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Abstract
We consider theGeometria Practica of Christopher Clavius, S.J., a surprisingly eclec-
tic and comprehensive practical geometry text, whose first edition appeared in 1604.
Our focus is on four particular sections from Books IV and VI where Clavius has
either used his sources in an interesting way or where he has been uncharacteristically
reticent about them. These include the treatments of Heron’s Formula, Archimedes’
Measurement of the Circle, four methods for constructing two mean proportionals
between two lines, and finally an algorithm for computing nth roots of numbers.

1 Introduction

1.1 Clavius and the Geometria Practica

Christopher Clavius, S.J. (1538–1612) was the most accomplished and influential
Jesuit mathematician of his era.1 His mathematical outlook was essentially con-
servative and grounded firmly in the geometry of the Elements of Euclid, with
some excursions into parts of algebra and what we would call discrete mathematics
(Knobloch 1988, Sections III and IV). Yet his view of the subject was broad enough to
acknowledge both the certainty of mathematical knowledge due the subject’s reliance
on strict standards of proof and the utility of mathematics for understanding the physi-

1 See Knobloch (1988), Baldini (1983), Baldini (2003) for the original documentary sources for his life,
career, and the activities of the Academy Clavius supervised at the Jesuit Collegio Romano. For a nuanced
consideration of Clavius’s place in the development of the teaching of mathematics in the Jesuit schools,
see Romano (1999).
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392 J. B. Little

calworld.2 Hewasmostly a commentator, expositor, and evaluator of themathematical
work of others, not primarily an original mathematical researcher in the modern sense.
Over most of his career, a large portion of his energy was devoted to the production
of numerous influential source books or textbooks for the teaching of a wide range of
mathematical subjects. These included his extensively augmented edition of the Ele-
ments of Euclid (first edition 1574), the Epitome arithmeticae practicae (Summary of
Practical Arithmetic, 1583), thisGeometria Practica (Practical Geometry, first edition
1604), and the Algebra (1608). Clavius also wrote a well-known commentary on the
Sphere of Sacrobosco, books on the astrolabe and the construction of sundials, and
more elementary treatments of plane and spherical triangles. Before the end of his
life, his collected mathematical works Clavius (1611–1612) were published in five
volumes.3

The Geometria Practica went through three editions within 10 years of its appear-
ance. The first edition, Clavius (1604), was printed by the shop of Luigi Zanetti
in Rome; just 2 years later, a second edition, Clavius (1606) was produced by the
printshop of Johann Albin in Mainz. The first edition is slightly longer because of
a different page format. However, there are no substantial differences between the
texts. Moreover, very similar (but not identical) woodcut figures were used in both
editions, so the overall appearance does not differ significantly. The version of the
Geometria Practica included in Clavius (1611–1612) contains some corrections of
typographical and mathematical errors in the previous editions, expanded discussions
of the quadrant and geometric square constructed in Book I, and some other relatively
minor additions. In this essay, page numbers refer to the page in the 1606 edition.

While a number of scholars have written recently on aspects of the book, the entire
scope of Clavius’s Geometria Practica seems not to have been studied in detail.4 Yet
this work has some rather surprising features that will be discussed in more detail
shortly.5

We will not attempt any systematic analysis of how Clavius’s book fits within the
whole vast genre of practical geometry texts from the 16th through the 18th centuries
as discussed, for instance, in Raynaud (2015). We have not examined enough of the at

2 This is expressed most explicitly in Clavius’s essay In disciplinas mathematicas prolegomena (Prolegom-
ena on themathematical disciplines) included inVolume I of theOperaMathematica, (Clavius 1611–1612).
Clavius sees mathematics as intermediate between metaphysics and natural philosophy, an idea that traces
back at least to Proclus’s Commentary on Book I of Euclid’s Elements, (Morrow 1970), a text Clavius
mentions several times. See, for instance, Rommevaux (2005, Chapter 1).
3 These have been digitized, see: https://clavius.library.nd.edu/mathematics/clavius.
4 In the past, this was perhaps a reflection of certain derogatory attitudes toward “applied” or “practical”
mathematics in general. Raynaud proposes in fact that practical geometry has been “... doublementmarginal,
vis-à-vis des mathematiques savantes et vis-à-vis des traditions techniques,” that is, “ ... doubly marginal,
with respect to theoretical mathematics, and with respect to technical traditions.” (Raynaud 2015, p. 19)
5 These features have also furnished the motivation for the author of this essay to undertake a translation
of the entire Geometria Practica from the original Latin into English using the 1606 second edition.
This translation is freely available at CrossWorks, the online faculty and student scholarship repository
maintained by the Library of the College of the Holy Cross, at the URL: https://crossworks.holycross.
edu/hc_books/57/. All quotations of passages from the Geometria Practica in English are taken from this
translation. The original Latin text from the 1606 edition is provided in footnotes for purposes of comparison.
The same will be done for quotations from other sources.
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The eclectic content and sources of Clavius’s Geometria Practica 393

least 450 books involved (according toRaynaud) to come to any informed conclusions.
Insteadwewill focus onClavius’s book itself—in particular on its features and sources.

First, the eclecticism of this work—the sheer range of different types of topics
that fall under the category of practical geometry and its allied areas for Clavius and
that make it into this book—is remarkable. This is a clear reflection of what Clavius
set out to do in writing it. In his Preface, Clavius discusses previous works in the
practical geometry genre, and how he wants his work to stand out from the works of
Leonardo Pisano (“Fibonacci,” ca. 1170–ca. 1250, Pisano 1862, 2008), Luca Paci-
oli (1447–1517, Pacioli 1494), Nicolo Fontana (“Tartaglia,” ca. 1500–1557, Fontana
1560), Oronce Fine (1494–1555, Fine 1532), Girolamo Cardano (1501–1576, Car-
dano 1539), and Giovanni Antonio Magini (1555–1617, Magini 1592). After writing
that Magini had done an especially excellent job of presenting methods for measuring
lines (i.e., lengths, heights, depths, etc.),6 Clavius continues:

But truly, Magini concerned himself only with this one part of this subject, and
the others, although they undertook to present all of those parts, have left out
much in writing their books. I decided, if possible, to complete the subject, so
that whatever has been profitably handed down by others or found by myself in
practical geometry is enclosed within the circle of one work.7 (Clavius 1606,
Preface); emphasis added.

Thus, in this work, Clavius aims for completeness within the subject of practical
geometry as understood by his contemporaries. The following rough outline of top-
ics (organized by the division into books) will demonstrate how wide-ranging and
encyclopedic this book truly is:8

I. Construction of a rudimentary proportional compass and a quadrant for measur-
ing lengths and angles; summary of elementary plane trigonometry.

II. Measuring lengths, heights, and depths with the astronomical quadrant.9

III. This begins with a discussion of measuring lengths, heights, and depths parallel
to the contents of Book II but using the geometric square, then continues to
other methods for the same sorts of problems using additional instruments such
as Jacob’s staffs, planar mirrors, etc. The book concludes with an extended
discussion of libration for aqueducts based on measurements of altitudes.

IV. Measuring areas of plane regions, including an augmented version of the Mea-
surement of the Circle of Archimedes (ca. 287–ca. 212 BCE), and quoting from
other works of Archimedes including the Quadrature of the Parabola.

6 The influence of Magini’s work is especially evident in Books II and III of Clavius (1606).
7 Verum quoniam & hic de vnica tantum parte fuit sollicitus: & alii, quamuis aggressi omnia, multa tamen
inter scribendum praeterierunt: decreui, si qua possem, perficere: vt, quicquid vtiliter in Geometria practica
ab aliis traditum, à me etiam inuentum est, vnius operis gyro clauderetur.
8 At a higher degree of granularity, the complete list of chapter headings and propositions that serves as
the table of contents, see pages iv–xx of Clavius (1606), is even more evidence here.
9 Discussions of problems similar to those considered here can be seen in almost all practical geometry
books, although inspired by Magini’s treatment, Clavius’s collection of problems is much more extensive
than many. As Raynaud points out, these are part of a long and surprisingly stable tradition with connections
to propositions 19–22 from Euclid’s Optics, (Raynaud 2015, p. 15).
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V. Measuring volumes of solid bodies, with extensive presentations of results from
the stereometric books of Euclid, plus Archimedes’ works On the Sphere and
Cylinder and On Conoids and Spheroids.

VI. Geodesy, that is, the division of rectilinear surfaces of whatever sort, either
by lines drawn through some point, or by parallel lines; see Knobloch (2015).
How plane or solid figures are increased or decreased in a given ratio; several
methods for finding two mean proportionals between two given lines selected
from the commentary on Archimedes’ On the Sphere and Cylinder by Eutocius
of Ascalon (ca. 480–ca. 540 CE) and theMathematical Collection of Pappus of
Alexandria (ca. 290–ca. 350 CE); finally, an algorithm for extracting nth roots
by hand calculations.

VII. Isoperimetric figures and questions (drawing on material in Pappus and the
commentary on Ptolemy’s Almagest by Theon of Alexandria (ca. 335–ca. 405
CE), inspired by earlier work of Zenodorus (ca. 200–ca. 140 BCE)), together
with an appendix on the problem of squaring the circle via the quadratrix curve
of Hippias, drawing from Pappus.

VIII. An extensive catalog of geometrical theorems and constructions, plus some
number-theoretic results. Clavius claims these can be used to buildmathematical
power in problem-solving.10 Several of them are drawn from Pappus, includ-
ing one discussing the trisection of general angles using the conchoid curve of
Nicomedes. A table of squares and cubes of all natural numbers less than 1000 is
included at the end, together with a discussion of how the table can be extended
using facts about the first and second differences of the sequences of squares
and cubes, with applications to extraction of square and cube roots.

As is true in all of his other works, Clavius also has clarity of exposition as a second
main goal. A striking example of this commitment to completeness and clarity of
exposition is Clavius’s treatment ofArchimedes’Measurement of theCircle in Chapter
6 of Book IV, which will be examined in detail in Sect. 3.

The second feature that has seemed surprising, to this author at least, is the resolutely
dual theoretical and practical focus of much of this text on practical geometry.11 The
practical side is signaled immediately in the Preface.After saying that his experience as
a teacher has taught him that most students work and learn best when they understand
thatwhat they are learningwill prove to be useful,12 Clavius addresses how the contents
of this book may find uses in the real world:

For of course as long as the methods by which we must make measurements to
understand the lengths of fields, the heights of mountains, the depths of valleys,
and the distances between all locations are presented, it is clear to anyone (in my

10 Neque vero hoc praeter institutum nostrum existimare quis debet: cum per eiusmodi demonstrationes
Geometricas studioso Lectori via multiplex aperiatur ad inuestigandas similes speculationes in rebus Geo-
metricis: quippe cum in iis ad exercendum ingenium amplissimum campum habeat. (Clavius 1606, p. 330)
11 As Knobloch writes, Clavius’s “... approche démontre les limites d’une division trop tranchée entre
géométrie pratique et géométrie savante," (Knobloch 2015, p. 60). That is, Clavius’s “... approach shows
the limitations of a too-definite division between practical geometry and theoretical geometry.” This applies
to almost every section of the Geometria Practica, not just the discussion of geodesy.
12 Et verò cum perpetua multorum annorum experientia compererim, admodum paucos esse, qui non in
Mathematicis exerceantur eo consilio, vt quae didicerint, ad aliquem vsum trahant. (Clavius 1606, Preface)
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The eclectic content and sources of Clavius’s Geometria Practica 395

opinion) how much that is of use in the construction of buildings, in agriculture,
in the design of weapons, in the contemplation of the stars, and in all other
arts and disciplines, can flow from the study of these things.13 (Clavius 1606,
Preface)

Clavius consistently uses numerical examples in many sections and he presents a
number of purely calculational methods (e.g., the methods for extraction of roots in
Book VI and the material on differences of squares and cubes at the end of Book
VIII). He discusses the use of different mechanical tools for measurements and is
even willing to countenance “mechanical,” hence necessarily approximate, methods
of measurement in geometric diagrams (Clavius 1606, p. 169).

In addition, Clavius discusses potential practical applications even for many of the
more theoretical topics treated in Books IV through VIII. For example, in the course
of discussing areas of planar figures, Clavius includes a section on methods used by
surveyors in Book IV. At the end of Book V, after presenting results on volumes of
solids from Euclid and Archimedes, he includes a section on measuring volumes of
barrels or casks (Clavius 1606, p. 233).

However, once he gets past the very basic material in Books I, II, and III
(where the theory draws almost exclusively on Books I–VI of Euclid and elementary
trigonometry–subjects for which he had given comprehensive accounts in his other
writings), Clavius’s focus seems to shift to developing the required new mathematical
theory along with a few practical applications. In the process, he usually provides full
proofs for the most important results and references for the statements he does not
prove. We will see striking examples of this in Sects. 3 and 4.

Another hallmark of Clavius’s approach and theoretical orientation even within
the practical discussions is his scrupulous attention to providing reasons for almost
everything he writes. This applies even within the more overtly “practical” Books
I, II, and III. Throughout the text, an elaborate system of marginal notes identifies
justifications for assertions and for the individual steps in proofs or computations.
Over the course of the whole book, the justifications for the steps in those proofs span
almost all of the 13 books of the canonical version of Euclid’s Elements, plus the 14th
through 16th books added by later authors and included in Clavius’s edition of the
Elements, as well as some of Clavius’s other works, several works of Archimedes, and
Apollonius’s Conics (once).

A third feature that is clearly visible in the table of contents, but that still might
be surprising, is the extent to which Clavius draws on the geometrical works of
Archimedes and Pappus, plus works of other ancient and medieval mathematicians
and his contemporaries. Some of the work of the ancient Greeks was just coming
back into the European mathematical mainstream at precisely this time due to the
work of humanist scholars such as Federico Commandino (1509–1575) and others.
Commandino’s Latin translation of the surviving portions of Pappus’s Mathematical
Collection, for instance, only appeared in print in 1588.

13 Etenim dum certa ratio traditur, qua camporum longitudines, altitudines montium, vallium depressiones,
locorum omnium inaequalitates inter se, & interualla deprehendere metiendo debeamus: cuilibet liquet, vt
arbitror, quantum commodi, vtilitatisque substructioni aedificiorum, cultui agrorum, armorum tractationi,
contemplationi siderum, aliisque artibus, & disciplinis ex horum cogitatione manare possit.
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1.2 This essay

Our plan in this essay is to flesh out this general description of the eclectic content
and sources of Clavius’s Geometria Practica by focusing on four particular sections
dealing with topics of particular interest. We have restricted ourselves to parts of the
text not covered in detail by other authors. So for instance, we have not included a
discussion of the Appendix to Book VII giving Clavius’s approach to the problem of
squaring the circle via the quadratrix curve14 because that is analyzed deeply in Bos
(2001, Chapter 9). Similarly, we have not considered the discussion of geodesy at the
start of BookVI, since Clavius’s approach has been discussed inKnobloch (2015). The
sections we do discuss are ones where (in our judgment) Clavius has either used his
sources in an interesting way, or he has been uncharacteristically reticent about those
sources.15 We will look first at the beginning of his discussion of computing areas
of triangles in Book IV, where Clavius presents what we now call Heron’s formula
before what we might think of as the usual method based on finding an altitude of the
triangle.16 He does not mention anything about his sources there, but by comparing
what Clavius writes with the treatments in earlier works, some insight may be gained.
Second, wewill look at Clavius’s treatment of Archimedes’Measurement of the Circle
in Book IV. Here, wewill see that Clavius has presented essentially a complete rework-
ing of the received Archimedean text incorporating additional explanatory comments
and details not found in other versions. Third, we will consider Clavius’s discussion
of some of the Greek constructions for finding two mean proportionals between two
given lines. This involves a very deliberate selection of only a few of the methods dis-
cussed in the commentary on Archimedes’ On the Sphere and Cylinder by Eutocius
of Ascalon and by Pappus in the Mathematical Collection. Finally, we consider the
discussion of an algorithm for extraction of nth roots discussed at the end of Book VI.
Clavius does not explicitly identify his source here. But by considering what books
would have been available to him, and comparing his treatment of extraction of roots
with what appears in two of those books, we propose a very likely candidate. The
similarity is so pronounced and Clavius is so definite that his account is “taken almost
entirely” from an (unidentified) “remarkable book of German arithmetic”17 that this

14 A more extensive version of this also appears in Clavius’s edition of Euclid.
15 Clavius is often very careful to identify sources, and it stands out when he does not do so. Over the
course of this book, the list of authors cited is quite extensive, including (but possibly not limited to)
Apollonius, Archimedes, Archytas, Giovanni Battista Benedetti, Campanus de Novare, Girolamo Cardano,
Federico Commandino, John Dee, Dinostratus, Diocles, Albrecht Dürer, Eratosthenes, Euclid, Eutocius of
Ascalon, Oronce Fine, Fraçois de Foix, Comte de Candale, Niccolo Fontana (“Tartaglia”), Gemma Frisius,
Marino Ghetaldi, Christoph Grienberger, Hippocrates, Hypsicles, Ioannes Pediasimos, Leonardo Pisano
(“Fibonacci”), Ludolph vanCeulen,Mohammad of Baghdad, Odo vanMaelcote, Giovanni AntonioMagini,
Francesco Maurolico, Menaechmus, Nicholas of Cusa, Nicomedes, Latino Orsini, Luca Pacioli, Pappus,
Georg Peuerbach, Proclus, Ptolemy, Joseph Justus Scaliger, Sporus, Simon Stevin, Theon of Alexandra,
Juan Bautista Villalpando, Johannes Werner. A fuller listing of all the authors cited by Clavius across his
whole written output is given in Knobloch (1990).
16 But note that this would definitely be useful for measuring the area of a triangular plot of land or a
triangular building where access to the interior and measurement of an altitude might not be possible.
17 Hoc autem efficiam, si praescribam artem quandam generalem, qua cuiuscunque generis radicem extra-
here possimus, ex libro eximij cuiusdam Arithmetici Germani depromptam fermè totam—(Clavius 1606,
p. 276)
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The eclectic content and sources of Clavius’s Geometria Practica 397

has no doubt been noticed before. However, we have not been able to locate an explicit
reference proposing this source.

2 Clavius’s treatment of “Heron’s formula” for triangles in Book IV

In Chapter 2 of Book IV, Clavius discusses methods for finding the area of a plane
triangle. He writes there are two ways of doing this and he will first present the most
accurate or precise one. He states this as a rule or procedure for doing the computation
rather than as a proposition:

Let all the sides be added together in one sum; let each of the sides be subtracted
from half of this sum, so that three differences between the semiperimeter and
the sides are obtained; finally, let these three differences and the semiperimeter
be multiplied together. The square root of the number produced will be the area
of the triangle which is sought.18 (Clavius 1606, p. 158)

In modern algebraic terms, the procedure can be collapsed into the single formula

A = √
s(s − a)(s − b)(s − c),

where a, b, c are the side lengths and s = (a + b + c)/2 is the semiperimeter of the
triangle. This usually goes by the name Heron’s Formula today, and indeed this is
stated and proved in Proposition I.8 of the Metrica of Heron of Alexandria (ca. 10–
ca. 70 CE(?)).19 Clavius provides three numerical examples of triangles with integer
side lengths similar to examples found in other works. One example leads to a product
s(s − a)(s − b)(s − c) that is not a square so the area is only found approximately
according to techniques that will be discussed later. He then gives a complete, detailed
proof that this rule or process does in fact produce the area of the triangle.

Somewhat unusually for him,Clavius does not provide any attribution for this result,
so several natural questions arise. What source or sources would have been available
to him? A number of the possibilities have been discussed extensively in Clagett
(1964, 1967–1984), Volume 1, Chapter 4, Appendix IV). Recall that in Clavius’s time
Heron’s Metrica was not known; it was considered lost until 1896, when Richard
Schöne recognized it as part of a manuscript kept in a library in Istanbul.20

To help make some comparisons between various proofs, we begin with a version
of the diagram in Heron’s proof for a specific triangle.21

18 Colligantur omnia latera in unam summam: Ex huius summa semisse subtrahantur singula latera, vt
habeantur tres differentiae inter illam semissem, & latera singula: Postremo tres hae differentiae, & dicta
semissis inter se mutuo multiplicentur. Producti enim numeri radix quadrata erit area trianguli quaesita.
19 The Islamic mathematician al-Bı̄rūnı̄ (973–1048) thought that the result was originally proved by
Archimedes, and C. M. Taisbak has recently provided a conjectural reconstruction of the way Archimedes
might have stated the result. See Taisbak (2014).
20 This was first published in Schöne (1903). A modern study of this sole known surviving manuscript of
theMetrica can be found in Acerbi and Vitrac (2014).
21 See Fig. 1. To generate these figures, we used the triangle with vertices at B = (0, 0), C = (5, 0) and
A = (1, 2) in the Cartesian plane. This happens to have a right angle at A so some of the line segments
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398 J. B. Little

Fig. 1 Heron’s diagram in the
Metrica

Heron’s proof in outline consists of the following steps. First, let the circle Z�E
with center at H be inscribed in the triangle AB�. Proposition IV.4 of Euclid gives a
construction for this where H is found as the intersection of two of the angle bisectors
of the triangle, but Heron apparently takes this as known and does not mention it
explicitly. Then, H� = HZ = HE since these are all radii of the same circle.
Since HE , H� and HZ are perpendicular to the sides of the triangle, the area of
triangle AB� will equal one half times EH times the perimeter of the triangle. Heron
then does further construction steps, first extending B� to ��, letting �B = A�.
This makes �� equal to the semiperimeter of the triangle. Second, he takes H�

perpendicular to H� and extends to � which is the intersection with the line through
B perpendicular to B�. It follows that HB�� is a cyclic quadrilateral and facts about
the diagonals in such quadrilaterals imply triangle B�� is similar to triangle �H A.
The proportionality of corresponding sides implies the square of the area of the triangle
AB� is equal to the square on the perpendicular HE = H� = HZ above times the
square on the semiperimeter (using the fact that B� and �B = A� together equal
the semiperimeter).

One source for Clavius certainly could have been the Verba filiorum Moysi filii
Sekir, i.e., Maumeti, Hameti, Hasen, (Clagett 1964, 1967–1984, Volume 1, p. 224).
This work, also known as the Liber trium fratrum de geometria, is a Latin translation
of an Arabic work on mensuration by the ninth century Banū Mūsā brothers made by
Gerard of Cremona (1114–1187). The original authors were key figures in the early
translation movement by which Greek mathematics was introduced into the Islamic

in the figures are in rather special positions that facilitated the plotting. However, this does not affect the
arguments. None of the authors we consider would have done things this way, of course.
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Fig. 2 Verba filiorum diagram

world and the Greek original of the Metrica may have been available in Baghdad in
their time. But there are significant differences between the Metrica version and the
Verba filiorum version. Figure 2 shows what the diagram in the Verba filiorum looks
like for our triangle.

After identifying the points D, Z , U as the points of tangency of the inscribed
circle, the side AB is extended to AH by making BH = GU , so AH is equal to
the semiperimeter. Similarly, AG is extended to AK making GK = BU = BZ and
angle AKT is a right angle. The point T is chosen so that it lies on the extended
angle bisector at A. It follows that triangle EBU is similar to triangle BT H and the
proportionality of corresponding sides implies the square of the area of the triangle
AB� is equal to the square on the perpendicular EU = EZ times to the square on
the semiperimeter AH .

Several of the previous practical geometry texts that Claviusmentions in his preface
(see above) also include proofs of Heron’s process/formula for finding the area of a
triangle. One of the earliest that does discuss this is the De Practica Geometrie of
Leonardo Pisano (“Fibonacci”), (Pisano 1862, 2008). The later Summa de arithmetica
geometria proportioni et proportionalità, (Pacioli 1494), does as well and Pacioli’s
treatment follows what Fibonacci writes very closely (but in the Tuscan dialect of
Italian rather than in Latin).

Marshall Clagett has written that Fibonacci “borrows heavily and often in verbatim
fashion” in the revised version of the Practica Geometrie from the Verba filiorum and
he mentions that he believes Fibonacci’s debt to the Banū Mūsā applies specifically
to the treatment of Heron’s formula in Fibonacci’s work, Clagett (1964, 1967–1984,
Volume1, p. 224).However, a close analysis of the argument and thediagramsprovided
shows that while the proof of Heron’s formula in Proposition VII of the Verba filiorum
has many features in common with Fibonacci’s proof, it also has other features in
commonwith the proof fromHeron’sMetrica that do not occur in Fibonacci. Probably,
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400 J. B. Little

Fig. 3 Fibonacci’s diagram

the major example here is that the whole first phases of the arguments in both the
Metrica proof and in the Verba filiorum proof consider the inscribed circle in the
triangle (as in Proposition IV.4 of Euclid). Fibonacci does not mention the inscribed
circle; in fact, he ends up repeating a large portion of the Euclidean proof to show
that if perpendiculars (or as Fibonacci writes, “cathetes”) are dropped to the three
sides from the intersection point of two angle bisectors in the triangle, then the three
perpendicular segments are equal.22 There are also some less drastic differences in
the way that similar triangles within the figure are used to deduce that the square of
the area is equal to the square on the perpendicular above times the square on the
semiperimeter (and the square on the semiperimeter equals the semiperimeter times
the product of the three excesses of the semiperimeter over the sides). So it is not
entirely accurate to characterize Fibonacci’s proof (at least as a whole) as “verbatim”
borrowing even if the overall strategies of the proofs are similar and the final sections
of the proofs do more or less converge.

On the other hand, Clavius’s version of the proof of Heron’s formula is different
again, but significantly closer to the proof in Fibonacci than it is to the proof in the
Verba filiorum. To discuss this in more detail, it will be necessary to consider the
diagrams from these two proofs. (See Figs. 3, 4.) These two figures show Clavius’s
and Fibonacci’s constructions applied to the same particular triangle as in the previous
figures.

22 The difference in the diagrams is also noted by the translator B. Hughes in Pisano (2008). See the
footnote on p. 83. But there is an unfortunate mistranslation at the start of the proof of Heron’s formula in
Pisano (2008). At the start of the first full paragraph on p. 81, Hughes has, “To prove this: in triangle abg
bisect the two equal angles abg and agb ... .” This would make the proof apply only to isosceles triangles.
But that is not correct. The Latin text of Pisano (1862, p. 40) at this point is: “Ad cuius rei demonstrationem
adiaceat trigonum abg: et dividantur in duo equa anguli, qui sub .abg. et .agb. a rectis .bt. et .tg. ... .” That
is, “To prove this: in the triangle abg, let the angles abg and agb each be divided into two equal angles by
the lines bt and tg ... . ” Fibonacci is definitely not restricting his discussion to isosceles triangles.
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Fig. 4 Clavius’s diagram

Both Clavius and Fibonacci start by considering angle bisectors (these are two of
the dashed lines) for the two vertices on the horizontal side in the diagram and their
intersection point (t , and D, respectively). They both drop perpendiculars (th, t z, te,
and DG, DE , DF , resp.) and use facts about congruent triangles in the figure to
show that the three perpendiculars are equal that at (resp. AD) also bisects that angle
and, moreover, the two segments closest to each vertex are equal—that is ae = az,
be = bh, gz = gh (resp. AE = EF , CF = CG, and BE = BG). Neither mentions
the inscribed circle, which would be tangent to the sides of the triangle in the points
e, z, h (resp. E, F,G). This implies that any one of the sides, together with one of the
equal segments not meeting that side are together equal to the semiperimeter of the
triangle—for example, side ab (resp. AC) together with gh or gz (resp. BG or BE).
In addition, the three excesses of the semiperimeter over the sides of the triangle that
feature in Heron’s formula coincide with the segments: ae or az, be or bh, gh or gz
(resp. AE or AF , BG or BE , CG or CF).

Then, in further parallel constructions, the sides ag, ab (resp. AB and AC) are
extended to am, bl (resp. BH , AI ) bymaking gm = hb and bl = gh (resp. BH = GC
andC I = BG). As noted before, this makes both am and al (resp. AH and AI ) equal
to the semiperimeter of the triangle, hence equal. At this point, Fibonacci produces
the third angle bisector at until it meets the segment lk making a right angle with ab
at k. Clavius, on the other hand (literally), produces AD to K where it meets the line
through H perpendicular to AH . But either way, the next deduction is that by the SAS
criterion, the triangles amk and alk (resp. AHK and AI K ) are congruent, so angle
amk (resp. AI K ) is also a right angle, and moreover mk = lk (resp. HK = I K ).

In the final constructions, Fibonacci cuts off the segment bn from gb so that gn =
gm = bh, and hence bn = bl = gh. Clavius does the parallel operations making
BL = BH = CG, and hence CL = C I = BG. But now Clavius does one further
step that Fibonacci does not: He extends AH to AM , making HM = CL = C I . With
k, resp. K joined to all of the newly constructed points, both proofs proceed to show
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that the lines kn (resp. K L) meet the horizontal side in a right angle. The additional
triangle HMK introduced in Clavius’s argument is congruent to triangles C I K and
CLK (resp. bnk, blk in Fibonacci’s figure), and hence it is somewhat redundant. But
what we have here would seem to be a typical kind of procedure for Clavius. At the
cost of a fewmore steps, he furnishes a reader of his proof with another triangle HKM
that gives a perhaps easier way to understand why the angle at n or L must be a right
angle. This is not really clear visually in Clavius’s original diagram, where it seems
that no attempt has been made to show all the right angles accurately.

As in all of the proofs of Heron’s formula we have discussed, similar triangles can
be identified in the figure such that the proportionality of corresponding sides implies
that the square of the perpendicular times the semiperimeter is equal to the product
of the three excesses of the semiperimeter over the sides. Fibonacci uses the triangles
ebt and kbl; Clavius uses the triangles AED and AHK . The details in this step are
somewhat different, but the idea is analogous. The final step in both of these proofs
is to note that by the usual “one half base times height” way of computing areas of
triangles, the sum of the areas of the three triangles atb, btg, gta (resp. ADC , CDB,
BDA), which equals the area of the whole triangle, is also equal to the product of any
one of the three equal perpendiculars and the semiperimeter.

It seems very probable that Clavius was looking at Fibonacci’s proof (or perhaps
other proofs derived from that one such as the proof in Pacioli’s text), but his version
is not a verbatim copy, any more than Fibonacci’s was a verbatim copy of the proof
in the Verba filiorum. As was often the case, Clavius reworked and amplified what he
found in other sources so that his version has additional or alternate features intended
to heighten clarity or to increase convenience for his readers. Why Clavius chose not
to say this explicitly at this point in his book is somewhat mysterious, however. It is
possible, of course, that since neither Fibonacci nor Pacioli attribute this statement to
a particular mathematician, Clavius simply did not have a way to refer to a primary
source. However, in analogous situations, Clavius did sometimes say explicitly how
his account of a proof would differ from what was found in his source or sources even
when they were probably also referring to unmentioned previous works.23

3 Clavius’s treatment of Archimedes’Measurement of the Circle in
Book IV

AfterGreekversions of thiswork ofArchimedes (including summaries fromBookVof
the Mathematical Collection of Pappus and the commentary on Ptolemy’s Almagest
by Theon) were intensively studied in the Islamic world and the resulting Arabic
translations were retranslated into Latin, the Measurement of the Circle was surely
the best-known and most-copied Archimedean text throughout the medieval period
in western Europe. A major part of the reason was certainly the utility of its results

23 For example, he was very explicit about this in the introduction to Book VI on geodesy (divisions of
figures) where the material in question might ultimately derive from a lost work of Euclid, as discussed, for
instance, in Knobloch (2015).
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for practical questions, namely the following three propositions making up the whole
contents of the received text.24

Proposition 1 Every circle is equal [in area] to a right triangle, one of whose sides
containing the right angle is equal to the radius of the circle while the other side
containing the right angle is equal to the circumference.

Proposition 2 The ratio of the area of any circle to the square of its diameter is the
ratio 11 to 14.

Proposition 3 The circumference of a circle exceeds three times its diameter by a
quantity less than 1

7 of the diameter and greater than 10
71 of the diameter.25

Clavius explains what he aims to do in the following introductory paragraph in
Chapter 6 of Book IV and makes the connection with Archimedes explicit from the
start:

It will not be a digression, therefore, if I include his [i.e., Archimedes’] truly
most acute and precise book, partly because it is very brief (indeed, it consists
of only three propositions), partly so that the student, in order to understand
something so useful and so widely applied in the works of all authors, should not
be forced to go to Archimedes himself, and finally mostly because the writings
of Archimedes, as a result of their brevity, are somewhat obscure, and we hope
to bring some light to them.26 (Clavius 1606, p. 182)

Note in particular that Clavius writes that he is including his version of the whole book
of Archimedes and not just discussing the results contained in it. Clavius proceeds
immediately to a detailed account of the rather subtle exhaustion proof of Proposition
1 found in many of the versions of theMeasurement of the Circlementioned above.27

For the convenience of the reader, we will outline this argument. The plan is to show
that assuming the area of the circle is either greater than or less than the area of a right

24 The brevity of thework and its somewhat sketchy form have ledDijksterhuis to conjecture that “it is quite
possible that the fragment we possess formed part of a larger work” (Dijksterhuis 1956, p. 222), and Knorr
to judge that the versions we have represent “at best an extract from the original composition” (Knorr 1989,
p. 375). Clagett (1964, 1967–1984, Volume 1) reproduces two translations of this work from Arabic into
Latin, the first made (“perhaps”) by Plato of Tivoli (fl. twelfth century), and the second made by Gerard of
Cremona. Clagett also reproduces six additional “emended” versions as well as the treatment of the results
of this work in the Verba Filiorum, following the Banū Mūsā. Part III of Knorr (1989) contains a more
complete study of the transmission including additional versions. By Clavius’s time, many versions of this
work of Archimedes were available, including the Greek editio princeps published by Thomas Gechauff in
1544 and the Latin translation in Commandino’s edition of works of Archimedes (1558).
25 That is, in modern terms, 3 10

71 < π < 3 1
7 . Archimedes may well have used methods similar to the ones

to be discussed to produce tighter estimates for the ratio of the circumference to the diameter. But if so, no
text doing this has survived.
26 Non abs re ergo erit, si eius libellum de circuli dimensione acutissimum sane, & subtilissimum hic
interferam, tum quia breuissimus est, quippe qui tribus duntaxat propositionibus constet: tum ne studiosus,
vt rem tam vtilem, atque apud omnes artifices peruulgatam intelligat, Archimedem ipsum adire cogatur:
tum vero maximè, quod cum Archimedis scripta ob affectam breuitatem, sint paulo obscuriora, illis nos
lucem aliquam allaturos speramus.
27 This proof has much in common with the proof of Proposition XII.2 of Euclid. It is also very closely
related to the isoperimetric problems that Clavius will discuss later in Book VII.
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Fig. 5 Essential portions of
Clavius’s diagram for the proof
of the first part of Proposition 1

triangle as in the statement leads to a contradiction. A key role is played by a statement
introduced by Euclid in the proof of Proposition X.1 of the Elements. Clavius uses
this in the form: If an area at least half the area of a figure is taken away from the
figure, and from the residual area again an area at least half of that remaining area
is taken away, and so on, there will eventually remain an area less than any positive
magnitude z.

First suppose the circle is larger than the stated triangle by a certain positive magni-
tude (Clavius calls this z). Let a sequence of non-overlapping areas be removed from
the interior of the circle.

Clavius’s account incorporates quite a few explanatory comments and justifications
for the individual steps in the reasoning not found in many other versions presented
in Clagett (1964, 1967–1984). Here is the relevant paragraph for the first part of the
proof, referring to Fig. 5:

This sort of continual subtraction of areas will be done, if in the first place the
inscribed square ABCD is removed from the circle. For this is half of the square
I K LM , circumscribed about the circle, as we have shown in the scholium to
Proposition 9 in Book IV of Euclid. Since the circle is a portion of this square
I K LM , the inscribed square will be more than one half of the circle. Then, let
four isosceles triangles AOB, BPC , CQD, DN A, with sides drawn from the
midpoints of the arcs, be removed from the four segments. These together are
greater than the halves of the segments together, since any one of them is greater
than half of the segment in which it lies. For having completed the rectangle AR,
[marginal note: Book I, Proposition 41.] its half will be the triangle AND, and
therefore the triangle will be greater than half of the segment AND. The same
reasoning applies to the other segments. By the same reasoning, if from the eight

123



The eclectic content and sources of Clavius’s Geometria Practica 405

remaining segments eight other isosceles triangles are removed, constructed in
them, and so forth.28 (Clavius 1606, p. 182)

It is not hard to see that this pattern continues indefinitely.29 So eventually the remain-
ing region between a 2m-gon and the circle will have area less than the positive
magnitude z. However, this leads to a contradiction if the construction is applied suffi-
ciently many times. The area of the circle is supposed to equal (area of triangle) + z,
but the area of the circle also equals: (area of inscribed polygon) + (remaining area)
which is strictly less than (area of triangle) + z, since the perimeter of the polygon
is smaller than the circumference of the circle, and the apothem—the perpendicular
from the center to the side of the inscribed polygon—is less than the radius. Hence,
the area of the circle cannot be greater than the area of the triangle.

Next it is assumed that the circle is less than the stated triangle by a certainmagnitude
(again denoted z). Starting from the square circumscribed about the circle, areas are
removed: first the circle, then four exterior triangles (such as K XV in Fig. 6) with
base tangent to the circle, then again eight exterior triangles with base tangent to the
circle at the midpoints of the arcs BO , OV , and so forth. The remaining regions now
are collections of what Clavius calls “mixed triangles,” with one side an arc of the
circle.

Again, more than half the remaining area is removed at each step, and the remain-
ing area is eventually less than z. But this also leads to a contradiction. On the
one hand (area of circumscribed polygon) > (area of triangle) because the perime-
ter of the polygon is greater than the circumference and the apothems are now all
equal to the radius of the circle. But on the other hand, by the process described
above, (area of circumscribed polygon) is strictly less than (area of circle) + z =
(area of triangle). Since the triangle is neither greater nor less than the circle, it can
only equal the circle.

An amusing sidelight in the form of a long Scholium follows, in which Clavius
refutes the claim of Joseph Justus Scaliger (1540–1609)30 that Archimedes must have

28 Haec autem detractio continua fiet, si primo loco auferatur ex circulo quadratum inscriptum ABCD. Hoc
enim cum dimidium quadrati I K LM , circulo circumscripti, vt in schol. propos. 9. lib. 4. Eucl. ostendimus:
circulus autem ipsius quadrati I K LM pars sit, erit quadratum inscriptum ABCD maius quam dimidium
circuli. Deinde si auferantur à residuis quatuor segmentis quatuor triangula Isoscelia AOB, BPC , CQD,
DN A, ductis rectis ad media puncta arcuum. Haec enim simul maiora sunt, quam dimidium quatuor
segmentorum simul, cum vnum quodque maius sit, quam dimidium segmenti in quo existit. Completo
enim rectangulo AR, [marginal note: 41. primi.] erit eius dimidium triangulum AND: ac proinde idem
triangulum maius erit quam dimidium segmenti AND. Eademque ratio est de aliis. Pari ratione, si à
residuis octo segmentis auferantur octo alia triangula Isoscelia in illis constituta, &c. atque ita deinceps.
29 Clavius stops with the octagon so he has a diagram that has components virtually identical with the ones
presented by Fibonacci and Pacioli. But many of Clavius’s point labels and additional lines constructed in
a very “busy” diagram have been omitted at this stage for clarity.
30 Scaliger, the eminent French Protestant classical philologist and historian, also fancied himself a mathe-
matician. His mathematicalmagnum opus, grandly titled Cyclometrica Elementa, was published in 1594 in
a lavish edition with statements of theorems in both Latin and ancient Greek. But more competent mathe-
maticians quickly recognized that it was largely erroneous. In 1609, Clavius published an 84-page pamphlet
Refutatio Cyclometriae Iosephi Scaligeri (Refutation of Joseph Scaliger’s claims about measurement of cir-
cles), giving a blow-by-blow analysis of all of the (numerous) errors in Scaliger’s work. This is contained
as an appendix in Volume V of Clavius (1611–1612).
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Fig. 6 Essential portions of
Clavius’s diagram for the proof
of the second part of Proposition
1

been mistaken in this proof. Indeed, Clavius addresses Scaliger directly and takes him
to task rather savagely over his misunderstandings. A small sample:

And I am really astonished that you,Mathematicus that you are, deny that some
quantity is equal to another when it is neither greater nor less. For if it is not
equal to the other, then it will be unequal to the other, therefore either greater or
less, against that hypothesis. Or don’t you see that not only Archimedes but also
Euclid used this way of arguing most frequently in Book XII of the Elements?31

(Clavius 1606, p. 185)

Scaliger had had another “run-in” with Clavius over the Gregorian calendar reform in
which Clavius had taken a leading role, as well as ongoing controversies with other
Jesuits on various subjects, so there was ample bad blood between them. Some of that
is manifest in the scathing polemical tone of Clavius’s comments.

Following this, Clavius notes that the usual Proposition 3 is used in the proof of
Proposition 2, and hence he has decided to reverse the order of Propositions 2 and 3 as
found in other versions to maintain the chain of logical implications.32 In his account
of this famous proof, Clavius essentially follows the plan used in most other versions.
Two aspects of his version of the proof of his Proposition 2 (the usual Proposition
3), as compared with other versions, are notable. First, although he presents the same
calculations, Clavius provides more details, more justification for individual steps,
and generally a fuller treatment leading to the estimates than Archimedes (or whoever

31 Et sanemiror, te,Mathematicus, cum sis, negare quantitatem aliquam illi esse aequalem, qua nequemaior
est, neque minor. Si enim aequalis non est, erit inaequalis. Igitur vel maior vel minor, contra hypothesim
cum dicatur neque maior esse, neque minor. An non vides, non solum Archimedem, sed etiam Euclidem
lib. 12. hunc argumentandi modum frequentissimè vsurpare?
32 Clavius writes: Haec est Archimedis propositio 3. quam nos secundam facimus, vt doctrinae ordo
servetur, quando quidem sequens propositio 3. quam ipse 2. facit, hanc nostram propositionem 2. in demon-
strationem adhibet. (Clavius 1606, p. 185)

123



The eclectic content and sources of Clavius’s Geometria Practica 407

Fig. 7 Proof of Clavius’s
Proposition 2, first bisection step

wrote the versions of the Archimedean text that we have) did. Since the bisection steps
in each half of the proof follow exactly the same plan, some versions work out the first
step in detail, and then just present the numerical results for the subsequent steps.33

Here is the set-up and the first bisection step in Clavius’s version. Taking eF as one
side of the regular hexagon circumscribed about the circle ABc with center E (see
Fig. 7 below) and

... ce to have length 153 ... Ee will equal 306. If the square of this ce, 23409, is
subtracted from 93636, the square of Ee, [marginal note: Book I, Proposition 47]
the difference will make the square of Ec, 70227, whose square root is slightly
larger than 265. [marginal note: Book V, Proposition 8] From this, the ratio of
Ec to ce will be greater than 265 to 153.
Having bisected the angle eEc by the line Ed, [marginal note: Book VI, Propo-
sition 3] eE is to Ec as ed is to dc. Componendo, eE and Ec together are to Ec
as ec is to dc. Permutando, eE and Ec together are to ec as Ec is to cd. Since
eE and Ec together are more than 571 (since indeed eE is 306 and Ec slightly
larger than 265), and ec is taken to be 153, [marginal note: Book V, Proposition
8] the ratio of eE and Ec together to ec will be greater than 571 to 153, hence
the ratio of Ec to cd will be greater than 571 to 153, and it follows that if cd
is set equal to 153,34 [marginal note: Book V, Proposition 10] then Ec will be
slightly larger than 571. Therefore, the square of Ec will be slightly larger than
326,041, and since the square of cd is 23,049, the square of Ed, [marginal note:
Book I, Proposition 47] which is equal to the sum of the squares of Ec, cd, will

33 The author used this expedient, in fact, in his translation of Clavius’s proof. In mathematical discussions,
extreme verbosity is sometimes the unfortunate corollary of complete explicitness.
34 Note that this essentially rescales the whole figure from the dimensions given before. Since it is the ratio
of the lengths that is important, this is harmless.
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be slightly greater than 349,450. The square root of this is greater than 591 1
8 ,

for indeed the square of this number is only 349,438 49
64 . [marginal note: Book V,

Proposition 8] Therefore, the ratio Ed to dc will be greater than 591 1
8 to 153.35

(Clavius 1606, pp. 185–186)

The second aspect is perhaps less mathematically significant, but still interesting.
Namely, by showing the bisections from the first phase of the proof to the left of a
vertical diameter in the circle, and the bisections from the second phase to the right,
Clavius manages to condense all the steps of the constructions for both phases of the
proof into a single diagram in a way that is somewhat clearer than the figure from
Pisano (1862, p. 90) or (2008, p. 155). Many accounts of this proof provide separate
diagrams for each phase.36

Another quite significant deviation from sources such as Fibonacci is that in his
Proposition 3 (the usual Proposition 2), Clavius explicitly adds the qualifier approx-
imately (proximè in the Latin) to the usual statement that the ratio of a circle to the
square on the diameter is the ratio 11 to 14.37

Finally, it is interesting to note that after his account of Archimedes’ results, Clavius
also includes closer approximations to π later in Book IV, quoting results of his
contemporary Ludolph vanCeulen (1540–1610), and his student, Jesuit colleague, and
successor as professor ofMathematics at theCollegio Romano, ChristophGrienberger,
S.J. (1561–1636). Clavius states the equivalent of the bounds

3
14159265358979323846

100000000000000000000
< π < 3

14159265358979323847

100000000000000000000

and tries to give a practical “spin” on how these might be useful. If one of these
estimates is used (for instance, the upper bound to parallel the 22/7 value), then

... the area of the circle will differ less from the true value than the area found
from the Archimedean ratio. But since it is more difficult to compute with large
numbers [i.e., numberswithmore digits] thanwith small ones [i.e., numberswith
fewer digits], the practice of craftsmen has persisted so that the Archimedean

35 Posita igitur ce, 153. erit Ee, 306. Et si quadratum ipsius ce, 23409. dematur ex 93,636. quadrato ipsius
Ee, reliquum fiet quadratum ipisus Ec, 70,227. cuius radix est paulo maior quam 265. ac proinde Ec, ad
ce, maiorem habebit proportionem quam 265. ad 153. Secto iam angulo eEc, bifariam per rectam Ed, erit
eE , ad Ec vt ed, ad dc. Et componendo, eE , Ec simul ad Ec, vt ec, ad dc. Et permutando, eE , Ec, simul
ad ec, vt Ec, ad cd. Quia verò eE , Ec simul maiores sunt, quam 571. (quippe cum Ee sit 306. & Ec, paulo
maior, quam 265.) & ec, posita est 153. habebunt eE , Ec, simul ad ec, maiorem proportionem quam 571.
ad 153. ideoque & proportio Ec, ad cd, maior erit, quam 571. ad 153. ac proinde si cd, ponatur 153. erit Ec,
paulo maior quam 571. Igitur quadratum ipsius Ec, paulo maius erit, quam 326,041. atque idcirco, cum
quadratum ipsius cd, sit 23,409. erit quadratum ipsius Ed, quod quadratis rectarum Ec, cd, est aequale,
paulo maius, quam 349,450. eiusque radix maior quam 591 1

8 . quippe cum huius radicis quadratum sit

tantum 349,428 49
64 . Habebit igitur Ed, ad, dc, maiorem proportionem quam 591 1

8 . ad 153.
36 See the figure inserted for the first time at Clavius (1606, p. 186) and repeated several times thereafter for
the convenience of the reader. For comparisons, look at figures on folios 87 and 88 of Fine (1532) and the
facsimiles in Knorr (1989, pp. 460, 463). Setting up the figure this way could have been a purely practical
decision to reduce the number of different figures that had to be produced in printing the book.
37 Circulus quilibet ad quadratum diametri proportionem habet, quam ad [sic] 11. ad 14. proximè. (Clavius
1606, p. 191)
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ratio is applied to the calculation. However, when more accurate values are
desired, the Ludolphine ratio above should be used, especially for large circles.38

(Clavius 1606, p. 199)

Clavius is clearly thinking in terms of an absolute error rather than a relative error (a
more common way for us to judge how serious the error would be). It must be said,
though, that the times when values this precise (20 decimal digits) would really be
needed seem very rare.

It is interesting to compare Clavius’s treatment of these results with those in other
practical geometry texts. One of the earliest, the Practica Geometriae attributed to
Hugh of St. Victor (ca. 1096–1141), (Homann 1991), omits this topic entirely. In his
De Practica Geometrie, Fibonacci addresses the content of all three propositions in
turn. See Pisano (1862, pp. 86–91) and (2008, pp. 152–158), paragraphs [191]–[200]
of Chapter 3. However, he only mentions Archimedes when he begins the discussion
of Proposition 3. As was true for the discussion of Heron’s formula considered in the
previous section, Luca Pacioli’s discussion of the results of the Measurement of the
Circle follows Fibonacci very closely, although hementionsArchimedes in connection
with Proposition 1, rather than waiting for Proposition 3.39

Fibonacci does not attempt to present the full proof for Proposition 1 that is
found in Clavius and in other versions. Instead, first considering a regular poly-
gon circumscribed about the circle, Fibonacci argues that the product of the radius
and the perimeter of the polygon is greater than the area of the circle by consid-
ering the triangles formed by joining the center and the vertices of the polygon.
Hence, the product of the radius and a number greater than half the circumference
of the circle gives an area greater than the circle. Fibonacci apparently takes it as
obvious that the perimeter of the circumscribed polygon is greater than the circumfer-
ence of the circle.40 Next, Fibonacci considers an inscribed n-gon and adds vertices
bisecting the arcs between successive vertices of the n-gon to form an inscribed reg-
ular 2n-gon. Fibonacci notes that the product of the radius and half the perimeter
of the n-gon is equal to the area of the 2n-gon, hence less than the area of the
circle. Therefore, multiplying the radius by a number less than half the circum-
ference of the circle gives an area less than the area of the circle. “Whence it is
concluded that the product of the radius of the circle and half its circumference equals
its area.”41 Although it is certainly intuitively clear that the areas of the inscribed

38 ... quae quidem area minus à vera distabit, quam illa, quae ex proportione Archimedis inuenitur. Sed
quia difficilius est per magnos numeros calculum instituere, quam per minores, vsus artificum obtinuit, vt
proportio Archimedis ad calculum adhibeatur. Quando tamen desideratur accuratior calculus, vtendum erit
posteriori hac proportione Ludolphi, praesertim in maioribus circulis.
39 About the proof of Proposition 3, Pacioli writes: “Ancora eglie da mostrare comme e fo trouata da
Archimenide la linea circonferentiale essere .3. volte . 17 . del diametro: la quale inventione fo bella e sotile
in questo modo, bene che con breuita se dica,” (Pacioli 1494), Pars Secunda, Distinctio quarta, Capitulum
secundum, folio 31. Compare with Fibonacci’s introductory remarks given below. Clagett (1964, 1967–
1984, Vol. 3, Part III) gives a closer comparison of Fibonacci’s version and Pacioli’s version.
40 Clavius returns to this point inBookVIII of thePracticalGeometry, discussing arguments byArchimedes
from On the Sphere and Cylinder, and an alternate treatment by Girolamo Cardano.
41 Quare concluditur, quod ex multiplicatione semidiametrij circulj in dimidium lineae circumferentis
prouenit embadum ipsius. See Pisano (1862, p. 87).
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and circumscribed n-gons converge to the area of the circle as n increases without
bound, it seems fair to characterize what Fibonacci writes as more of a plausibil-
ity argument than a complete proof because he has not shown that the difference
between a circumscribed polygon and an inscribed polygon can be made arbitrarily
small.42

Second, Fibonacci argues by way of Euclid XII.2 that the ratio of the square of the
diameter to the area is the same for all circles. He essentially then does a “proof by
numerical example”43 for Proposition 2, using the result of Proposition 3 and effec-
tively taking π = 22/7. There is no indication that this ratio is only an approximation
and that no actual circle has the square of the diameter exactly equal to 196 and area
exactly 154.

Finally, Fibonacci turns to the content of Proposition 3. He writes that he is not
going to follow Archimedes’ proof exactly because smaller numbers will suffice to
make the point.44 Fibonacci expresses the lengths in this proof in particular units.
Referring back to Fig. 7, he effectively starts with Ee = 30 rods and Ec = 15
rods. Hence by the Pythagorean theorem, ec2 = 302 − 152 = 675. He then finds
an approximate value of

√
675 as “very close to 26 rods less 2 1

3 inches, a rod being

108 inches” (Pisano 2008, p. 155). The approximation 25 51
52

.= √
675 is indeed accu-

rate to four decimal places after rounding. However, as Clagett (1964, 1967–1984,
Volume 3, part III, p. 432) points out, Fibonacci’s approximation yields an overes-
timate for Ec/ec = cot(π/6) = √

3, rather than the underestimate needed to carry
through Archimedes’ proof. By using Archimedes’ actual numerical values, Clav-
ius is also demonstrating a surer understanding of the details of the Archimedean
argument.

To conclude our discussion of this section, it is surely significant that Clavius
characterized what he was doing here as “including the book” of Archimedes on the
measurement of the circle and not just discussing ways to find areas of circles via
the ratio of the circumference to the diameter. He was relying, of course, on the fact
that Archimedes had earned tremendous prestige and name recognition. But the way
Clavius framed his intention also meant that he had obligated himself to present full
accounts of Archimedes’ versions of the proofs involved. At the same time Clavius
deployed all of his pedagogical skill to make Archimedes more accessible. So this
section is one of the clearest examples of the mixture of the scholarly/theoretical and
the practical in this work, as pointed out in the Introduction.

42 According to Clagett (1964, 1967–1984, Volume 3, Part III, p. 427), and referring to Pacioli’s version
of this argument: “As given, this is very loose indeed.”
43 fuit enim quadratum dyametrij suprascripti 196. et embadum ipsius 154. quorum proportio est sicut 14.
ad 11. ... See (Pisano 1862, p. 88).
44 Ostendendum est etiam quomodo inuentum fuit lineam circumferentem omnis circulij esse triplum et
septima sui dyametrij ab Archimede philosopho, et fuit illa inuentio pulcra et subtilis ualde: quam etiam
reiterabo non cum suis numeris, quibus ipse usus fuit demonstrare; cum possibile sit cum paruis numeris
ea que ipse cum magnis ostendit plenissime demonstrare. See Pisano (1862, p. 88). Note that again there is
no indication that 22/7 is only an approximation to the ratio in question.
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4 Clavius’s discussion of methods for finding twomean proportionals
between two given lines in Book VI

In this section and the next, we will discuss two connected topics from Book VI of the
Geometria Practica. The first is the extended solution of the following problem: To
find two mean proportionals between two given lines approximately,45 (Clavius 1606,
pp. 266–272). This, the closely connected problem of duplicating the cube, plus the
problems of squaring the circle and trisecting an arbitrary angle (which are discussed
by Clavius in Books VII and VIII) were tremendous stimuli to Greek geometry over
hundreds of years.46 As Clavius writes at this point in Book VI,

We will first report what the ancient geometers have left to us in their writings
concerning this problem. For this drove and tormented the talents of many,
although up to this day, no one will truly and geometrically have constructed
two mean proportionals between two given lines.47 (Clavius 1606, p. 266)

Clavius has included what might seem to be a surprising amount of the Greek
work on this construction problem in the Geometria Practica. Although the works of
the authors involved did not survive from antiquity in their original forms, they were
summarized and hence preserved in the commentary on Archimedes’ On the Sphere
and Cylinder by Eutocius of Ascalon (Netz 2004, pp. 273–306). This is Clavius’s
stated primary source for this material although he may also have consulted Book
III of the Mathematical Collection of Pappus where some of the same methods are
surveyed.

45 Inter datas duas rectas, duas medias proportionales prope verum inuenire
46 For an extensivemodern study of the surviving sources and the historical development, see Knorr (2012).
Hippocrates of Chios (ca. 470–ca. 410 BCE) was traditionally credited with the reduction in the problem
of duplicating the cube to the problem of constructing two mean proportionals between given lines. If AB
and CD are the lines, two other lines XY and ZW are said to be two mean proportionals (in continued
proportion) if

AB:XY ::XY :ZW and XY :ZW ::ZW :CD.

Representing the lengths by numbers and using algebra, this becomes the string of equations

AB

XY
= XY

ZW
= ZW

CD
,

from which it follows that

(
ZW

CD

)3
= AB

CD
.

So for instance if CD = 1 and AB = 2 in some units, a construction of the two mean proportionals gives
the line ZW which has length 3√2, and that is the edge length of the cube with twice the volume of the cube
with edge length CD = 1.
47 Quocirca prius in hac propos. in medium afferemus, quae antiqui Geometrae nobis hac de re scripta
relinquerunt. Multorum enim ingenia res haec exercuit, atque torsit, quamuis nemo ad hanc vsque diem,
verè, ac Geometricè duas medias proportionales inter duas rectas datas inuenerit.
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Note that Clavius explicitly writes “approximately” in the statement of the prob-
lem.48 The solutions he will present all involve either limiting operations relying on
the senses of the geometer (so-called neusis (ν ε υ̃ σ ι ς) constructions) or the use of
auxiliary curves such as cissoid of Diocles (ca. 240–ca. 180 BCE) or the conchoid
of Nicomedes (ca. 280–ca. 210 BCE) that cannot be drawn as a whole using only
the straightedge and compass. Because these solutions use more than the traditional
Euclidean tools, they do not qualify as what Clavius means by “geometric” or exact
solutions. It is understood today that no such purely “geometric” solutions are pos-
sible for the three problems mentioned above and it is primarily this methodological
question—are the three problems solvable under the most severe restriction to the use
of only the Euclidean tools?—that has come to dominate many modern discussions.

But for Clavius, as for at least some of the Greeks before him, although the method-
ological question might be interesting, it was also important to find some reasonably
accurate method for constructing the two mean proportionals even if it meant using
an approximate method rather than an exact, “geometrical” solution. Perhaps surpris-
ingly, this is actually a quite practical problem that had applications in architecture,
military science and some of the other areas Clavius mentions in his Preface. It gives
a method for determining the linear dimensions of a solid figure similar to a given
figure whose volume has a given ratio to the volume of the given figure. Just as a
procedure for finding one mean proportional lets one rescale a plane figure in a given
ratio, a solution for this problem lets one rescale solid figures in any given ratio, and
Clavius points this out explicitly a number of pages later, after Proposition 17 in the
same Book VI:

This establishes the method by which a cube is not only to be duplicated (which
the ancients were seeking), but also increased or decreased in any given ratio.
It also gives the method by which bores of cannons are to be made larger or
smaller according to a given ratio.49 (Clavius 1606, p. 274)

In this connection, we also point out the first part of the heading of the first method,
where Clavius writes: “Method of Heron in the introduction to Mechanics and the
Making ofMissile-throwingMachines,” (Clavius 1606, p. 266), following the heading
in Eutocius, (Netz 2004, p. 275).

We note that Fibonacci also discusses methods for finding two mean proportionals
in his De Practica Geometrie, (Pisano 2008, Chapter 5, paragraphs 12–15). We will
return to this point shortly and compare his approach with Clavius’s approach.

In introducing his discussion, Clavius writes that he is making a very deliberate
choice from among the many solutions presented in Eutocius’s commentary:

Although they are most elegant and acute, the solutions of Eratosthenes, Plato,
Pappus of Alexandria, Sporus, Menaechmus by means of the hyperbola and
parabola, then with the help of two parabolas, and Archytas of Tarentum will be
omitted and we will explain only the four solutions from Heron and Apollonius

48 In the Latin: prope verum, literally “near the truth”.
49 Constat ex his, qua ratione Cubus non solum duplicandus sit (quod veteres inquirebant) sed etiam
augendusminuendusue in quacunque proportione: Item quo pacto pylae bombardarummaiores, autminores
fieri debeant secundum proportionem datam.

123



The eclectic content and sources of Clavius’s Geometria Practica 413

Fig. 8 Essential portions of
Clavius’s diagram for the first
two methods. For Heron’s
method and Philo’s method, the
dashed line GBOF would need
to be rotated about B to reach
the final desired position with
EG = EF or OF = BG

of Perga, Philo of Byzantium and Philoponus, Diocles, and Nicomedes.We have
judged these to be more useful, easier, and less prone to error. Anyone who
should want the other methods will be able to read them in the commentary
of Eutocius of Ascalon in the second book of On the Sphere and Cylinder of
Archimedes, and in the book of Johannes Werner of Nuremburg50 on the conic
sections.51 (Clavius 1606, p. 266); emphasis added.

In other words, the methods discussed here are sufficient for the applications Clavius
has in mind and they are the ones he thinks are easiest and best suited for practical
implementation.

By way of contrast, Fibonacci makes a different selection and presents only the
methods ascribed to Archytas, Philo, and Plato by Eutocius. Hence, there is very little
overlap between his account and Clavius’s account of this topic.Moreover, he presents
the method of Archytas (which relies on some quite involved solid geometry) first,
after saying that finding the two mean proportionals “... is not a thing that can be done
easily, but this is how it must be done.”52

Turning now to the details of Clavius’s account, the first method presented actually
combines two very closely related approaches, ascribed to Heron and Apollonius and
discussed separately by Eutocius.

50 German mathematician, 1468–1522.
51 Praetermissis autem modis Eratosthenis; Platonis; Pappi Alexandrini; Spori; menechmi [sic] tum ben-
eficio Hyperbolae, ac parabolae, tum ope duarum parabolarum; & Architae Tarentini, quamuis acutissimis,
subtilissimisque; solum quatuor ab Herone, Apollonio Pergaeo, Philone Bysantio, Philoppono, Diocle,
& Nicomede traditos explicabimus, quos commodiores, facilioresque, & errori minus obnoxios iudi-
cauimus. Qui aliorum rationes desiderat, legere eas poterit in Commentarijs Eutocij Ascalonitae in librum
2. Archimedis de Sphaera, & Cylindro: Item in libello Ioannis Verneri Norimbergensis de sectionibus
Conicis.
52 ... hoc facili operari non possit, tamen, qualiter hoc fieri debeat. (Pisano 1862, p. 153).
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Clavius’s version is a very close copy of Eutocius’s text forHeron’smethod,with the
variation represented by Apollonius’s method inserted at one point. In Fig. 8, suppose
we wish to find two mean proportionals between the lines AB and BC , which have
been arranged as two sides of the rectangle ABCD. For Heron’s method, Clavius
writes:

With sides DA, DC extended, it is understood that a straightedge [represented
by the dashed line in the figure] placed at B should be moved until it meets DA,
DC , produced, in points F and G such that the lines EF and EG are equal.53

(Clavius 1606, p. 267)

When this is true, consideration of the various similar triangles in the figure shows that
AF andCG are the twodesiredmeanproportionals between AB and BC . Apollonius’s
variation of this method consists of finding a circle with center at E , cutting the
extended line DC in a point G and the extended line DA in a point F such that the
chord GF passes through B, and hence EF = EG again.54 Clavius includes a brief
description of a trial-and-error method for finding the required circle not found in
Eutocius.

The second method, ascribed to Philo and Philoponus, has been reworked and
greatly simplified by Clavius based on the realization that it is again very closely
related to the first one (in fact Clavius sets up the discussion so that the same diagram
applies). Namely, with the circle DABC described with center E and radius E A =
EB = EC = ED, the ruler at B (that is, the dashed line in the figure) is moved until
BG = OF , where O is the second intersection with the circle above. Then, it is easy
to see we are back in exactly the same configuration as in the other methods, so the
same reasoning applies to give the two mean proportionals.

This family of methods would certainly be among the easiest to apply and probably
accurate as well. Note that the geometer is only required to rotate the line through B
or adjust the radius of a circle centered at E until a certain condition is satisfied. As
presented by Clavius, this involves approximation processes making use of the senses
of the geometer, as we said earlier. The next two methods will be somewhat different
in that they are set up to make use of auxiliary curves whose description (that is, the
description of the whole curve and not just a finite set of points on the curve) would
require tools besides the straightedge and compass.

The next method Clavius discusses is ascribed by Eutocius to Diocles, and specifi-
cally to a book calledOn Burning Mirrors. The Greek original has not survived so this
was known from fragments preserved in other texts such as Eutocius’s commentary.
But an Arabic translation of the whole has survived and this has been translated into
English byG. J. Toomer, (Diocles 1976). Clavius covers essentially the same ground as
in the corresponding section from Eutocius’s commentary. However, as usual, he has
reworked and augmented his source material significantly. Clavius begins by isolating
what he calls the “Lemma of Diocles,” which identifies a geometric configuration
containing two mean proportionals between two lines.

53 Protractis autem lateribus, DA, DC , intelligatur circa punctum B, moueri regula hinc inde, donec ita
secet DA, DC productas in F , & G, vt rectae emissae EF , EG, aequales sint.
54 The required circle is not shown in Fig. 8.
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Fig. 9 Clavius’s figure for the
“Lemma of Diocles.”

See Fig. 9. An equivalent figure with Greek letter labels appears in Eutocius. Let
AC and BD be diameters of the circle meeting at right angles at E . Let arcs DG
and DF be equal and join CG. Let GL and K F be drawn parallel to BD. Let CG
meet FK at H . Then by considering relationships of the lines in the figure, Clavius
essentially follows the proof given by Eutocius to show that FK and KC are two
mean proportionals between AK and K H . Similarly, if the arcs DM and DN are
equal, then drawing CM cutting the vertical line PN in O , it follows that N P and
PC are two mean proportionals between AP and PO .

Now given two lines AB > BC , the “Lemma of Diocles" applies in the following
way: First construct a circle with center B and radius AB. Lay off BC along the
perpendicular diameter as in Fig. 10.

Provided that a point H and the vertical segment K H (parallel to EF) are found
so that the intersection L of the extended line AC and K H makes the arcs EH and
EM (formed by the line through D and L) equal, then the “Lemma of Diocles” will
imply that K H and DK are two mean proportionals between AK and K L . But the
triangles ABC and AK L are similar, and hence all four lines can be rescaled by the
ratio AB : AK to get two mean proportionals between AB and BC as desired.

Finding the required point H could be done by the same sort of approximate trial-
and-error processes we saw in the previous methods. But Diocles and Clavius now
actually take this idea one step farther. Namely, start by considering the circle with
radius AB as before. If the locus of all points L as in this figure for all possible arcs
EM is considered, the so-called cissoid of Diocles (a cuspidal cubic algebraic curve)
is obtained.55 Namely, for each possible M in the quadrant AE , consider the line DM
and then take K so that the vertical line K H makes the arcs EH and EM equal. Take

55 Clavius does not use this name, though. In the coordinate system suggested by placing the diameters along
the coordinate axes and taking the circle to have radius 1, the equationof the cissoid is (x2+(y+1))2(y+1) =
2x2.
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Fig. 10 Configuration for
finding two mean proportionals
between AB and BC

the point L corresponding to that choice of M as the intersection of the lines K H and
MD.

Then for each pointC on the radius BE , the line AC , when extended, will intersect
the cissoid at some uniquely determined L and hence produce a line K H making the
arcs EM and EH equal. Then, two mean proportionals between AB and AC will
be found as above by rescaling K H and DK , which are mean proportionals between
AK and K L . Thus, the cissoid in effect solves the problem for all possible pairs of the
fixed AB and smaller segments BC simultaneously. As usual, compared to Eutocius
or Diocles, Clavius provides a much more specific method for constructing as many
points on the cissoid curve as are desired. But having only a finite collection of points
on the curve, some approximation or judgment of the geometer would still be needed
to connect the points into a continuous curve and find an appropriate point L for an
arbitrary given line BC as above. Hence, the qualifier “approximately” (the prope
verum in the Latin) still applies.

The final method for constructing two mean proportionals between given line seg-
ments addressed by Clavius is the one attributed to Nicomedes, using the conchoid
curve. This discussion is probably the closest Clavius comes to simply reproducing
what he finds in Eutocius, or more precisely, parts thereof. Clavius starts by writing
that the conchoid can be drawn with a certain instrument which is described in the
first section of Eutocius’s version of this method. But since Clavius does not have
the instrument, he writes that it will be enough to give a construction by which as
many points on the conchoid as desired can be produced.56 So let AB be a line and
let CD be another perpendicular line meeting AB at a right angle at E . Taking D as

56 Nicomedes construit prius instrumentum quoddam, quo lineam inflexam describit, quam Conchilem,
vel Conchoideos appellat. Sed nos omisso eo instrumento, eandem, (quod ad nostrum institutum satis est)
per puncta delineabimus, hac ratione (Clavius 1606, p. 270). Note the parallel with the discussion of the
cissoid.
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Fig. 11 Conchoid of Nicomedes

a pole, consider all straight lines passing through D. All lines except the parallel to
AB through D will intersect AB (extended if necessary). Say the line DS meets AB
at S. Then extending the line again in the direction of S, there will be another point F
on the line with SF = EC . The locus of all such points F is the curve known as the
conchoid.57

Next, followingEutocius, Clavius proves two “remarkable properties”58 considered
by Nicomedes. First, the farther the point S is from E , the smaller the vertical distance
is from F to the line AB and second, the conchoid meets every line lying above AB,
no matter how close.59 Clavius then shows how the conchoid gives a solution of the
following problem that Eutocius credits to Nicomedes:

Given any rectilinear angle, and a point outside the lines making up the angle, to
construct from this point, a line intersecting the lines containing the given angle,
so that the portion of the line intercepted between the lines is equal to a given
line.60 (Clavius 1606, p. 272)

Finally, Eutocius and Clavius show how the solution of this problem lets one construct
the triangle GDF in Fig. 9 for which AF and CG are the two mean proportionals
between the sides AB and BC of the rectangle as in that figure. There are several
additional constructions of lines made starting from the rectangle and the problem
above is used to produce a line intersecting two other lines such that the line intercepted
is equal to one half of AB. Here, Clavius adds a sort of mnemonic diagram, (Clavius
1606, p. 272), intended to help the reader visualize some of the proportionalities
between sides of similar triangles in the rather complicated figure, which reproduces
the fifth figure in Eutocius’s account (Netz 2004, p. 305).

In this section, the choices Clavius makes in deciding which methods to include
certainly do address his criteria of usefulness, ease of application, and lower suscepti-
bility to error. Moreover, the methods of Diocles and Nicomedes are definitely more
involved than the previous ones, so there is a very clear (and pedagogically desirable)
progression from simpler methods to more complicated ones.

57 More precisely, if we introduce coordinates placing the x-axis along the line AB and E at the origin and
take CE = ED, Nicomedes’ conchoid is one of the connected components of the real algebraic quartic
curve defined by (x2 + (y + 1)2)y2 = (y + 1)2. There is also a second connected component below the
line AB with a cusp at the point (0, −1), namely the point D. If some other ratio between the lengths CE
and ED is specified, other conchoids with nodes at the point corresponding to D will be produced (Fig.
11).
58 duas proprietates huius lineae insignes, (Clavius 1606, p. 270).
59 In modern terms, the line AB is a horizontal asymptote of the conchoid.
60 Dato quouis angulo rectilineo, & puncto extra lineas angulum datum comprehendentes: Ab illo puncto
educere rectam secantem rectas datum continentes angulum, ita vt eius portio inter illas rectas intercepta
aequalis sit datae rectae.
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5 Clavius’s presentation of an algorithm for extracting roots in Book
VI

While Clavius was a strong proponent of the geometrical methods found in Euclid’s
Elements, he understood very well that many geometrical constructions correspond to
algebraic or numerical calculations. In numerical terms (and also not too anachronistic
terms by Clavius’s time), finding a mean proportional XY between two lines AB and
CD is closely related to finding a square root and finding two mean proportionals
is closely related to finding a cube root, (Clavius 1606, Book VI, Proposition 18).
As a result many texts on practical geometry, including the texts of Fibonacci and
Pacioli mentioned earlier, included extensive discussions of numerical algorithms for
computing square and cube roots (at least). Clavius’s book is no exception. He points
out this connection in Proposition 18 immediately following the material discussed
in Sect. 4 above and he devotes the final section of his Book VI to this topic, starting
with Proposition 19.

As we mentioned in the Introduction, this is another case where Clavius does not
acknowledge a source explicitly. Indeed, he is notably coy about this.61 However, it
seems very likely that Clavius’s treatment of this algorithm is drawn from an algorithm
presented by Michael Stifel (1487–1567) in the Arithmetica Integra, (Stifel 1544,
folios 39–46), and later summarized in the revised and much expanded edition of the
first textbook of algebra in the German language,Die Coss, (Rudolff and Stifel 1553).
This also went through several later editions. There, the discussion of root extractions
appears in the Anhang (Appendix) to Chapter 4 of Part I written by Stifel, found
starting on folio 46 and going to folio 59.62

As usual, and in its entirety, Clavius’s account is not directly copied from either of
Stifel’s versions: Clavius’s explanations are rewritten and expanded. He also presents
different numerical examples. Our conjecture that Clavius was consulting this source
is based on the fact that the overall outline of themethod Clavius presents is essentially
exactly the same as what Stifel presents:

1. Very similar terminology for the different species of roots is used, e.g., “zen-
sizenic” roots are fourth roots, “surdesolidic” roots are fifth roots, and so forth.
Variations of this terminology are found inmany sixteenth centuryworks dealing
with algebra, though, so this is only a start.

2. The digits from the number whose root is being found are arranged into groups
called “points” in both Clavius and Stifel. This is done in essentially exactly the
same way in both accounts by marking certain digits with dots; each “point”
will yield one digit of the root. Clavius writes the dots below the corresponding
digits, while Stifel writes them above.

3. Tables ofnth powers of the digits 1, 2, 3, . . . , 9 are provided so that the largestnth
power that can be subtracted from the first (leftmost) “point” can be identified.

61 The relevant passage from the original has been quoted in the Introduction.
62 From its title, it might be expected that (Stifel 1545) is another candidate for Clavius’s source. But
this is not the case. Even though this last book is written in German, unlike (Stifel 1544), its discussion
of extracting roots (see folios 45 and 46) deals with abacus or counting board calculations, not the hand
calculation algorithm that Clavius discusses.
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4. The essential role of collection of “special numbers” for each species of root to be
used in preparing the “divisor” at each step of the algorithm is the same in both.
In our terms, these “special numbers” are binomial coefficients times powers of
10, since the algorithm works with numbers of the form (10dk + dk+1)

n , where
dk and dk+1 are successive digits of the root. For example,

(10dk + dk+1)
3 = 1000d3k + 300d2k dk+1 + 30dkd

2
k+1 + d3k+1,

so the coefficients 300 and 30 are the “special numbers” used to compute cube
roots. Clavius provides a table containing the binomial coefficients up to n = 17
that coincides verbatim (except for a typographical error in one entry) with the
table from Stifel (1544, folio 45).63

5. The calculations are laid out in a very similar tabular format.

The method used here has close connections with root extraction algorithms presented
by many medieval and Renaissance authors, as discussed for instance in Johansson
(2011). The novelty is the very convenient tabular format for the computation of each
successive digit of the root that will be illustrated in the following examples.

Probably, the best way to convince the reader of this identification of Clavius’s
source is to quote from two extractions of cube roots, one from Clavius and one from
Stifel’s Anhang. The process described finds the root decimal digit by decimal digit.
The steps all follow the same pattern after the determination of the left-most digit. So
the point will be made if we look at the determination of the first two digits of the root
in the examples. We begin with the first two steps of this example from Clavius:64

63 Clavius’s table is also pointed out inKnobloch (1988, p. 351), butKnobloch attributes this to the influence
of Cardano and Tartaglia on Clavius. The identical and somewhat unusual formatting of the tables in both
Clavius and Stifel is very suggestive.
64 See Clavius (1606, p. 280). Sit ex numero

2 3 9 4 8 3 1 9 0
• • •

extrahenda radix cubica.
Primvm ex puncto 239. subtraho cubum 216. qui est maximus in eo

36 −− 300
6 −− 30

contentus, cuius radicem 6. scribo in Quotiente ad marginem. Et quia relinquitur numerus . 23. erit sequens
punctum 23483. Deinde paro diuisorem hoc modo. Supra radicem inuentam 6. pono eius quadratum 36. Et
ad dextram colloco duos numeros peculiares radicis cubicae, nimirum 300. & 30. vt hic vides. Multiplico
superiores duos numeros 36. & 300. inter se, & producto 10800. addo productum 180. ex multiplicatione
numerorum inferiorum 6. & 30. inter se. Nam summa 10980. erit Diuisor. Satis etiam esset productus ex
duobus superioribus inter se multiplicatis, nimirum 10800. pro Diuisore. quod in alijs extractionibus intel-
ligendum quoque est. Diuido ergo punctum meum 23483. per diuisorem inuentum 10980. & Quotientum
2. scribo post figuram 6. prius inuentam.
Pingo post haec figuram huiusmodi. Ad dextram numerorum 36. & 300.

36 −− 300 −− 2.
6 −− 30 −− 4.

8.
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Let it be required to extract the cube root of

2 3 9 4 8 3 1 9 0
• • •

First, from the point 239, I subtract the 216 which is the largest cube contained
in it. I write its cube root 6 in the margin in the quotient. And since 23 is left
over, the next point will be 23483.

36 −− 300
6 −− 30

Next I provide a divisor in this way. Over [the digit] 6 of the root found above, I
put its square, 36. And on the right, I place the two particular numbers for cube
roots, namely 300 and 30. I multiply the numbers on the first row, yielding a
product of 108,00 and I add the product frommultiplying the two numbers on the
second row, 180. The sum 10,980 will be the divisor. (It would be enough to take
the product of the two numbers on the first row as the divisor, namely 108,00,
as must be understood in other root extractions.) I divide the point 23,483 by
10,980 and write the quotient 2 next to the digit 6 found first. I treat what comes
after this digit as follows. At the right

36 −− 300 −− 2.
6 −− 30 −− 4.

8.

of the numbers 36 and 300, I add this digit 2 [found in the quotient] and below
it, its square, 4, and its cube, 8. Now, the three numbers on each of the first two
rows are multiplied, and the products are 21,600 and 720. Adding the cube 8
makes 22,328. I subtract this from the point, leaving 1155, and the next point
will be 1,155,190. (Clavius 1606, pp. 280–281)

Clavius continues to find the (approximate) cube root 621 for 239,483,190. Note that
6213 = 239483061, so this value is 129 “short.” Later in this section, Clavius also
shows how to compute additional decimal digits in the fractional part, obtaining closer
approximate cube roots.

We now translate a step of the computation from folios 47-49 in Stifel’s Anhang to
Chapter 4 in Part I of Rudolff and Stifel (1553)65

colloco inuentam figuram 2. & infra eam eius quadratum 4. & sub hoc cubum eiusdem 8. Nam si tam
superiores tres numeri 36. 300. & 2. quam inferiores tres 6. 30. & 4. inter se multiplicentur, & productis
21600. & 720. addatur cubus 8. fiet numerus 22328. quem si ex meo puncto 23483. subtraham, remanent
1155. atque adeo puncto sequens erit 1155190.
65 We have chosen to translate this passage from the German of Rudolff and Stifel (1553) rather than one
of the parallel computations in Stifel (1544), which are written in Latin. Clavius insists on the German
provenance of the method, so he may well have learned it first from here, although from various features
of his later Algebra text (1608), it is clear that he was also familiar with Stifel (1544).
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Example.

• • • •
8 0 6 2 1 5 6 8 0 0 0

First I subtract the largest cube that I can from the leftmost point (that is, from80).
That is 64, leaving 16, which then belongs to the next point, which is composed
of the digits 16,621. So now I set the cube root of 64, or 4, in the quotient, and
the first point is decided. So then I take the next point, namely 16,621. I divide
that by 4800 (that comes from 300 times 16) and the division gives only 3 in the
quotient. And so the new digit is found. I put this next to the two numbers 300
and 30 with the accompanying numbers in this way:

16 −− 300 −− 3
4 −− 30 −− 9

Since the digit 4 was found [first] in the quotient, that is placed next to the 30
on the left, and above, next to 300 goes its square, namely 16. On the right next
to the 300 goes the next digit 3, and its square 9 goes below next to the 30, as
you clearly see.
So now I multiply and say 16 times 300 times 3 makes 14,400, and 4 times
30 times 9 makes 1080. I add those and obtain 15,480. I subtract that from the
16,621 as from the other points. The number 1141 remains. Last, I take the cube
of the newly found digit 3. Namely, 3 times 3 times 3 makes 27. I also subtract
this and 1114 remains. This belongs to the following point.

Exemplum.

• • • •
8 0 6 2 1 5 6 8 0 0 0

Erstlich subtrahir ich von dem hindersten puncten (das ist von 80) die aller gröste cubic zal/ die ich
subtrahiren kan. Die selbig ist 64. so bleybett nach vbrig davon 16 die gehören denn sum nehisten puncten
hernach/ der selbig uverkompt denn dise figuren 16621. So setz nu die cubic würzel von 64 in den quotient.
facit 4. und is also der erst punct aufsgericht.
So nehme ich nu fur mich den andern punct/ nemlich 16221. Den dividir ich mit 4800. (das kompt von 300
mal 16) Nu gibt das gedacht dividiren nur 3 in den quotient. Und ist also die newe figur gefunden.
Dem selbigen nach stehn die zwo zalen 300 und 30. mit jren zugethonen zalen also.

16 −− 300 −− 3
4 −− 30 −− 9

Denn erstlich ist gefunden in den quotient de figur 4. die steht neben 30 zur lincken hand/ vnd drob neben
300 steht jr quadrat/ nemlich 16.
So is nu darnach gfunden in den quotient die figur 3. Die steht oben neben 300 zur rechten hand/ vnd
darunder steht jr quadrat 9. neben 30. wie du alles vol sihest.
So multiplicir ich nu/ vnd sprich. 16 mal 300 mal 3. facit. 14,400. vnd 4 mal 30 mal 9. facit 1080. Das addir
ich/ so kompt 15,480. Das subtrahir ich von 16,621. Als vom andern puncten diser operation/ so bleyben
denn 1141.
Auffs letzt multiplicir ich die newe gefundne figur Cubice. Nemlich 3 mal 3 mal 3. facit 27. die subtrahir
ich auch/so bleyben 1114. die gehören zu volgenden punct.
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Since there were four “points” in the original number, Stifel’s cube root will contain
four decimal digits. After two more steps of the process, he finds the value 4320, an
exact cube root of 80,621,568,000.

Stifel’s significant influence on Clavius’s thinking about arithmetic and algebraic
topics has been noted, for instance in Rommevaux (2012). If Clavius was following
Stifel’s presentation of a root extraction algorithm here (and I hope I have proved the
point with the quotations above), then there remains the question why Clavius did not
make an explicit attribution.

It is certainly possible that Clavius thought he did not need to say any more to
identify his source because Rudolff’sDie Coss, at least, was extremely well-known in
German-speaking areas. Standards for citations in scholarly works were also consid-
erably looser at this time. Of course, it is also true that Clavius’s citation methods were
controversial for at least one of his contemporaries, namely Viète (Knobloch 1988,
pp. 334–335). One superficially plausible explanation, namely the fact that Stifel had
started out as an Augustinian monk, but later became a Protestant minister and an
outspoken supporter of Martin Luther, was evidently not a factor here.66 As pointed
out in Knobloch (1988, p. 351), in other contexts Clavius seems to have had no qualms
about mentioning Stifel explicitly, even praising his works highly and proposing one
of Stifel’s books as a candidate textbook for teaching algebra in the Jesuit schools.67

From Knobloch (1990), we find that Clavius also mentioned Stifel by name once in
his Euclid and twice in the Algebra.

6 Conclusions

Clavius presented a tremendous amount of interesting and useful mathematics in
his Geometria Practica and is certainly arguable that he achieved his stated goal of
presenting the whole range of practical geometry as understood in his time in a form
that would be useful for his readers. In assembling the material for this book, he drew
on an extremely broad range of ancient, medieval, and contemporary sources. At the
same time, his typical procedure was to rework, augment, and clarify themathematical
texts he dealt with. In many cases, he was quite careful about informing the reader
of how he was using his sources, as we have seen in Sects. 3 and 4. But he was also
not entirely consistent about that as we given in Sects. 2 and 5. For any more definite
conclusions about Clavius’s choices regarding citations of his sources for Heron’s

66 It is true, though, that Stifel’s works appeared several times in the Indices of works to be forbidden
or expurgated prepared by Catholic authorities in various locations in the mid-to-late 16th and early 17th
centuries [including Venice in 1554, Antwerp in 1571, (Gijón 2015, p. 80), and Spain in 1632 (and possibly
earlier)]. What this entailed in the case of the 1632 Expurgatorio of the Spanish Inquisition is visible in
the digitized copy of Stifel (1544) from the library of the Universidad Complutense de Madrid at https://
babel.hathitrust.org/cgi/pt?id=ucm.5323774127. This book shows extensive hand-written emendations and
striking-out of honorifics, etc. In particular, the hand-written notation “autore damnato, opus permissum”
appears next to Stifel’s name on the title page. While Stifel himself had been anathematized, it was still
permissible to read the mathematical contents of the work.
67 In the Ordo Servandus in Addiscendis Disciplinis Mathematicis, essentially a position paper on the
role of mathematics instruction prepared during the development of the Ratio Studiorum, see Gatto (2006,
p. 252).
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Theorem and the nth root algorithm, a more specific understanding of when and why
he did choose to make explicit citations in his writings would be necessary. But that
lies beyond the scope of what we have tried to do here.

The quality of this work was recognized very soon after it appeared, as evidenced
(for instance) by the fact that mathematicians such as Mersenne Knobloch (1988,
p. 356) and Kepler68 mentioned sections of this book in their writings. Recognition
of Clavius’s work was also evident in other ways. In the Jesuit mission in China, one
of Clavius’s former students in the Collegio Romano, Mateo Ricci, S.J. (1552–1610),
together with his Chinese collaborator Xu Guangqi (1562–1633), made translations
of not only the first six books of Euclid’s Elements from Clavius’s version, but also
material from the Geometria Practica. Later, Giacomo Rho, S.J. (1593–1638) made
Chinese translations of additional sections of this work (Martzloff 1995, pp. 318–319).

But Clavius’s devotion to the synthetic Euclidean tradition in geometry would
shortly come to seem very old-fashioned. The recovery of Pappus’s treatment of the
Greek tradition of geometric analysis in Book VII of the Mathematical Collection,
combined with the ever-growing influence of algebraic thinking was the impetus for
an explosion of work starting in the late sixteenth century and continuing into the first
half of the seventeenth century, (Bos 2001). But this was largely orthogonal to the
ways that Clavius approached geometry and he seemingly had little interest in or taste
for the treatment of geometric analysis in Pappus’s writings (Sasaki 2003, Chapter
2, Section 3). Within 30 years of his death, the introduction and systematic use of
analytic, or coordinate geometry by Descartes and others was well under way. That
new way of harnessing the power of algebra to discover new geometrical results and
prove them was fundamentally changing the practice of mathematics.
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