“The rule that a difference becomes significant at about two or three times its standard
error is therefore about right for ordinary numbers of observations.” (Jeffreys 1935,
p. 213) and “Thus even though P tests sometimes theoretically assert ∼ q when the
number of observations is large andmy tests support q, the occasionswill be extremely
rare.” (Jeffreys 1939, p. 360, echoed in Jeffreys 1961, p. 435). Moreover, Jeffreys felt
that in such cases the data often indicate model misspecification, in the sense that
both the null hypothesis and the alternative hypothesis are found wanting, and a closer
consideration of the data may suggest a third alternative (e.g., Jeffreys 1938d, p. 310;
Jeffreys 1961, p. 436).

Jeffreys’s assessment of the p value as “about right for ordinary numbers of obser-
vations” conflicts with the assessment of later Bayesians (e.g., Berger and Delampady
1987; Edwards 1965; Edwards et al. 1963; Sellke et al. 2001), who have argued
that p values just below 0.05 do not constitute compelling evidence against H0. Jef-
freys’s relatively mild assessment is due to the fact that he calibrated p = 0.05 to
BF10 = 1. However, it may be argued that in order to “reject” the null hypothesis we

123



66 E-J. Wagenmakers, A. Ly

need strong evidence, or at least not evidence that is “hardly worth mentioning” (when
1 < BF10 < 3; Jeffreys 1939, p. 357). In addition, few researchers will consider a p
value of exactly 0.05 as the point where they believe the data to be entirely uninfor-
mative. Would Jeffreys have endorsed the recent proposal to reduce the significance
level for new discoveries from α = 0.05 to α = 0.005 (Benjamin et al. 2018)? We
believe he would have had reservations. Although the proposal was motivated in part
byBayesian insights that originate from Jeffreys himself, the stricterα level still entails
a threshold that is a constant multiple of the standard error and omits the crucial

√
n

term. Moreover, endorsing the α = 0.005 proposal would mean an implicit admission
that his repeated reassurances concerning the use of α = 0.05 as “about right” were
in fact wrong.

A thoroughunderstandingof the Jeffreys–Lindley paradox remains critically impor-
tant for the assessment of statistical methodology, both old and new. Ultimately, the
paradox may even bring about some reconciliation between the Bayesian and the fre-
quentist frameworks—in particular, the paradox may motivate frequentists to explore
procedures that minimize the weighted sum of α and β, which ought to yield con-
clusions similar to those obtained with Jeffreys’s Bayesian tests (cf. Lindley 1953;
Pericchi and Pereira 2016). We believe this manuscript provides some new historical
and conceptual background to the Jeffreys–Lindley paradox, and we hope that this
will be useful for statistical theory as well as statistical practice.
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Appendix: Jeffreys discusses the paradox post 1957

As far as the paradox-related material in Jeffreys’s books is concerned, the 1961 third
edition of Theory of Probability does not add anything to the 1948 second edition (cf.
Jeffreys 1948, pp. 221–222, p. 399 to Jeffreys 1961, p. 248, p. 435), which itself did
not add much to the 1939 first edition (Jeffreys 1939, p. 194, pp. 359–360). Likewise,
the 1973 third edition of Scientific Inference repeats the short relevant fragment from
the 1957 second edition provided in the main text (cf. Jeffreys 1973, pp. 74–75 to
Jeffreys 1957a, pp. 71–72).

Jeffreys does touch on the paradox in three papers published after 1957. First, in
the 1974 article Fisher and inverse probability, Jeffreys hints at the paradox when he
writes:
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“I think that astronomers had found much earlier that discrepancies up to twice
the standard error usually disappearedwhenmore information became available,
but those over three times usually persisted. In fact, with ordinary numbers of
observations, say 10 to 500, these rough rules are usually not far from the 95
per cent and 99 per cent rules or from the more detailed ones that I derive in my
Theory of Probability.” (Jeffreys 1974, p. 2; first italics added for emphasis)

Later, the 1977 articleProbability theory in geophysics contains a relevant fragment
that is highly similar to Jeffreys (1957b, p. 349) cited above:

“The theory leads to rules of significance for changes in laws, involving the
introduction of new parameters in laws. They are usually approximately of the
form

K = P(q | θ p)

P(q ′ | θ p)
� (An)

1
2 exp

(

− a2

2s2a

)

.

Here q is the hypothesis that the new parameter α is zero, that is, that the previous
law needs no alteration; q ′ the hypothesis that α is needed, having a value to be
estimated from the observations; a and sa are the estimate of α and its standard
error as given by the method of least squares; n is the number of observations;

and A is a constant, usually not far from 1. If a < sa , the factor n
1
2 makes

K > 1 and the old law is supported; but with ordinary numbers of observations,
if a > 2sa or 3sa , K < 1 and the new law is supported. To apply a test of
this sort it is of course of the first importance that the number of observations
shall be stated. This is in fact not often done by physicists, but thanks mainly
to the work of Fisher (with whom I do not always agree) biologists usually do
it, but with different rules. I once remarked to Fisher that in nearly all practical
applications we should agree, and that when we differed we should both be
doubtful.” (Jeffreys 1977, p. 89)

Finally, in 1980 Jeffreys published the chapter Some general points in probability
theory in the book Bayesian analysis in econometrics and statistics: Essays in honor
of Harold Jeffreys. Jeffreys summarizes his contributions and concludes as follows:

“Many complications have been dealt with. The usual form, if y is used for the
observational data, is approximately

K = P(H0 | y)

P(H1 | y)
= An1/2 exp

{

− (a − α0)
2

2s2a

}

,

where A is of order 1, n the number of observations, a and sa the estimates by
maximum likelihood of the new parameter and its standard error. If a < sa and
n is large we get strong confirmation that no change in α is needed; if a − α0 is
several times sa there is strong support for a change. For n from about 10 to 500
the usual result is that K = 1when (a−α0)/sa is about 2, 10−1/2 when it is about
2.7, 10−1 about 3.2, and 10−2 about 4. These are not far from the rough rule
long known to astronomers, i.e., that differences up to twice the standard error
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usually disappear when more or better observations become available, and that
those of three or more time usually persist. They are also not far from the 0.05,
0.01 and so on limits for the usual P . I have always considered the arguments
for the use of P absurd. They amount to saying that a hypothesis that may or
may not be true is rejected because a greater departure from the trial value was
improbable; that is, that it has not predicted something that has not happened.
As an argument astronomer’s experience is far better. P has a definite place
when we already know what parameters are relevant, and we want to know their
amounts; this is what I call a problem of estimation. A problem of significance
is one where we are considering a change in the form of the law itself.” (Jeffreys
1980, p. 453)

References

Aitkin, M. 1991. Posterior Bayes factors. Journal of the Royal Statistical Society. Series B (Methodological)
53: 111–142.

Andrews, D.W.K. 1994. The large sample correspondence between classical hypothesis tests and Bayesian
posterior odds tests. Econometrica 62: 1207–1232.

Bartlett, M.S. 1957. A comment on D. V. Lindley’s statistical paradox. Biometrika 44: 533–534.
Bayarri, M.J., J.O. Berger, A. Forte, and G. García-Donato. 2012. Criteria for Bayesian model choice with

application to variable selection. The Annals of Statistics 40: 1550–1577.
Benjamin, D.J., J.O. Berger, M. Johannesson, B.A. Nosek, E.-J. Wagenmakers, R. Berk, and V.E. Johnson.

2018. Redefine statistical significance. Nature Human Behaviour 2: 6–10.
Bennett, J.H., ed. 1990. Statistical inference and analysis: Selected correspondence of R. A. Fisher. Oxford:

Clarendon Press.
Berger, J.O., and M. Delampady. 1987. Testing precise hypotheses. Statistical Science 2: 317–352.
Berkson, J. 1942. Tests of significance considered as evidence. Journal of the American Statistical Associ-

ation 37: 325–335.
Bernardo, J.M. 1980. A Bayesian analysis of classical hypothesis testing (with discussion). Trabajos de

Estadistica y de Investigacion Operativa 31: 605–647.
Bernardo, J.M. 2009. [Harold Jeffreys’s theory of probability revisited]: Comment. Statistical Science 24:

173–175.
Bernardo, J.M. 2011. Integrated objectiveBayesian estimation and hypothesis testing. InBayesian statistics,

vol. 9, ed. J.M. Bernardo, et al., 1–68. Oxford: Oxford University Press.
Bernardo, J.M., and A.F.M. Smith. 2000. Bayesian theory. Chichester: Wiley.
Berrar, D., and W. Dubitzky. 2017. On the Jeffreys-Lindley paradox and the looming reproducibility crisis

in machine learning. In 2017 IEEE international conference on data science and advanced analytics
(DSAA) (pp. 334–340).

Burnham, K.P., and D.R. Anderson. 2004. Multimodel inference: understanding AIC and BIC in model
selection. Sociological Methods and Research 33: 261–304.

Casella, G., and R.L. Berger. 1987. Reconciling Bayesian and frequentist evidence in the one-sided testing
problem. Journal of the American Statistical Association 82: 106–111.

Colquhoun,D. 2019. The false positive risk:A proposal concerningwhat to do about p-values.The American
Statistician 73: 192–201.

Consonni, G., D. Fouskakis, B. Liseo, and I. Ntzoufras. 2018. Prior distributions for objective Bayesian
analysis. Bayesian Analysis 13: 627–679.

Cornfield, J. 1966. Sequential trials, sequential analysis, and the likelihood principle. The American Statis-
tician 20: 18–23.

Cousins, R.D. 2017. The Jeffreys–Lindley paradox and discovery criteria in high energy physics. Synthese
194: 395–432.

Cox, D.R. 2006. Principles of statistical inference. Cambridge: Cambridge University Press.
de Bragança Pereira, C.A., and J.M. Stern. 1999. Evidence and credibility: Full Bayesian significance test

for precise hypotheses. Entropy 1: 99–110.

123



History and nature of the Jeffreys–Lindley paradox 69

de Bragança Pereira, C.A., J.M. Stern, and S.Wechsler. 2008. Can a significance test be genuinely bayesian.
Bayesian Analysis 3: 79–100.

DeGroot, M.H., and M.J. Schervish. 2012. Probability and statistics, 4th ed. New York: Addison-Wesley.
Dickey, J.M. 1971. The weighted likelihood ratio, linear hypotheses on normal location parameters. The

Annals of Mathematical Statistics 42: 204–223.
Edwards, W. 1965. Tactical note on the relation between scientific and statistical hypotheses. Psychological

Bulletin 63: 400–402.
Edwards, W., H. Lindman, and L.J. Savage. 1963. Bayesian statistical inference for psychological research.

Psychological Review 70: 193–242.
Etz, A., and E.-J. Wagenmakers. 2017. J. B. S. Haldane’s contribution to the Bayes factor hypothesis test.

Statistical Science 32 (2): 313–329.
Fienberg, S.E. 2003. When did Bayesian inference become “Bayesian? Bayesian Analysis 1: 1–41.
Fisher, R.A. 1934. Statistical methods for research workers, 5th ed. London: Oliver and Boyd.
Fisher, R.A. 1935. The design of experiments. Edinburgh: Oliver and Boyd.
Fisher, R.A. 1936. Statistical methods for research workers, 6th ed. London: Oliver and Boyd.
Freeman, P.R. 1993. The role of p-values in analysing trial results. Statistics in Medicine 12: 1443–1452.
Gelman, A. 2009. Bayes, Jeffreys, prior distributions and the philosophy of statistics. Statistical Science

24: 176–178.
Good, I.J. 1980. The contributions of Jeffreys to Bayesian statistics. In Bayesian analysis in econometrics

and statistics: Essays in honor of Harold Jeffreys, ed. A. Zellner, 21–34. Amsterdam: North-Holland
Publishing Company.

Good, I.J. 1980. The diminishing significance of a p-value as the sample size increases. Journal of Statistical
Computation and Simulation 11: 307–313.

Good, I.J. 1983. The diminishing significance of a fixed p-value as the sample size increases: A discrete
model. Journal of Statistical Computation and Simulation 16: 312–313.

Good, I.J. 1992. The Bayes/non-Bayes compromise: A brief review. Journal of the American Statistical
Association 87: 597–606.

Gronau, Q.F., A. Ly, and E.-J. Wagenmakers. 2020. Informed Bayesian t-tests. The American Statistician
74: 137–143.

Howie, D. 2002. Interpreting probability: Controversies and developments in the early twentieth century.
Cambridge: Cambridge University Press.

Jaynes, E.T. 2003. Probability theory: The logic of science. Cambridge: Cambridge University Press.
Jefferys, W.H. 1990. Bayesian analysis of random event generator data. Journal of Scientific Exploration

4: 153–169.
Jeffreys, H. 1935. Some tests of significance, treated by the theory of probability. Proceedings of the

Cambridge Philosophy Society 31: 203–222.
Jeffreys, H. 1936a. On some criticisms of the theory of probability. The London, Edinburgh, and Dublin

Philosophical Magazine and Journal of Science 22: 337–359.
Jeffreys, H. 1936b. Further significance tests. Mathematical Proceedings of the Cambridge Philosophical

Society 32: 416–445.
Jeffreys, H. 1937a. The tests for sampling differences and contingency. Proceedings of the Royal Society

of London. Series A, Mathematical and Physical Sciences 162: 479–495.
Jeffreys, H. 1937b. Scientific inference, 1st ed. Cambridge: Cambridge University Press.
Jeffreys, H. 1937c. Modern Aristotelianism: Contribution to discussion. Nature 139: 1004.
Jeffreys, H. 1938a. The comparison of series of measures on different hypotheses concerning the standard

errors. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences
167: 367–384.

Jeffreys, H. 1938b. Significance tests when several degrees of freedom arise simultaneously. Proceedings
of the Royal Society of London. Series A, Mathematical and Physical Sciences 165: 161–198.

Jeffreys,H. 1938c.Maximum likelihood, inverse probability and themethodofmoments.Annals of Eugenics
8: 146–151.

Jeffreys, H. 1938d. Significance tests for continuous departures from suggested distributions of chance.
Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 164:
307–315.

Jeffreys, H. 1938e. Aftershocks and periodicity in earthquakes. Gerlands Beiträge zur Geophysik 53: 111–
139.

Jeffreys, H. 1939. Theory of probability, 1st ed. Oxford: Oxford University Press.

123



70 E-J. Wagenmakers, A. Ly

Jeffreys, H. 1940. Note on the Behrens-Fisher formula. Annals of Eugenics 10: 48–51.
Jeffreys, H. 1942. On the significance tests for the introduction of new functions to represent measures.

Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 180:
256–268.

Jeffreys, H. 1948. Theory of probability, 2nd ed. Oxford: Oxford University Press.
Jeffreys, H. 1950. Bertrand russell on probability. Mind: A Quarterly Review of Psychology and Philosophy

59: 313–319.
Jeffreys, H. 1953. Comment on “statistical inference” by Dennis Lindley. Journal of the Royal Statistical

Society Series B (Methodological) 15: 72.
Jeffreys, H. 1955. The present position in probability theory. The British Journal for the Philosophy of

Science 5: 275–289.
Jeffreys, H. 1957. Scientific inference, 2nd ed. Cambridge: Cambridge University Press.
Jeffreys, H. 1957. probability theory in astronomy. Monthly Notices of the Royal Astronomical Society 117:

347–355.
Jeffreys, H. 1961. Theory of probability, 3rd ed. Oxford: Oxford University Press.
Jeffreys, H. 1973. Scientific inference, 3rd ed. Cambridge: Cambridge University Press.
Jeffreys, H. 1974. Fisher and inverse probability. International Statistical Review 42: 1–3.
Jeffreys, H. 1977. Probability theory in geophysics. Journal of the Institute of Mathematics and its Appli-

cations 19: 87–96.
Jeffreys, H. 1980. Some general points in probability theory. In Bayesian analysis in econometrics and

statistics: Essays in honor of Harold Jeffreys, ed. A. Zellner, 451–453. Amsterdam: North-Holland
Publishing Company.

Kamary, K., K.Mengersen, C.P. Robert, and J. Rousseau. 2014. Testing hypotheses via a mixture estimation
model. arXiv:1412.2044.

Kass, R.E., and A.E. Raftery. 1995. Bayes factors. Journal of the American Statistical Association 90:
773–795.

Kass, R.E., and L. Wasserman. 1995. A reference Bayesian test for nested hypotheses and its relationship
to the Schwarz criterion. Journal of the American Statistical Association 90: 928–934.

Keysers, C., V. Gazzola, and E.-J. Wagenmakers. 2020. Using Bayes factor hypothesis testing in neuro-
science to establish evidence of absence. Nature Neuroscience 23: 788–799.

Kim, J.H., and I. Choi. 2021. Choosing the level of significance: A decision-theoretic approach. Abacus 57:
27–71.

Leamer, E. 1978. Specification searches: ad hoc inference with nonexperimental data. New York: Wiley.
Lehmann, E.L. 1958. Significance level and power. The Annals of Mathematical Statistics 29: 1167–1176.
Lindley, D.V. 1953. Statistical inference. Journal of the Royal Statistical Society Series B (Methodological)

15: 30–76.
Lindley, D.V. 1957. A statistical paradox. Biometrika 44: 187–192.
Lindley, D.V. 1965. Introduction to probability and statistics from a Bayesian viewpoint. Part 2. Inference.

Cambridge: Cambridge University Press.
Lindley, D.V. 1980. Jeffreys’s contribution to modern statistical thought. In Bayesian analysis in econo-

metrics and statistics: essays in honor of Harold Jeffreys, ed. A. Zellner, 35–39. Amsterdam:
North-Holland Publishing Company.

Lindley, D.V. 1986. Comment on “tests of significance in theory and practice” by D. J. Johnstone. Journal
of the Royal Statistical Society. Series D (The Statistician) 35: 502–504.

Lindley, D.V. 1989. Obituary: Harold Jeffreys, 1891–1989. Journal of the Royal Statistical Society Series
A 152: 417–419.

Lindley, D.V. 2000. What is a Bayesian? The ISBA Bulletin 7: 7–9.
Lindley, D.V. 2011. Comment on “integrated objective Bayesian estimation and hypothesis testing” by J.M.

Bernardo. In Bayesian statistics, vol. 9, ed. J.M. Bernardo, et al., 37–38. Oxford: Oxford University
Press.

Ly, A., A. Stefan, J. van Doorn, F. Dablander, D. van den Bergh, A. Sarafoglou, and E.-J. Wagenmakers.
2020. The Bayesian methodology of Sir Harold Jeffreys as a practical alternative to the p-value
hypothesis test. Computational Brain and Behavior 3: 153–161.

Ly, A., A.J. Verhagen, and E.-J. Wagenmakers. 2016a. Harold Jeffreys’s default Bayes factor hypothesis
tests: explanation, extension, and application in psychology. Journal of Mathematical Psychology 72:
19–32.

123

http://arxiv.org/abs/1412.2044


History and nature of the Jeffreys–Lindley paradox 71

Ly, A., A.J. Verhagen, and E.-J. Wagenmakers. 2016b. An evaluation of alternative methods for testing
hypotheses, from the perspective of Harold Jeffreys. Journal of Mathematical Psychology 72: 43–55.

Ly, A., and E.-J. Wagenmakers. (in press-a). Bayes factors for peri-null hypotheses. TEST.
arXiv:2102.07162.

Ly, A., and E.-J. Wagenmakers. (in press-b). A critical evaluation of the FBST ev for Bayesian hypothesis
testing. Computational Brain and Behavior. https://psyarxiv.com/x9t6n/.

Maier, M., and D. Lakens. (in press). Justify your alpha: a primer on two practical approaches. Advances
in Methods and Practices in Psychological Science. https://psyarxiv.com/ts4r6.

Marsman, M., and E.-J. Wagenmakers. 2017. Three insights from a Bayesian interpretation of the one-sided
p value. Educational and Psychological Measurement 77: 529–539.

Morey, R.D., and J.N. Rouder. 2011. Bayes factor approaches for testing interval null hypotheses. Psycho-
logical Methods 16: 406–419.

Morey, R.D., and J.N. Rouder. 2018. BayesFactor 0.9.124.2. Comprehensive R Archive Network. http://
cran.r-project.org/web/packages/BayesFactor/index.html.

Mudge, J.F., L.F. Baker, C.B. Edge, and J.E. Houlahan. 2012. Setting an optimal α that minimizes errors
in null hypothesis significance tests. PLoS One 7: e32734.

Nasir, M.A., A.M. Soliman, M. Shahbaz, et al. 2020. Operational aspect of the policy coordination for
financial stability: role of Jeffreys-Lindley’s paradox in operations research. Annals of Operations
Research 20: 1–25.

O’Hagan, A., and J. Forster. 2004. Kendall’s advanced theory of statistics. Bayesian inference, vol. 2B, 2nd
ed. London: Arnold.

Ormerod, J.T., M. Stewart, W. Yu, and S.E. Romanes. 2017. Bayesian hypothesis tests with diffuse priors:
can we have our cake and eat it too? Manuscript submitted for publication. https://arxiv.org/pdf/1710.
09146.pdf.

Pearson, E.S. 1953. Comment on “statistical inference” by Dennis Lindley. Journal of the Royal Statistical
Society Series B (Methodological) 15: 68–69.

Pérez, M.-E., and L.R. Pericchi. 2014. Changing statistical significance with the amount of information:
The adaptive α significance level. Statistics and Probability Letters 85: 20–24.

Pericchi, L.R. 2011. Comment on “integrated objective Bayesian estimation and hypothesis testing” by J.
M. Bernardo. InBayesian statistics, vol. 9, ed. J.M. Bernardo, et al., 25–29. Oxford: Oxford University
Press.

Pericchi, L.R., and C. Pereira. 2016. Adaptative significance levels using optimal decision rules: balancing
by weighting the error probabilities. Brazilian Journal of Probability and Statistics 30: 70–90.

Pratt, J.W. 1965. Bayesian interpretation of standard inference statements. Journal of the Royal Statistical
Society B 27: 169–203.

Robert, C.P. 1993. A note on Jeffreys–Lindley paradox. Statistica Sinica 3: 601–608.
Robert, C.P. 2013. On the Lindley–Jeffreys paradox. In A book for Dennis, ed. A. O’Hagan, 118–122. San

Francisco: Blurb.
Robert, C.P. 2014. On the Lindley–Jeffreys paradox. Philosophy of Science 81: 216–232.
Robert, C.P., N. Chopin, and J. Rousseau. 2009. Harold Jeffreys’s theory of probability revisited. Statistical

Science 24: 141–172.
Robert, C.P., and J. Rousseau. 2011. Comment on “integrated objective Bayesian estimation and hypothesis

testing” by J. M. Bernardo. In Bayesian statistics, vol. 9, ed. J.M. Bernardo, et al., 41–44. Oxford:
Oxford University Press.

Royall, R. 1986. The effect of sample size on the meaning of significance tests. The American Statistician
40: 313–315.

Royall, R.M. 1997. Statistical evidence: a likelihood paradigm. London: Chapman and Hall.
Savage, L.J. 1964. The foundations of statistics reconsidered. In Studies in subjective probability, ed. H.E.

Kyburg and H.E. Smokler, 173–188. New York: Wiley.
Savage, L.J., M.S. Bartlett, G.A. Barnard, D.R. Cox, E.S. Pearson, C.A.B. Smith, and C.B. Winsten. 1962.

The foundations of statistical inference. London: Methuen.
Sellke, T., M.J. Bayarri, and J.O. Berger. 2001. Calibration of p values for testing precise null hypotheses.

The American Statistician 55: 62–71.
Senn, S. 2001. Two cheers for P-values? Journal of Epidemiology and Biostatistics 6: 193–204.
Shafer, G. 1982. Lindley’s paradox. Journal of the American Statistical Association 77: 325–351.
Spanos, A. 2013. Who should be afraid of the Jeffreys–Lindley paradox? Philosophy of Science 80 (1):

73–93.

123

http://arxiv.org/abs/2102.07162
https://psyarxiv.com/x9t6n/
https://psyarxiv.com/ts4r6
http://cran.r-project.org/web/packages/BayesFactor/index.html
http://cran.r-project.org/web/packages/BayesFactor/index.html
https://arxiv.org/pdf/1710.09146.pdf
https://arxiv.org/pdf/1710.09146.pdf


72 E-J. Wagenmakers, A. Ly

Sprenger, J. 2013. Testing a precise null hypothesis: The case of Lindley’s paradox. Philosophy of Science
80 (5): 733–744.

Szabó, B., and A. van der Vaart. 2019. Bayesian statistics [lecture notes]. Leiden: Leiden University.
Vehtari, A., A. Gelman, and J. Gabry. 2017. Practical Bayesian model evaluation using leave-one-out

cross-validation and WAIC. Statistics and Computing 27: 1413–1432.
Verdinelli, I., and L. Wasserman. 1995. Computing Bayes factors using a generalization of the Savage-

Dickey density ratio. Journal of the American Statistical Association 90: 614–618.
Villa, C., and S. Walker. 2017. On the mathematics of the Jeffreys–Lindley paradox. Communications in

Statistics Theory and Methods 46: 12290–12298.
Wagenmakers, E.-J. 2007. A practical solution to the pervasive problems of p values. Psychonomic Bulletin

and Review 14: 779–804.
Wagenmakers, E.-J., Q.F. Gronau, F. Dablander, and A. Etz. (in press). The support interval. Erkenntnis.

https://psyarxiv.com/zwnxb/.
Wagenmakers, E.-J., A.J. Verhagen, A. Ly, D.Matzke, H. Steingroever, J.N. Rouder, and R.D.Morey. 2017.

The need for Bayesian hypothesis testing in psychological science. In Psychological science under
scrutiny: recent challenges and proposed solutions, ed. S.O. Lilienfeld and I. Waldman, 123–138.
New York: Wiley.

Wasserstein, R.L., and N.A. Lazar. 2016. The ASA’s statement on p-values: context, process, and purpose.
The American Statistician 70 (2): 129–133.

Wetzels, R., R.P.P.P. Grasman, and E.-J. Wagenmakers. 2010. An encompassing prior generalization of the
Savage-Dickey density ratio test. Computational Statistics and Data Analysis 54: 2094–2102.

Wrinch, D., and H. Jeffreys. 1919. On some aspects of the theory of probability. Philosophical Magazine
38: 715–731.

Wrinch, D., and H. Jeffreys. 1921. On certain fundamental principles of scientific inquiry. Philosophical
Magazine 42: 369–390.

Wrinch, D., and H. Jeffreys. 1923. On certain fundamental principles of scientific inquiry. Philosophical
Magazine 45: 368–374.

Yin, G., and H. Shi. 2020. Demystify Lindley’s paradox by interpreting p-value as posterior probability.
arXiv:2002.10883 (arXiv preprint).

Zellner, A. 1971/1996. An introduction to Bayesian inference in econometrics. New York: Wiley.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://psyarxiv.com/zwnxb/
http://arxiv.org/abs/2002.10883

	History and nature of the Jeffreys–Lindley paradox
	Abstract
	Introduction
	Statistical background
	The 1957 contribution by Lindley
	The contributions by Jeffreys from 1935 to 1957
	1. The 1934 letter to Fisher
	2. The 1935 article Some tests of significance, treated by the theory of probability
	3. The 1936 article On some criticisms of the theory of probability
	4. The 1936 article Further significance tests
	5. The 1937 article The tests for sampling differences and contingency
	6. The 1937 addenda to the first edition of Scientific inference
	7. The 1937 correspondence with Fisher
	8. The 1937 article Modern Aristotelianism: Contribution to Discussion
	9. The 1938 article The comparison of series of measures on different hypotheses concerning the standard errors
	10. The 1938 article Significance tests when several degrees of freedom arise simultaneously
	11. The 1938 article Maximum likelihood, inverse probability and the method of moments
	12. The 1938 article Significance tests for continuous departures from suggested distributions of chance
	13. The 1938 article Aftershocks and periodicity in earthquakes
	14. The 1939 first edition of Theory of Probability
	15. The 1940 article Note on the Behrens–Fisher formula
	16. The 1942 article On the significance tests for the introduction of new functions to represent measures
	17. The 1948 second edition of Theory of Probability
	18. The 1950 article Bertrand Russell on Probability
	19. The 1953 comment on Lindley's article Statistical inference
	20. The 1955 article The present position in probability theory
	21. The 1957 second edition of Scientific Inference
	22. The 1957 article Probability theory in astronomy

	The 1957 contribution from Bartlett
	The root of the paradox: a summary of Jeffreys's argument
	Two examples by Jack Good
	Frequentist considerations
	A fully Bayesian version of the paradox
	Two attempts to escape from the paradox
	Objection 1: ``down with point masses!''
	Objection 2: the paradox signals that the prior distribution was too wide

	Concluding comments
	Acknowledgements
	Appendix: Jeffreys discusses the paradox post 1957
	References




