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Abstract
The paper provides an analysis of Giuseppe Vitali’s contributions to differential geom-
etry over the period 1923–1932. In particular, Vitali’s ambitious project of elaborating
a generalized differential calculus regarded as an extension of Ricci-Curbastro tensor
calculus is discussed in some detail. Special attention is paid to describing the origin of
Vitali’s calculus within the context of Ernesto Pascal’s theory of forms and to provid-
ing an analysis of the process leading to a fully general notion of covariant derivative.
Finally, the reception of Vitali’s theory is discussed in light of Enea Bortolotti and
Enrico Bompiani’s subsequent works.

1 Introduction

ThenameofGiuseppeVitali (1875–1932) is generally associatedwith noteworthy con-
tributions to analysis and integration theory, such as the discovery of quasi-continuity
of measurable functions (1905), the proof that a function is absolute continuous if and
only if it is an integral function (1904–1905), the first exhibition of a set that is not
Lebesgue measurable (1905) and the so-called Vitali’s covering theorem (1908), to
cite only some of them.1

Less well known and less studied are Vitali’s contributions to differential geometry
to which he turned in the last decade of his life, over the period 1923–1932. Probably,
the scientific impact ofVitali’s geometrical production cannot parallel the resonance of
his previous works in the realm of analysis. Nonetheless, the lack of attention towards
Vitali’s geometrical investigations on the part of historians appears to a certain extent
to be unjustified. Indeed, his attempts at providing a generalization of Riemannian
geometry are worth considering for at least two reasons. An understanding of Vitali’s
contributions to differential geometry can offer a more adequate and complete com-

1 OnVitali’s contributions to real analysis and integration theory, see, e.g., (Pepe 1984) and (Borgato 2012).
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16 A. Cogliati

prehension of Vitali’s scientific figure as a whole, and it can also offer some new
insight into the historical development of infinitesimal geometry over the first half of
twentieth century.

As will be seen, Vitali mainly moved into two directions: by exploring alternative
notions of parallelism and by providing a higher-order extension of Ricci’s absolute
differential calculus, which he called the generalized absolute differential calculus.
The contributions of Vitali into both research directions will be analyzed in this paper.
Section 2 provides a general description of the context of Vitali’s geometrical work;
Sect. 3 discusses the introduction of an absolute parallelism, the so-called Vitali-
Weitzenböck parallelism, characterized by vanishing curvature and non-vanishing
torsion, along with its reception. The subsequent sections are devoted to a presenta-
tion of Vitali’s generalized differential calculus. Special attention is paid to describing
its origin within the context of Ernesto Pascal’s theory of forms and to providing a
diachronic analysis of the emergence of a fully general notion of covariant derivative.
In the concluding section, the reception of Vitali’s work is discussed in light of Enea
Bortolotti and Enrico Bompiani’s subsequent investigations.

2 Beyond Riemann geometry

Over the first quarter of the twentieth century, the field of differential geometry experi-
enced a process of deep and rapid evolution that resulted in an extraordinary variety of
interconnected research themes and different technical approaches. Undoubtedly, one
of the most important (and most widely studied) episodes in this transformation was
the discovery of the notion of parallel transport in a Riemannian manifold by Tullio
Levi-Civita and Jan Schouten. The geometrical interpretation of Christoffel symbols
that the notion of parallel transport brought about produced a proliferation of studies
devoted to extend the Riemannian framework by exploring the possibility of defining
connections independent of the notion of a metric. (This research direction will be
referred to as research line A.)

Before the publication of (Levi-Civita 1917) where the concept of parallelism for
Riemannian manifolds was first introduced, investigations into other directions such
as those concerning projective differential properties and the study of higher-order
elements (osculating spaces) of manifolds played a prominent role in shaping the
development of the discipline, beyond the realm of the theory of connections. (This
second set of research lines will be collectively referred to as research line B.)

On amethodological level, the new geometrical horizons disclosed both by research
lines A and B often required the use of techniques more refined than those of Ricci’s
absolute differential calculus, which had been designed mainly to deal with Rieman-
nian manifolds.

A most interesting response to this challenge was offered by Élie Cartan who,
starting from 1910s, elaborated a peculiar approach to both Riemannian and non-
Riemannian geometry based upon the notion of Pfaffian forms and a generalization
of the method of moving frames. Cartan’s position toward the calculus of Ricci was
somehow skeptical, and he went so far as to affirm that the formalism of absolute
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Vitali’s generalized absolute differential calculus 17

differential calculus often obscured the intuitive content of the geometrical theories to
which the calculus was applied.2

A less radical viewwas expressed by René Lagrange, who got his doctorate in 1923
under Cartan’s supervision. He devoted his dissertation (Lagrange 1926) to providing
a generalization of the calculus of Christoffel, as he called it, that could be regarded as
an attempt at harmonizing it with the emerging theory of moving frames. The central
idea consisted in the observation that the formal rules of Ricci’s calculusmaintain their
validity when the differentials of a given coordinate system, dxi , i = 1, . . . , n, are
replaced by general Pfaffian forms, ωi , i = 1 . . . , n, which are not exact differentials.

At that same time, the evolution of differential geometry experienced a period of
intense transformation in Italy too. The variety of research topics waswidely expanded
in such a way as to cover, for example, the theory of hypersurfaces in Euclidean n-
dimensional spaces, projective differential geometry and the study of higher-order
Riemannian geometries.3 In particular, the emergence of a projective approach in
the realm of infinitesimal geometry played a crucial role in fostering the elaboration
of new methods and techniques, aptly designed to deal with higher-order properties
of manifolds. In this respect, one should at least cite the works by Luigi Bianchi,
Umberto Sbrana, Eugenio Elia Levi, Guido Fubini and Enrico Bompiani. Bianchi
and Umberto Sbrana, a student of Bianchi at Pisa University, completely solved to
problem of determining those hypersurfaces in R

n , with n ≥ 4 that admit non-trivial
deformations; see (Bianchi 1905), (Sbrana 1909). In his dissertation degree (Levi
1908), written under the supervision of Bianchi, Levi tackled the study of higher-
order properties of surfaces immersed in n-dimensional Euclidean spaces. Fubini
focused mainly on projective properties of manifolds, i.e., those properties that are
left invariant by the action of the projective group (see Fubini and Čech 1926-1927).
Bompiani, who also contributed to projective differential geometry, developed a most
peculiar approach to metric geometry, dubbed by him “geometrie riemanniane di
specie superiore”, which is particularly relevant for the reception process of Vitali’s
generalized calculus, see (Bompiani 1935) and Sect. 7. For a general overview on
Bompiani’s scientific biography, see (Ciliberto and Sallent Del Colombo 2012).

In this very general context, in which various attempts were made to extend the
theoretical framework of Riemannian geometry in different directions, Vitali started
to cultivate the proposal to provide an extension of both Riemannian geometry and
Ricci’s calculus. His hope was to elaborate a general algorithmic method suitable for
dealing with manifolds of arbitrary (finite) dimension that were regarded as immersed
in the Hilbert space of square-integrable functions of a real variable.

At the same time, as will be seen, the viability of Vitali’s project was encouraged by
research of a purely analytical tenor undertaken by Ernesto Pascal, who had succeeded
in providing a generalization of covariant tensors to differential forms of arbitrary order
and degree.

2 In this respect, see (Cogliati 2018).
3 According to Chern, the main problem of projective differential geometry “is to find a complete system
of local invariants of a submanifold under the projective group and interpret them geometrically through
osculation by simpler geometrical figures. The main difficulty lies in that the projective group is relatively
large and invariants can only be reached through high order of osculation.” (Chern et al. 1992, p. 62).
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18 A. Cogliati

3 Vitali(-Weitzenböck) parallelism

In early 1920s, the scientific interests of Vitali, who had previously concentrated on
analysis and integration theory, experienced a distinct turn which oriented his research
activity mainly to differential geometry. Vitali contributed both to research line A
and B, and he also tried to establish a connection between the two. We first turn to
discussing two closely related memoirs, (Vitali 1923a) and (Vitali 1925), that can be
ascribed to research line A. The next sections will be devoted to analyzing Vitali’s
extensive contributions to research line B.

The subject of (Vitali 1923a) consisted in the introduction a new type of
covariant derivative that analytically describes a parallelism with vanishing curva-
ture and non-vanishing torsion.4 The underlying idea was simple. Vitali endowed
a given n−dimensional manifold Vn with a set of independent 1-forms ωk =∑n

i=1 Xi
k
dxi , k = 1, . . . , n, and introduced the coefficients �k

i j by putting:

�k
i j =

n∑

r=1

X
r
k∂x j Xi

r
, i, j, k = 1, . . . , n. (1)

where X
i

k denote the coefficients of the inverse matrix of A = [Ais := Xs
i

] so

that
∑n

i=1 Xk
i

X
i

j = δ
j
k . In order to prove that these n3 functions actually define a

connection,5 one should check that �k
i j are transformed in an appropriate way under

arbitrary coordinate transformations.6 Vitali chose a more indirect strategy by first
showing that the derivation of a covariant 1-form ω0 = Xs

0
dxs associated to (1) is

actually covariant.
Indeed, by analogywith the classical definition of covariant derivative of Christoffel

and Ricci, Vitali set:

Dt Xs
0

:= ∂xt Xs
0

−
n∑

k=1

�k
st Xk

0
, (2)

and showed that the system Dt Xs
0

is a covariant system of the second order.

We can legitimately ask howVitali came up with definition (2). Indeed, whereas the
verification of the covariant character of (2) is a matter of trivial computation, to obtain
an explicit expression containing the derivatives of Xs

0
with the requested covariance

property is far less obvious. A plausible reconstruction (partially suggested by Vitali

4 The ordinary notion of parallelism in Euclidean space is a kind of Vitali’s parallelism with vanishing
curvature and torsion.
5 Our use of the term “connection” is improper. Vitali did not employ the word “connection” to designate
the mapping between tangent spaces, defined by the set of coefficients �k

i j , i, j, k = 1, . . . , n. When he

wanted to attribute a geometrical meaning to the symbols �k
i j , he spoke of the parallelism corresponding

to them.
6 This is the point of view adopted for example in (Eisenhart 1927, §2).
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Vitali’s generalized absolute differential calculus 19

himself7) leading to (2) goes as follows. Consider first the transformation laws for the
covariant tensors ωi , i = 1, . . . , n and ω0:

X̄s
i

(y) =
n∑

m=1

∂ysx
m Xm

i
(x), X̄s

0
(y) =

n∑

m=1

∂ysx
m Xm

0
(x). (3)

Upon derivation of both sides of these equations with respect to
∂

∂ yt
, one obtains:

∂yt X̄s
i

(y) = ∑n
m=1 ∂2yt ys x

m Xm
i

(x) + ∑n
k,m=1 ∂ys xm∂yt xk∂xk Xm

i

∂yt X̄s
0

(y) = ∑n
m=1 ∂2yt ys x

m Xm
0

(x) + ∑n
k,m=1 ∂ys xm∂yt xk∂xk Xm

0

(4)

i = 1, . . . , n. The first equation of (4) can be solved with respect to the second-order
derivatives ∂2yt ys x

m to get:

∂2yt ys x
m =

n∑

i=1

X
i

m∂yt X̄s
i

−
n∑

k,r ,i=1

X
i

m∂ys x
r∂yt x

k∂xk Xr
i

. (5)

By replacing this expression for ∂2yt ys x
m in the second equation of (4) and observing

that
∑n

m=1 X̄i
m
X̄m
0

= ∑n
m=1 Xi

m Xm
0

, i = 1, . . . , n, one can finally obtain the required

relation:
∑

k,m

(

∂xk Xm
0

−
n∑

l=1

�l
mkXl

0

)

∂yq x
k∂yr x

m = Dq X̄r
0

, (6)

where the right-hand side denotes the quantity:

Dq X̄r
0

= ∂yq X̄r
0

−
n∑

l=1

�̄l
rq X̄l

0
= ∂yq X̄r

0
−

n∑

l=1

n∑

u=1

(

X̄ l
u

∂yq X̄r
u

)

X̄l
0

More generally, the coefficients �k
i j could be employed to construct covariant and

contravariant systems of higher order by considering the following definition which
represents a natural extension of the classical notion of covariant derivative for tensors
of arbitrary order:

Dt X
s1,...,sk
r1,...,rh = ∂xt X

s1...sk
r1...rh − ∑h

i=1
∑n

l=1 �l
ri t X

s1...sk
r1...ri−1,l,ri+1...rh

+∑h
i=1

∑n
l=1 �

si
lt X

s1...si−1,l,si+1...sk
r1...rh

(7)

Vitali’s treatment focused mainly on algorithmic procedures and invariant properties.
Nonetheless, he also considered the geometric consequences of the choice for �k

i j ,

7 See also (Weitzenböck 1923, pp. 317–320).
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20 A. Cogliati

i, j, k = 1, . . . , n. The most significant ones are the following: (i) since the curvature
tensor associated to �k

i j is identically equal to zero, the connection defines a type of
parallelism that is independent of the selected path; (ii) the covariant differentiation
preserves the metric associated to the 1-forms ωi , i = 1, . . . , n in the following sense:
if one defines aik = ∑n

r=1 Xi
r
Xk
r
, then Dtaik = 0, i, k, t = 1, . . . , n.

Almost at the same time, the idea of constructing a covariant derivation based upon
the assignment of n independent 1-forms was set forth by Weitzenböck in his mono-
graph devoted to the theory of invariants, (Weitzenböck 1923). However, it should be
observed that Weiztenböck’s exposition was limited to an analytical treatment. Con-
trary to Vitali, Weitzenböck made no attempt at providing a geometrical interpretation
of his covariant derivation in terms of parallelism of vectors (at least on that occasion).

A notable reaction to Vitali’s memoir came from Ricci Curbastro, to whom Vitali
sent a copy of his work in early 1924. Ricci’s remarks are interesting in many respects.
It seems that Ricci was not particularly impressed by the geometrical consequences of
Vitali’s definition. He failed to appreciate the novelty produced by the new parallelism
introduced by Vitali probably because he was not particularly interested in exploring
non-Riemannian geometries. As a consequence of this, he preferred to focus on the
algorithmic aspects of Vitali’s covariant differentiation by proposing an alternative,
more natural, approach. As shown by a letter to Vitali dating back to February 1924,
Ricci thought that Vitali’s treatment could be highly simplified upon consideration
of absolute invariants.8 The main idea can be easily described as follows: given any
tensor As1...sk

r1...rh and a system of covariant tensors Xk
r

with the associated contravariant

tensors X
r
k , we can construct nk+h absolute invariants:

Ji1...ik ik+1...ik+h =
∑

j,s

As1s2...sk
j1 j2... jh

Xs1
i1

Xs2
i2

. . . Xsk
ik

X j1
ik+1

X j2
ik+2

. . . X jh
ik+h

and consider the system of coefficients As1...sk
r1...rh ,t produced by (ordinary) differentiation

of these invariants:

As1...sk
r1...rh ,t :=

∑ ∂ Ji1...ik ik+1...ik+h

∂xt
Xs1
i1

Xs2
i2

. . . Xsk
ik

X j1
ik+1

X j2
ik+2

. . . X jh
ik+h

. (8)

By construction, it is clear that As1...sk
r1...rh ,t are coefficients of a tensor with h+1 covariant

indices and k contravariant indices. Ricci’s crucial observation consisted in identifying
them with the coefficients of Vitali’s covariant derivative, thus providing a much
simpler proof of the covariant character of (7). Incidentally, it is interesting to observe
that similar observations were also communicated to Vitali by Tullio Levi-Civita, as
is testified by a letter that he addressed to Vitali in February 1924.9

Some months later, Vitali decided to return to the subject in another brief memoir
(Vitali 1925) in which he thoroughly developed the point of view that Ricci had
communicated to him, along the lines described above.

8 (Vitali 1984, p. 486).
9 (Vitali 1984, p.487).
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Vitali’s generalized absolute differential calculus 21

Despite its innovative content, the publication of (Vitali 1923a) went almost unno-
ticed in the short term. It took some time before its importance could finally be
appreciated. In 1927 Enea Bortolotti exploitedVitali’s parallelism to provide a system-
atic analysis of special types of absolute parallelisms recently introduced by Cartan
and Schouten.10 Furthermore, he could prove that Vitali’s parallelism can be char-
acterized as the most general parallelism associated to a zero-curvature connection
which preserves both angles and lengths of vectors.

Quite unexpectedly, the type of absolute parallelism studied by Vitali found a phys-
ical application in the attempt at developing a unified theory of gravitational and
electromagnetic interactions which was pursued by Albert Einstein over the period
1928-1931. According to this approach, which Einstein dubbed Fernparallelism (dis-
tant parallelism), the physical fields of the theory are identified with the components
of 4 linearly independent contravariant first-order tensors, corresponding to Vitali’s
1-forms ωi = ∑

k Xi k
dxk (i = 1, . . . , n = 4).11

The publication of Einstein’s papers on Fernparallelism and the consequent reso-
nance of the mathematical notions employed by him triggered a lively priority debate.
On his part, Vitali tried to propagate his research on the subject and to obtain recog-
nition for the discovery of the notion that he had introduced in (Vitali 1923a). Indeed,
following Levi-Civita’s advice, he decided to write to Einstein to inform him of his
works on absolute parallelism.12

Undoubtedly, beyond individual claims, the discovery of the connection associated
to (7) canbe considered as a collective achievement towhichvariousmathematicians—
-Weitzenböck, Cartan and Vitali himself—contributed in different ways, by proposing

10 (Cogliati and Mastrolia 2018).
11 On Einstein’s Fernparallelism approach, (Sauer 2006).
12 Vitali’s letter (11 Febbraio 1929) is preserved at Einstein Archives, Jerusalem.

Illustrissimo Signor Professore.
Il mio carissimo amico Prof. Tullio Levi-Civita mi informa di aver ricevuto da Lei copie delle
note (a cui hanno fatto cenno recentemente anche i giornali politici), e mi comunica come Ella
faccia ricorso ad una specie di parallelismo assoluto, che fu già considerato in una mia nota “Una
derivazione Covariante formata con l’ausilio di n sistemi covarianti del 1o.”
Ella forse non ha avuto occasione di conoscere tale nota che è pubblicata in una rivista poco diffusa,
e mi permetto di inviargliela, insieme con altra che con essa ha qualche attinenza.
Esiste pure sull’argomento un lavoro di R.Weitzenbock [sic!] del 1923, e più recentemente un lavoro,
di Enea Bortolotti, il quale, pregato da me, Le invierà fra giorni un estratto.
Le sarei molto grato se Ella volesse inviarmi una copia delle Sue ultime note.
Gradisca, Illustre Professore, con l’espressione della mia considerazione, i miei più devoti ossequi.

Illustrious Mr. Professor. My dear friend Prof. Tullio Levi-Civita informs me that he has received
copies of some papers from you (to which political newspapers have also recently referred), and
tells me that you have recourse to a kind of absolute parallelism that was already considered in the
note of mine “Una derivazione Covariante formata con l’ausilio di n sistemi covarianti del 1o.”
Perhaps you did not have the opportunity to know this paper, which is published in a little-known
journal. I take the liberty of sending it to you, together with others that have some connection with it.
There is also a work on the subject by R. Weitzenbock [sic!] dating back to 1923, and more recently
a work by Enea Bortolotti, who, at my request, will send you an extract in a few days.
I would be very grateful if you would like to send me a copy of your most recent articles. I send,
most distinguished Professor, my most devoted respects with the expression of my consideration.
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22 A. Cogliati

complementary perspectives. An accurate and reliable reconstruction of the historical
process leading to the introduction of the notion of absolute parallelism was offered
by Cartan in (Cartan 1930), a paper written for Mathematische Annalen at Einstein’s
encouragement. In addition to providing a detailed list of his own works, Cartan
recognized the relevance of Vitali’s insight by emphasizing the difference between
Weiztenböck’s analytical treatment and Vitali’s geometrical interpretation.

4 Pascal’s higher-order differential forms

Almost at the same time when exploring alternative definitions of parallelism and
covariant differentiation, Vitali began to cultivate the ambitious project of construct-
ing an extension of absolute differential calculus capable of embracing tensors of a
new type, characterized by a peculiar multi-index structure.

On some occasions,13 Vitali recognized the role played by previous investigations
in influencing his research in this field. He praised with special emphasis the achieve-
ments of Ernesto Pascal for his contributions as a continuator of the path disclosed by
Ricci’s calculus and his research on general differential forms. Thus, in order to put the
emergence of Vitali’s calculus in an appropriate historical perspective, it is first neces-
sary to analyze in some details some aspects of Pascal’s theory of differential forms.

Since early 1890s, Pascal had pursued investigations that led him to develop a
generalization of the theory of differential forms.He set out to study invariant quantities
associated to higher-order differential expressions for the purpose of creating a theory
that could be regarded as an extension of both the classical integration theory of
Pfaffian forms (X = ∑

k Xkdxk) and the theory of quadratic differential forms (X̃ =∑
i j Xi jdxidx j ).
In (Pascal 1907), Pascal introduced the notion of “higher-order differential form.”

This is a complicated expression of the following type:

X(r1,...,rk ) =
r1∑

m=1

. . .

rk∑

p=1

∑

j ...i

X j1... jm ;...;i1...;i pδ
(r1)
j1... jm

. . . δ
(rk )
i1...i p

. (9)

Here, the symbols δ
(r j )
j1... jl

denote appropriate combinations of the differentials of the

variables x1, . . . , xn defined by:

δ
(r j )
j1... jm

= 1

m!
∑

( j1... jm )

∑

i1...im

[i1 . . . im]di1x j1 . . . dim x jm ,

m∑

s=1

is = r j ,

where [i1, . . . , im] are numerical coefficients to be determined. Furthermore, the
summation symbol

∑
( j1... jm ) is extended to all permutations of ( j1 . . . jm) and the

summation
∑

i1...im covers all integer partitions of r j . The differential form X(r1,...,rk )

was said by Pascal to be a general differential form of r = ∑k
i=1 ri order and k degree.

13 See (Vitali 1923b) and the next section.
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Vitali’s generalized absolute differential calculus 23

The simplest example of a differential expression of this new type was investigated
in (Pascal 1902). Here, Pascal considered the following form of second order (i.e.,
containing second-order differentials) and first degree:

X(2) =
n∑

k=1

Xkd
2xk +

n∑

i=1

n∑

j=1

Xi jdx
idx j . (10)

Here, Xk, Xi j are functions of the variables (x1, . . . , xn) that are symmetric in the
indices i, j : Xi j = X ji , i, j = 1, . . . , n. It should be observed that if Xk are taken
to be zero then X(2) is a quadratic differential form of the classical type that can
be geometrically interpreted as a metric of a Riemannian n-dimensional manifold.
En route to the search for invariants and differential parameters associated to (10),
Pascal introduced a rich set of new quantities, including a sort of generalization of the
Christoffel symbols. One should mention the following functions:

(i j) := ∂Xi

∂x j
− ∂X j

∂xi

((i j)) := ∂Xi

∂x j
− Xi j

{i j} := ∂Xi

∂x j
− ∂X j

∂xi
− 2Xi j ,

(11)

by means of which two covariant differential forms could be defined:

A = ∑n
i, j=1((i j))dx

idx j , B = ∑n
i, j=1 {i j} dxidx j . (12)

It is to be noticed that the coefficients Xk, Xi j are characterized by a specific trans-
formation law, which is different from that of covariant tensors. Indeed, by observing
that, under a change of coordinates x �→ y(x) (a diffeomorphism), one has:

d(dyk) =
n∑

s,r=1

∂2yk

∂xs∂xr
dxsdxr + ∂ yk

∂xr
d2xr ,

it can be easily verified that if Yk,Yi j denote the coefficients of X(2) with respect to
the coordinates (y1, . . . , yn), then the following relations hold true:

Xik = ∑n
l=1 Yl

∂2yl

∂xi∂xk
+ ∑n

q,t=1 Yqt
∂ yq

∂xi
∂ yt

∂xk
, i, k = 1, . . . , n;

Xk = ∑n
l=1 Yl

∂ yl

∂xk
k = 1, . . . , n.

(13)

Interestingly enough, Pascal also introduced the symbols

{i jk} := ∂2Xk

∂xi∂x j
+ ∂Xi j

∂xk
− ∂Xik

∂x j
− ∂X jk

∂xi
, i, j, k = 1 . . . , n;
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24 A. Cogliati

which are easily proven to be equal to

{i jk} = 1

2

∂

∂xi
{k j} + 1

2

∂

∂x j
{ki} − 1

2

∂

∂xk
{i j} i, j, k = 1 . . . , n. (14)

He regarded them as a generalization of the Christoffel symbols; indeed, their expres-
sion as given by (14) coincides with the classical formula for Christoffel symbols of
the first kind, computed with respect to the form B. According to Pascal, this for-
mal analogy could be exploited in order to extend the classical theory of differential
parameters to forms such as X(2).

The study of differential forms of arbitrary order r and arbitrary degree k was carried
on in a series of subsequent papers. In (Pascal 1910), a long memoir amounting to
almost one hundred pages, a systematic and comprehensive treatment of this new
theory was offered for the first time.

Two years before, the subject was the topic of a conference that Pascal delivered
on the occasion of the ICM held in Rome in 1908. The introduction to his speech
provides a clear insight into both his aims and his underlying motivations.

The aim of this contribution is to draw the attention of mathematicians to a
new theory of differential forms of arbitrary order and degree. I developed this
theory in recent years as an extension of the ancient theory of Pfaffian forms and
differential quadratic forms.
All the most important results in the realm of these two theories, whose con-
tributors are among the greatest analysts of the nineteenth century Pfaff, Jacobi,
Grassmann, Riemann, Clebsch, Lie, Lipschitz, Frobenius, Christoffel, Beltrami,
etc., are but the simplest and most obvious among other results, so far unno-
ticed, much more general and of a wider nature; the general theory about which
I am about to speak, although at first glance it might appear difficult due to the
complicated formulas that it produces. Nonetheless, with appropriate devices,
it can be rendered more manageable and thus acquire symmetry and elegance,
virtues for which I dare to ask for hospitality for this brand new theory among
the disciplines of modern analysis.14

Indeed, Pascal succeeded in developing a general theory that, in addition to provid-
ing a formidable extension of classical theories, could offer a theoretical framework in
which previously unrelated notions, such as the bilinear covariant of a Pfaffian form
and the Christoffel symbols of a quadratic differential form, could be subsumed under
a common concept.

14 Lo scopo di questa mia Comunicazione è di richiamare l’attenzione dei matematici sulla nuova teoria
delle forme differenziali di ordine e grado qualunque, che io sono andato formando in questi ultimi anni,
come estensione dell’antica teoria delle forme Pfaffiane e di quella delle forme differenziali quadratiche.
Tutti i più brillanti risultati nel campo di queste due particolari teorie al cui sviluppo sono legati i nomi dei
maggiori analisti del secolo scorso, Pfaff, Jacobi, Grassmann, Riemann, Clebsch, Lie, Lipschitz, Frobenius,
Christoffel, Beltrami, etc., non sono che i casi più semplici e più ovvii di risultati, rimasti finora inosservati,
assai più generali, e di una natura molto più ampia; e la teoria generale di cui vi parlo, per quanto a prima
vista possa apparire irta di difficoltà, per la complicazione delle formule cui sembra dar luogo, pure, con
opportuni artifizii e congegni, è capace di perdere ogni eccessiva complicazione, e di acquistare quella
simmetria e quella eleganza, che sono le doti in omaggio alle quali io mi permetto di domandare ospitalità
anche per questa nuova teoria fra i capitoli dell’Analisi moderna. (Pascal 1909, p. 138)
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Vitali’s generalized absolute differential calculus 25

To this end, the study of the transformation property of the coefficients and the
discovery of a covariant algorithm for derivation turned out to be essential.

In order to tackle the first problem, Pascal introduced the symbols (symmetric both
with respect to the indices j and h):

(
j1 . . . jm
h1 . . . hr

)

xy
, (15)

which he defined as follows.
Consider a (sufficiently regular) function F of the variables (x1, . . . , xn) and sup-

pose that the xi ’s may be regarded as functions of other variables (y1, . . . , yn). The
symbols (15) are implicitly defined (in addition to the request of symmetrywith respect
to the indices j and h) by:

∂r F

∂ yh1 . . . ∂ yhr
=

r∑

m=1

n∑

j1... jm=1

∂mF

∂x j1 . . . ∂x jm

(
j1 . . . jm
h1 . . . hr

)

xy
.

It is clear then that (15) are sums of products of the partial derivatives of x =
(x1(y), . . . , xn(y)) until the r -th order.15 As a consequence of the structure of the

differentials δ
(r j )
j1... jm

, the coefficients of X(r1,...,rk ) transform as follows under an arbi-
trary change of coordinates:

Yh1...hμ;...;l1...lπ =
μ∑

m=1

. . .

π∑

p=1

∑

j ...i

X j1... jm ;...;i1...i p
(
j1 . . . jm
h1 . . . hμ

)

xy
. . .

(
i1 . . . i p
l1 . . . lπ

)

xy

(16)
Clearly guided by an analogywith Ricci’s calculus, Pascal called a system of functions
with k sets of indices X j1... jm ;...;i1...i p characterized by the transformation law (16) a
covariant system with k sets of indices. Clearly, the usual notion of covariant system
(covariant tensor of k-th order) can be obtained by choosing r1 = . . . = rk = 1,
thus assuring that the theory of generalized differential forms comprises the classical
notion of covariant tensors too.

The above-mentioned project consisting in developing a unitary approach to differ-
ential forms of different kinds was regarded by Pascal as a priority for his research and,
at the same time, as one of the main achievement of his theoretical work. This ambi-
tious plan could be made viable thanks to a technical algorithm, called the operation of
“deducing”, which Pascal introduced in 1906. It was a sort of covariant differentiation
that allowed one to produce covariant systems with k + 1 sets of indices starting from
a given one with k sets of indices.

15 By way of an example, it is easily seen that

(
j1 j2
h1h2

)

xy
is equal to:

1

2!

(
∂x j1

∂ yh1
∂x j2

∂ yh2
+ ∂x j2

∂ yh1
∂x j1

∂ yh2

)

.
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Let X j1... jm ;...;i1,...i p be a covariant system with k set of indices; consider another
set of q indices g1 . . . gq and the corresponding partial derivative:

DX j1... jm ;...;i1,...i p = ∂q X j1... jm ;...;i1,...i p
∂xg1 . . . ∂xgq

. (17)

By following (Pascal 1910, p. 26), we introduce a simplified notation to denote the
right-hand side of (17) by defining:

j1 . . . jm; . . . ; i1, . . . i p
g1 . . . gq

:= ∂q X j1... jm ;...;i1,...i p
∂xg1 . . . ∂xgq

(18)

Now, let us construct all the partial derivatives of the (q − 1)-th order that are
obtained from (17) by “moving” each index of (g1 . . . gq) to each group of indices
( j1 . . . jm); . . . ; (i1, . . . i p), i.e.:

j1 . . . jmg1; . . . ; i1, . . . i p
g2 . . . gq

, . . . ,
j1 . . . jm; . . . ; i1, . . . i pgq

g1 . . . gq−1
(19)

We denote by �D the operation consisting in summing all the derivatives obtained in
this way from D. The operator � can be extended by linearity to sums of derivatives
DX+D′X+. . ..With these preliminaries, Pascal introduced the so called fundamental
symbols:

(( j1 . . . jm; . . . ; i1, . . . i p; g1 . . . gq)) =
q∑

k=1

(−1)k

k! ��(k)DX j1... jm ;...;i1,...i p ;

he also called the quantities (( j1 . . . jm; . . . ; i1, . . . i p; g1 . . . gq)) the q-th covariant
deduced (function) of the coefficients X j1... jm ;...;i1,...i p . The attribute “covariant” was
aptly chosen since these symbols transform according to the transformation rule that
is characteristic of a covariant system with k + 1 sets of indices.

Despite their complexity, the introduction of the fundamental symbols for the gen-
eral case of coefficients such as X j1... jm ;...;i1,...i p must have appeared quite natural.
Pascal clearly followed a reasoningby analogy. Indeed, similar expressions had already
presented themselves in previous works where Pascal’s attention had focused on the
study of differential expressions of first degree and second order.

The role of the fundamental symbols consisted mainly in producing additional
functions by means of which a thorough study of the invariant properties of forms
X(r) of first degree could be attained. Their definitions as provided in (Pascal 1910,
§10) read as follows:

(
j1 . . . jm; i1 . . . i p

)
X = (( j1 . . . jm; i1 . . . i p)) − (−1)m+p((i1 . . . i p; j1 . . . jm))

{
j1 . . . jm; i1 . . . i p

}
X = (( j1 . . . jm; i1 . . . i p)) + (−1)m+p((i1 . . . i p; j1 . . . jm))
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Vitali’s generalized absolute differential calculus 27

These quantities, dubbed principal symbols of the first and second kind, respectively,
can be seen as a direct generalization of the functions already introduced for cases
r = 1, 2. Indeed, this can easily be checked by performing the relevant computations
with respect to forms X(1),X(2).

To this end, one has first to compute the symbols ((i; j1)), ((i; j1 j2)) and then
deduce the corresponding principal ones. One easily obtained for example:

((i; j1)) = ∂Xi

∂x j1
− Xi j1 , ((i; j1 j2)) = ∂2Xi

∂x j1∂x j2
− ∂Xi j1

∂x j2
− ∂2Xi j2

∂x j1
, (20)

and consequently:

( j; i) = ∂X j

∂xi
− ∂Xi

∂x j
, (21)

( j1 j2; i) = ∂2Xi

∂x j1∂x j2
− ∂X j1i

∂x j2
− ∂X j2i

∂x j1
+ ∂X j1 j2

∂xi
; (22)

thus showing that the bilinear covariant of a differential form X(1) and the Christoffel
symbols of a quadratic differential form X(2), with Xk = 0, k = 1, . . . , n, can both
be considered as principal symbols of the first kind.

A thorough examination of Pascal’s contributions to the theory of general differen-
tial forms would go well beyond the scope of this paper. Nonetheless, in order to gain
a general idea of the motivations at the basis of his research, it is useful to mention
some of his most noteworthy results:

1. He provided an extension of the theory of Pfaff’s reduction problem, by finding
conditions for a given differential form of order r (and degree 1), in the variables
x1, . . . , xn , X(r), to be written as � · X̃ , where � is a function of n variables and
X̃ depends on n − 1 variables, only;

2. He generalized the notion of completely integrable system to a system of differ-
ential forms of arbitrary order and first degree.

These results notwithstanding, the reception of Pascal’s works in the short run
was scarce. His theory of general differential forms did not attract much interest or
even achieve a widespread appreciation. No doubt, the algorithmic complications
imposed by the high degree of generality of his treatment were judged as excessive
and inadequately balanced by the advancements that they produced. This point of view
was publicly expressed, for example, on the occasion of the two competitions for the
Royal Prize for Mathematics in 1901 and 1907. In both circumstances, Pascal was
not awarded the prize. The motivation at the basis of the negative outcome may be
summarized as followed: Pascal’s theory had still to prove its fecundity by displaying
some noteworthy application in the realm of integration theory of PDEs, specifically
second-order ones.

The following passage taken from the report of the Commission responsible for
the attribution of the 1907 prize provides a clear representation of the attitude of the
Italian mathematical milieu (or at least of a part thereof) towards Pascal’s theoretical
constructions.
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28 A. Cogliati

Pascal’s theory of higher-order differential forms is very remarkable, especially
from the formal point of view, for the great generality of the results and for
their relative and unexpected simplicity. The constant industriousness and the
singular algorithmic ability displayed by the author in the discovery of the simple
laws for invariant formations are truly admirable. By means of them, the author
solved the fundamental problems posed by this new theory. Of course, if the new
theories of differential forms constructed by Pascal show their effectiveness in
dealing with problems concerning partial differential equations of order higher
than the first, […] then the value of his research will be greatly elevated.16

Quite surprisingly, in spite of his original motivations, the techniques introduced by
Pascal first displayed and proved their fecundity in geometrical investigations rather
than in purely analytical studies of the integration theory of second-order PDEs.Aswill
be seen, it was Vitali’s merit to recognize the usefulness of Pascal’s theory in dealing
with the new problems emerging in recent developments of differential geometry.

5 Vitali’s calculus: origins and first definitions

The introduction to (Vitali 1923b), the first paper that Vitali devoted to the edification
of his calculus, contains noteworthy comments concerning the original motivation of
his work. On this occasion, he was very explicit in acknowledging the influence of
Pascal’s investigations on his own research, by praising the latter especially for his
discovery of the operation of “deducing” and the proof of its covariant character.

In this memoir, I set out to expose in a very simple way the foundations of
a generalized absolute calculus according to ideas that can be found in some
important contributions by the most illustrious professor Pascal. In these works,
whose results were collected in a valuable memoir,17 notions such those of
“deducing” and of principal symbols were discovered that are so fundamental
for this theory that one can consider Pascal as of the best continuator of Gregorio
Ricci-Curbastro.18

16 Questa teoria delle forme differenziali d’ordine superiore, costruita dal Pascal, è molto notevole, special-
mente dal punto di vista formale, per la grande generalità dei risultati e per la relativa ed inattesa semplicità
loro. È veramente ammirevole la costante operosità e la singolare abilità algoritmica spiegata dall’A. nella
scoperta delle semplici leggi per le formazioni di carattere invariantivo, col sussidio delle quali vengono
a risolversi i problemi fondamentali della nuova teoria. Certo, se le nuove teorie sulle forme differenziali
costruite dal Pascal manifesteranno la loro efficacia nella trattazione dei problemi concernenti le equazioni a
derivate parziali d’ordine superiore al 1◦ […] grandemente elevato ne verrà il valore di queste sue ricerche.
(Segre 1907, p. 421).
17 Here Vitali referred to (Pascal 1910).
18 Nella presente Memoria io mi propongo di esporre in modo molto semplice i fondamenti di un calcolo
assoluto generalizzato quale è suggerito da vari e importanti lavori del Ch.mo Prof. Ernesto Pascal.
In questi lavori, i cui risultati furono raccolti dall’Autore in una bella Memoria, sono stati trovati degli
elementi, come le dedotte e i simboli principali che sono fondamentali per questa teoria, e tanto importanti,
a mio avviso, che si può considerare il Pascal come il migliore continuatore dell’opera di Gregorio Ricci-
Curbastro. (Vitali 1923b, p. 157).
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Vitali’s generalized absolute differential calculus 29

Despite Pascal’s efforts, his calculus of differential forms had attracted little atten-
tion in the years that followed. Unsurprisingly, the reception process of his work was
bound to the fortune of Ricci’s calculus itself. It was only after the emergence of a
favorable attitude towards the latter, mainly due to the discovery of General Rela-
tivity (1915-1916), that attempts at generalization, such as those brought about by
Pascal, could be regarded as viable and even longed for. From this perspective, the
birth of Vitali’s absolute calculus can be seen as a by-product of the ongoing process
of re-evaluation of Ricci’s calculus techniques following the publications of Einstein’s
papers.

On a technical level, Vitali introduced two main innovations with respect to both
Ricci’s and Pascal’s theories. They are the use of a functional representation for man-
ifolds, which are regarded as immersed in a Hilbert space, and the recourse to a
multi-index notation that greatly simplified the execution of intricate calculations.

Possibly out of his deep interest in functional analysis, to which he had widely
contributed, Vitali chose a Hilbert space as the natural setting for the geometrical
objects he set out to study, by supposing that an n-dimensional manifold could be
described, in a sense to be explained in what follows, by giving a representative
function F(t; u1, . . . , un) ∈ L2(R). The ideawas to provide an extension of the notion
of a parametrized vector F(u1, . . . , un) ∈ R

N in terms of F(t; u1, . . . , un) ∈ L2(R).
Since L2(R) can be regarded as an infinite-dimensional generalization of RN , Vitali
considered it to be the natural ambient space for the study of manifolds. In particular,
he thought that this highly general setting could be particularly suitable for research on
projective differential properties. As for the second innovation that Vitali introduced,
a highly effective multi-index notation (Bortolotti spoke of “ingenious technique”)
allowedhim to define a generalization both of tensors and covariant derivatives thatwas
particularly useful in order to emphasize similarities with respect to Ricci’s calculus.
Starting from 1923, Vitali produced various presentations of his calculus in a series
of publications that culminated in the monograph Geometria nello spazio hilbertiano
where he provided a first systematic treatment of the subject.

A first version of the multi-index notation was introduced in (Vitali 1923b) and
later refined in his Geometria. We will mainly follow the presentation provided in
the latter. By analogy with Ricci’s classical treatment, Vitali defined his generalized
tensors (Vitali referred to them as “Pascal systems” or as “absolute systems”) as a set
of functions of the coordinates of a given manifold with covariant and contravariant
indices that transform according to prescribed laws. From a synthetic point of view
one can regard these generalized tensors as multilinear maps defined on osculating
spaces (and their dual counterpart) of a given manifold; precisely as ordinary tensors
can be regarded as multilinear maps on tangent spaces and their dual counterpart.

First examples of this general notion had been introduced a few years before Vitali’s
investigation in a number ofworks byEugenio Elia Levi and by Pascal himself. Indeed,
the coefficients of a differential form of degree k and order r are the coefficients of
a generalized tensor (to be defined later) in Vitali’s sense. In order to write down the
transformation laws of these general objects, the introduction of amulti-index notation
turned out to be essential.

Let us see some definitions proposed in (Vitali 1929), by limiting ourselves to the
ones most relevant to our approach. First, Vitali considered scalar functions, which
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he called invariant, on a manifold Vn . They are regular functions on Vn , I : Vn → R

whose representations in different coordinates systems u1, . . . , un , v1, . . . , vn , are
denoted by I [u] = I (u) = I (u(v)) = I [v]. He then introduced what he called the set
(campo) � defined as follows. Let n be a fixed positive integer and let � be the set of
combinations of elements {1, 2, . . . , n} with repetitions taken k at a time, regardless
of their order, with k = 1, 2, 3, . . .. An index is a variable taking value on �, which
is denoted by a single letter of the Greek alphabet α, β, . . .. A given value α of an
index is said to be a state of the index. Moreover, the number of digits of a given
state, denoted with ρα , is called the rank of the state. Finally, Vitali defined an index
α to be of class ν if it takes on all the states for which 1 ≤ ρα ≤ ν. By way of
example, an index α of class 2 is a variable index that can take on all values in the set
I2 := {1, 2, . . . , n, 11, 12, . . . , 1n, 22, 23, . . . , nn} ⊂ �.

In light of these definitions, Vitali introduced his own version of Pascal’s symbols

(15),
∂uβ

∂vα
, α, β ∈ �, is implicitly defined by the following equations that express

the derivatives Iα[v] := ∂r I

∂vi1 . . . ∂vir
, α = (i1, . . . , ir ) with respect to Iβ [u] =

∂s I

∂u j1 . . . ∂u js
, β = ( j1, . . . , js) ∈ �:

Iα[v] =
∑

β∈�

∂uβ

∂vα
Iβ [u],

where by definition
∂vα

∂uβ
= ∂vi

∂u j
, if α = i, β = j and

∂uβ

∂vi
≡ 0, when ρβ > 1. In

general, aswas proven in (Vitali 1929, pp. 156–158), these expressions are polynomials
in the derivatives of the functions uk = uk(v1, . . . , vn).

Finally, on the basis of these results, Vitali was able to propose his own general-
ization of Pascal’s systems. He defined19 an absolute system to be a set of functions
of (u1, . . . , un), Hβ1,...,βs

α1,...,αr that, under an arbitrary (invertible and sufficiently regular)
change of coordinates (u1, . . . , un) �→ (v1(u), . . . , vn(u)) transform as:

H̃β1,...,βs
α1,...,αr

(v) =
∑

α′,β ′
H

β ′
1,...,β

′
s

α′
1,...,α

′
r
(u)

r∏

h=1

∂uα′
h

∂vαh

r∏

k=1

∂vβh

∂uβ ′
k
, (23)

where the summation is extended to all states of indices in the classes of α′
h, β

′
k which

coincides with the classes of αh and βk , respectively. It is clear that an absolute system
is characterized by transformations laws formally identical to those that occur in the
classical Ricci calculus. Nonetheless, it should be borne in mind that the symbols

α and β actually represent groups of indices and the expressions
∂uα

∂vβ
and

∂vα

∂uβ
are

polynomials that contain derivatives until orders depending on the classes of the indices
α, β.

19 See (Vitali 1929, pp. 166). See also (Vitali 1927–1928, p. 418), for an earlier occurrence of this notion.

123



Vitali’s generalized absolute differential calculus 31

Vitali could exhibitmany examples of absolute systems by considering the notion of
amanifold immersed in theHilbert space L2(R) and the related notion of parametrized
point-function, F(u1, . . . , un; t) ∈ L2(R). An absolute system that extends the con-
cept of Riemannian metric could be introduced by means of the scalar product on
L2(R), just as in the case of a manifold immersed in a (finite-dimensional) Euclidean
space RN , whose fundamental tensor is induced by the ordinary scalar product. Vitali
defined the absolute system aα;β (his own generalization of a Riemannian metric) as
follows:

aα;β(u1, . . . , un) =
∫

R

Fα(u; t)Fβ(u; t)dt,

where α, β are derivation indices of a given class, say ν.

Operations generalizing the classical notions of summation, subtraction, and
product were introduced by Vitali without any serious difficulty, by analogy with
corresponding definitions of the Ricci calculus. As will be seen, the task of providing
an adequate definition of covariant derivative for generalized tensors turned out to be
much more problematic.

6 The search for covariant differentiation

The discovery of the notion of covariant differentiation represented a landmark in the
historical development of both Riemannian geometry and tensor calculus. Unsurpris-
ingly, the challenge consisting in finding a generalization of this notion played a major
role in the process of elaboration of Vitali’s new calculus too. However, it took some
time before this problem could find a satisfactory and general solution, which indeed
Vitali achieved only in 1930, after many unsuccessful attempts.

A first step into these investigations was taken in 1927 in a memoir presented by
Fubini to the Accademia dei Lincei. Here, Vitali succeeded in defining a covariant
differentiation for Pascal systems with class index 2 and differentiation index of class
1.

The heuristic process that Vitali might have pursued in the course of his search after
a completely general differentiation algorithm was succinctly described by Angelo
Tonolo, one of his students at Padua University, on the occasion of the obituary notice
that he wrote soon after Vitali’s death in February 1932.

By studying the normal directions that lie in the second osculating space at a
point of a manifold immersed in a Hilbert space, he obtained Ricci’s covariant
derivative. For this reason, he thought that the study of the normal directions
to the n-th osculating space at a point of the manifold, would lead him to find
the expression of the generalized derivative. And so it happened. Indeed, the
aforementioned research, guided by a suitable choice of notations, led him to
write an operation which is precisely the derivative that he was looking for.20

20 Studiando le normali che giacciono nel secondo spazio osculatore in un punto di una varietà immersa
nello spazio hilbertiano, Egli s’imbattè proprio con la derivata covariante del Calcolo di Ricci. Allora Egli
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The remarks here proposed appear convincing. We can gain a better appreciation of
Tonolo’s reconstruction by a close examination of (Vitali 1927–1928). Let us see in
some detail the main idea at the basis of Vitali’s discovery. For the sake of simplicity,
when it is possible, we avoid the use of the functional representation by limiting
ourselves to considering manifolds immersed in RN .

The starting point consisted of a new geometrical characterization of the classical
notion of covariant differentiation in terms of the normal directions to the tangent
space at a given point of an immersed manifold.

To this end, Vitali made recourse to the notion of q-th-order osculating space,
already introduced and employed byDel Pezzo in 1886.21 Let themap (u1, . . . , un) �→
F = (z1(u), . . . , zN (u)) ∈ R

N provide an analytical representation of a given
immersed manifold Vn ⊂ R

N . The partial derivatives of F , at a given point
P = (z̄1, . . . , z̄N ) with respect to the variables u1, . . . , un until a given order q,
define a linear space, called q-th-order osculating space (or, alternatively, q-th fun-
damental space), which Vitali denoted with σq . It is clear that σ1 coincides with the
tangent space of Vn at the point P .22

In order to determine all the directions X that belong to σ2 and are normal to σ1,
we can write X as a linear combination of first- and second-order derivatives of the
functions F , i.e.:

X =
n∑

i=1

λi F (1)
i +

n∑

i, j=1

λi j F (2)
i j , (24)

where F (1)
i , F (2)

i j ∈ R
N are defined by: F (1)

i := ∂F

∂ui

∣
∣
∣
∣
P
, F (2)

i j := ∂2F

∂ui∂u j

∣
∣
∣
∣
P
, i, j =

1, . . . , n. Upon scalar multiplication of both sides of (24) by F (1)
k , in virtue of the

orthogonality condition, one easily obtains:

F (1)
k · X =

n∑

i=1

λi F (1)
k · F (1)

i +
n∑

i, j=1

λi j F (1)
k · F (2)

i j = 0, k = 1 . . . , n. (25)

Since F (1)
k · F (1)

i can be regarded as the coefficients of the Riemannian metric
∑n

k,i=1 aki du
kdui induced on Vn by the Euclidean scalar product in R

N , F (1)
k · F (2)

i j

are equal to �i j,k .23 Consequently, equations (25) can be rewritten as follows:

Footnote 20 continued
pensò che lo studio delle normali all’n-esimo spazio osculatore in un punto della varietà in discorso, Lo
avrebbe condotto a trovare l’espressione della derivata generalizzata. E così avvenne, perché la ricerca
anzidetta, guidata con opportuna scelta di notazioni, Lo portò a scrivere un’operazione che è proprio la
derivata che Egli cercava. (Tonolo 1932, p. 75).
21 See (Del Pezzo 1886).
22 In (Vitali 1929), the denomination “spazio fondamentale di ordine q” was employed to refer to σq . In
this respect, one can see a letter of Enrico Bompiani to Vitali (May 1929). (Vitali 1984, p. 503).

23 Indeed, �i j,k = 1

2

[
∂

∂ui

(
F(1)
j · F(1)

k

)
+ ∂

∂u j

(
F(1)
i · F(1)

k

)
− ∂

∂uk

(
F(1)
i · F(1)

j

)]

= F(1)
k · F(2)

i j .
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n∑

i=1

λi aki +
n∑

i, j=1

λi j�i j,k = 0, (26)

or equivalently as:
λ j = −

∑

ik

�
j
ikλ

ik . (27)

This implies that the directions of σ2 that are perpendicular to σ1 are linear combina-
tions of the covariant derivatives of the scalar components of F (1)

k .
A similar procedure can be applied to determine the directions of σ3 that are orthog-

onal to σ2. By doing this, Vitali found that such directions are linear combinations of
the following expressions:

Fi jk := F (3)
jhk −

∑

α∈I2

[
jhk
α

]

F (1,2)
α (28)

where

F (1,2)
α =

⎧
⎪⎨

⎪⎩

F (1)
k = ∂F

∂uk
, α = k,

F (2)
i j = ∂2F

∂ui∂u j
, α = i j

,

[
jhk
β

]

2
=

∑

α∈I2
Aα;β

(
jhk
α

)

with

Aα;β = Aβ;α =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

F (2)
pq · F (2)

rs , if α = pq, β = rs

F (2)
pq · F (1)

r , if α = pq, β = r

F (1)
p · F (1)

r , if α = p, β = r

,

(
jhk
α

)

=
⎧
⎨

⎩

F (3)
jhk · F (2)

mn , if α = mn

F (3)
jhk · F (1)

m , if α = m

The coefficients Aα;β denote the coefficient of the inverse matrix of A = [Aα;β ].
The quantities Fi jk could be regarded as an extension of Ricci’s covariant deriva-

tion since it could be shown through a direct computation that they transform as a
third-order covariant tensor (in the classical sense). This result suggested to Vitali
a promising strategy to tackle the problem of constructing a general differentiation
algorithm suitable for generalized tensors with second class indices. Indeed, it was
precisely by following this route that Vitali succeeded in proving the following:
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Theorem 1 (Vitali 1927) Let z = F(u1, . . . , un) be an immersed manifold and let Hα

be a generalized tensor with second class index, then the system:

Mα;k :=

⎧
⎪⎪⎨

⎪⎪⎩

Mj,k := ∂Hj

∂uk
− Hjk, α = j;

Mjh;k = ∂Hjh

∂uk
− ∑

β

[
jhk
β

]

2
· Hβ, α = jh;

(29)

is a generalized tensor with two indices α and k of second and first class, respectively.

Interestingly, Vitali made use of this result also to prove the covariant character of
the coefficients Fi jk . By doing this, he was inverting, as it were, the order of the
heuristics: the new calculus could also be employed to solve problems concerning
Ricci’s classical notions.

We will briefly examine the relevant computations. To this end, let us consider the
generalized tensor Hα defined by setting:

Hα := F∗
α =

⎧
⎪⎪⎨

⎪⎪⎩

F∗(1)
k = ∂F∗

∂uk
, α = k,

F∗(2)
i j = ∂2F∗

∂ui∂u j
, α = i j,

where F∗ denotes any given scalar component of the vector F ∈ R
N . As a consequence

of theorem (1), the quantities Mα;k transform according to:

Mα;k(u) =
∑

β∈I2

n∑

r=1

M̃β;r (v(u))
∂vβ

∂uα

∂vr

∂uk
, α ∈ I2, k = 1, . . . , n. (30)

Furthermore, it is easily seen that, as a consequence of the first of (29), Mj;k vanishes
identically. Incidentally, it should be observed that the Mj;k coincide with the coeffi-
cients of the first “dedotta” of Pascal’s theory. Thus, equations (30) can be rewritten
as follows (here I ′

2 = I2 \ {1, 2, . . . , n}):

Mα;k(u) =
∑

β∈I ′
2

n∑

r=1

M̃β;r (v(u))
∂vβ

∂uα

∂vr

∂uk
, α ∈ I2, k = 1, . . . , n. (31)

By observing that, as a consequence of the definition of
∂vst

∂ui j
, the following relations

hold true:

∂vst

∂ui j
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂vs

∂ui
∂vt

∂u j
+ ∂vt

∂ui
∂vs

∂u j
, s = t

∂vs

∂ui
∂vt

∂u j
, s = t;
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one easily deduces that the Fi jk transform as:

Fi jk =
∑

r ,s,t

F̃rst
∂vr

∂ui
∂vs

∂u j

∂vt

∂uk
;

this indeed proves thatFi jk , i, j, k = 1, . . . , n are the coefficients of a covariant tensor
of the third order.

The covariant differentiation defined according to (29) was further extended first
to generalized tensors of an arbitrary number of indices of first and second class only
and then to generalized tensors of any number of indices of arbitrary class.

A further step towards the discovery of a general notion of covariant differentiation
was the extension to the case in which the derivation index is arbitrary too. In Vitali’s
words:

It seemed strange that the covariant derivative could not be defined with a deriva-
tion index of rank > 1; but only recently have my attempts in this direction been
successful. […]
Trying to simplify this proof, I have come to a surprising result. The covariant
derivative of an absolute system can be written in a concise form […] which
highlights its absolute character.
At first I saw the form to be assigned to the covariant derivative of a covariant
system Hα also for states of rank two of the derivation index, and on 5th April,
in my lecture of Higher Analysis I proved its absolute character, by taking as
a model the demonstration published in GH [i.e. (Vitali 1929)], pp. 186–187.
The synthetic form of the covariant derivative not only has the advantage of
avoiding a long proof, but also allows one to define the covariant derivative of
an absolute system with indexes and superscripts of integer classes for any state
of the derivation index chosen in the set �.24

Themain idea at the basis of this generalizationwas the introduction of an operation,
which Vitali called “reciprocity”, that extended the procedure, ubiquitously employed
in Ricci’s calculus, of raising and lowering the indices of a given tensor by means
of the coefficients of the metric. In order to follow closely the original treatment, it
is necessary to restore the functional representation employed by Vitali and thus to
consider an n−dimensional manifold as being immersed in the Hilbert space L2(R).

As a consequence of this functional setting, according to which the manifold Vn
is represented by means of an n-dimensional parametrization of points of L2(R),

24 Pareva strano che non si potesse definire il derivato covariante anche con indice di derivazione di rango
> 1; ma solo recentemente i tentativi da me fatti in questo senso hanno avuto successo. […]
Cercando di semplificare questa dimostrazione sono giunto ad un risultato sorprendente. Il derivato covari-
ante di un sistema assoluto può essere scritto in una forma sintetica […] chemette in evidenza il suo carattere
assoluto.
In un primo momento ho intravisto la forma da assegnarsi al derivato covariante di un sistema covariante
Hα anche per gli stati di rango 2 dell’indice di derivazione, ed il 5 aprile u. s. nella mia lezione di Analisi
Superiore ne ho dimostrato il carattere assoluto, prendendo come modello la dimostrazione che figura in
GH, a pp. 186–187. La forma sintetica del derivato covariante non ha solo il vantaggio di far risparmiare
una lunga dimostrazione, ma consente di definire il derivato covariante di un sistema assoluto con indici ed
apici di classi intere per qualunque stato dell’indice di derivazione scelto nel campo �. (Vitali 1930, p. 47).
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F(t, u1, . . . , un), the coefficients of the generalized metric aα;β = Fα · Fβ are to
be seen as the result of the scalar product in L2(R) of the (real) functions Fα(t) =
Fα(t, u1, . . . , un)

aα;β(u1, . . . , un) := Fα · Fβ =
∫

R

Fα(t)Fβ(t)dt,

where the indices α, β belong to the same class, say ν. Under the hypothesis that
the determinant det (aα;β) = 0, one can consider—provided a stipulation on the order
among different states of the indices is made—the inverse matrix ofA = [aα;β ]whose
coefficients Vitali denoted with the symbols a

ν

α;β , which include an indication of the

class of α, β. Precisely by means of a
ν

α;β , Vitali introduced the notion of reciprocity.

To this end he considered an absolute system Hβ1,...,βs
α1,...,αr and defined the reciprocal

system with respect to the index αh , h = 1, . . . , r (respectively, βk) as the absolute

system
∑

α′
h∈Iν aν

αh ,α
′
h Hβ1,...,βs

α1,...,α
′
h ,...,αr

(
∑

β ′
k∈Iν aβk ;β ′

k
H

β1,...,β
′
k ,...,βs

α1,...,αr ). When this proce-

dure is applied to each one of the r + s indices, the result that is obtained was called
the reciprocal system with respect to Hβ1,...,βs

α1,...,αr .
We can now analyze the definition of covariant differentiation as illustrated byVitali

in (Vitali 1930, Sect. 2). Let Hβ1,...,βs
α1,...,αr be an absolute system (αh and βk are indices

of class νh and μk , respectively, h = 1, . . . , r; k = 1, . . . , s). Consider the following
system associated to H :

Uβ1,...,βs
α1,...,αr

=
r∏

h=1

Fαh (th)
s∏

k=1

F
νk

βk (τk), (32)

and the corresponding reciprocal system V α1,...,αr
β1,...,βs

. Although Vitali did not employed
the notion of tensor product ofHilbert spaces, it is evident thatU and V can be regarded
as elements of

H := L2(R) ⊗ . . . ⊗ L2(R)
︸ ︷︷ ︸

r+s times

.

Now, let γ be any index in � and let [H , F] be defined as

∑

αh∈Iνh ,βk∈Iμk
Hβ1,...,βs

α1,...,αr
V α1,...,αr

β1,...,βs
;

Vitali introduced the covariant derivative of Hβ1,...,βs
α1,...,αr with respect to the index γ , to

be denoted with Hβ1,...,βs
α1,...,αr ,γ , as follows:

25

Hβ1,...,βs
α1,...,αr ,γ

:= (U ,�γ [H , F])H. (33)

25 Here �γ denotes the operator
∂ργ

∂ui1 . . . ∂uiργ
.
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The absolute character of this object is essentially due to the fact that [H , F] is an
invariant and U is an absolute system. Furthermore, it should be observed that this
notion is sufficiently general so that it comprehends the definitions of covariant dif-
ferentiation elaborated over the period 1927–1930.

As Vitali himself explained in the above quotation, he first discovered the form to
be attributed to the covariant differentiation in the case in which ργ = 2. However,
he provided no hint concerning the idea underlying the synthetic form expressed in
(33). It could be argued that, in this circumstance too, Vitali’s reasoning might have
proceeded by analogy starting from Ricci’s classical notion of covariant derivative,
which indeed admits a representation of type (33). In order to see this, it is sufficient
to replace L2(R) with R

N and the inner product (·, ·)H with the ordinary Euclidean
dot product in R

N . Indeed, let Vn be a Riemannian manifold immersed in RN : F :
(u1, . . . , un) → F(u) = (z1(u), . . . , zN (u)) ∈ R

N ; let Hj , j = 1, . . . , n denote a
covariant (ordinary) tensor of first order and let γ = k, k ∈ {1, 2, . . . , n}, be a first
class index. Then equation (33) can be rewritten as:

Hj,k =
N∑

t=1

∂

∂uk

⎛

⎝
n∑

r ,s=1

Hr F
t
s a

rs

⎞

⎠ Ft
j , j, k = 1, . . . , n; (34)

where Ft
s = ∂zt

∂us
and aik = ∑N

t=1 F
t
i F

t
k = Fi · Fk . It is easily proved that Hj,k

coincides with the classical covariant derivative of Hj , with respect to the metric aik .
It is interesting to observe that the structure of the definition (33) essentially coincides
with formula (8), which was suggested to Vitali by Ricci in 1924. Indeed, one first
constructs the absolute invariant [H , F], applies the ordinary differentiation operator
�γ and then restores the appropriate index structure by multiplication with respect to

U = Uβ1,...,βs
α1,...,αr .

A noteworthy consequence of this further extension was investigated in one of
Vitali’s last works, (Vitali 1932), a collection of lectures held in Bologna and gathered
by a student of his at the local University. Here Vitali set out to reinterpret the covariant
derivation that he had introduced in (Vitali 1923a) in light of the theoretical framework
of his newcalculus. In order to do that, he simply replaced the absolute systems Fα(t, u)

with a covariant system φα , α ∈ Iν , deduced from fixed orthogonal directions of a
given linear space.

However, asBortolotti aptly remarked in (Bortolotti 1933, p. 220), such an attempt at
providing a unitary treatment of the absolute parallelism introduced in (Vitali 1923a)
in the context of his generalized absolute differential calculus was not completely
successful, since the representation of the covariant derivative corresponding to the
Weitzenböck-Vitali parallelism by means of (33) remained problematic to a certain
extent.

The search for other geometrical applicationswasmore fortunate.A detailed outline
of Vitali’s contributions to both projective and metric differential geometry would be
well beyond the scope of this paper. We refer the reader to (Bortolotti 1933, Sect. 4)
which contains useful information on Vitali’s mathematical production as a whole.
We will limit ourselves to discussing an example of geometrical application leading
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38 A. Cogliati

to an analytical characterization of quasi-asymptotic lines, a special kind of curves
drawn upon surfaces that were recently introduced in (Bompiani 1914) and could be
regarded as a generalization of the classical notion of asymptotic lines.

Let us first consider the case of asymptotic lines. We will follow the discussion that
Vitali offered in (Vitali 1927–1928). To this end, let V2 be a two-dimensional manifold
(surface) immersed either in R

N or in L2(R). Let us suppose that the second-order
osculating space σ2 is a three-dimensional linear space. If V2 is represented by a
parametrized function F(u1, u2; t) ∈ L2(R), this is the vector space generated by the
elements F (1)

i , F (2)
jk , i, j, k = 1, . . . , 2. Asymptotic curves on V2 can be defined as

those curves γ : s �→ γ (s) = F(u1(s), u2(s); t) ∈ V2 whose σ2 (to be denoted by

σ
(γ )
2 ), the linear space generated by

dF

ds
,
d2F

ds2
, is contained (at each point of γ ) in the

tangent space σ1 (at corresponding points) to V2. To this end, it is both necessary and

sufficient that
∑

ik Fik
dui

ds

duk

ds
= 0, where Fik = DkF

(1)
i is the covariant derivative

of F (1)
i . Indeed, by computing the derivatives

dF

ds
,
d2F

ds2
, one easily obtains:

dF

ds
= ∑2

i=1 F
(1)
i

dui

ds
,

d2F

ds2
= ∑2

i, j=1 F
(2)
i j

dui

ds

du j

ds
+ ∑2

k=1 F
(1)
k

d2uk

ds2
.

Now, if we introduce the (ordinary) covariant derivative of Fi , Fik = F (2)
ik −

∑n
j=1 �

j
ik F

(1)
j , we get

d2F

ds2
=

2∑

i, j=1

Fi j
dui

ds

du j

ds
+

2∑

k=1

F (1)
k

(
d2uk

ds2
+ �k

il
dui

ds

dul

ds

)

;

one can conclude that asymptotic lines are indeed characterized by the condition

2∑

i, j=1

Fi j
dui

ds

du j

ds
= 0,

which is a consequence of the fact that σ (γ )
2 ⊂ σ1.

Vitali pursued a similar path in order to derive an analytical description of quasi-
asymptotic lines in the special case of a surface V2 such that dim(σ2) = 5, dim(σ3) =
6. A curve on V2 is said to be quasi-asymptotic if its third-order osculating plane σ3 is
contained in the corresponding tangent plane σ1 to V2. A reasoning similar to the one
adopted in the case of asymptotic lines, led Vitali to a characterization of these lines
as those curves s �→ γ (s) = F(u1(s), u2(s), t) for which the following equation hold
true:

123



Vitali’s generalized absolute differential calculus 39

2∑

i jk=1

Fi jk
dui

ds

du j

ds

duk

ds
= 0, (35)

where Fi jk , i, j, k = 1, . . . , n, denote the system defined by (28).

7 Further developments and concluding remarks

Despite the variety of geometrical applications investigated by Vitali and his disciples,
the power of the new calculus had still to be proved and tested in light of applications.
In this respect, noteworthy advancements were achieved in (Bortolotti 1931).

In this extensive piece of work, Bortolotti succeeded in making important improve-
ments, especially by investigating geometrical aspects of Vitali’s theory. More
precisely, he provided an extension of Vitali’s techniques to the case, not addressed by
Vitali, in which the osculating spaces σq of an n-dimensional manifold do not exhibit
the maximal dimension, i.e., dim(σq) ≤ ∑q

m=1

(n+m−1
m

)
.

Interestingly, Bortolotti cherished the hope of providing a proof of the fecundity
of Vitali’s calculus by testing its effectiveness in tackling problems in the realm of
the so-called geometrie riemanniane di specie superiore, a sort of generalization of
classical Riemannian geometry that consisted in studying the group of isometries
�m : Vn → Ṽn between two n-dimensional Riemannian manifolds (immersed in
R

N ) that preserve the curvatures, up to a given order, say (m − 1)−th, of every
curve drawn upon Vn . Isometries of this kind were said to be isometries of m−th
type. This new branch of research was initiated in (Bompiani 1914) in a successful
attempt at providing a geometrical interpretation of the conditions assuring that a given
hypersurface Vn−1 (with n ≥ 4) immersed in the n−dimensional Euclidean space Rn

admits non-trivial deformations.26

Bortolotti found out that Vitali’s calculus could be profitably applied to the study
of the analytical conditions that characterize the kind of isometries mentioned before.
Indeed, if aα;β denote the coefficient of the generalized fundamental tensor asso-
ciated to (u1, . . . , un) �→ F(u) ∈ Vn ⊂ R

N , α and β are indices such that
ρα, ρβ ≤ m and ãγ ;δ denote the corresponding coefficients of the fundamental tensor
of (ũ1, . . . , ũn) �→ F̃(ũ) ∈ Ṽn ⊂ R

N , then the necessary and sufficient conditions for
�m(u1, . . . , un) = (ũ1(u), . . . , ũn(u)) to be an isometry of the requested type can be
written as follows:

aα;β(u) =
∑

γ,δ∈Im

∂ ũγ

∂uα

∂ ũδ

∂uβ
ãγ ;δ(ũ(u)).

It is clear that for m = 1 isometries of type m are ordinary isometries of the kind
investigated by Riemann, Christoffel and Ricci.

In spite of Bortolotti’s efforts, the range of applications ofVitali’s calculus remained
somehow limited. The new techniques introduced by Vitali and later refined by Bor-
tolotti were regarded at best as an interesting tool that could nonetheless also be

26 For a first explicit definition of isometries of m-th type, m > 1, see (Bompiani 1916).
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dispensed of. In this respect, the attitude of Bompiani is particularly significant for
evaluating the impact of Vitali’s research among his contemporaries. As the following
quotation suggests, he probably considered Vitali’s calculus as an unnecessary, though
elegant, instrument for carrying out his plan to study isometries of type m > 1.

Thanks to Bortolotti, it has been shown that the proper object of Vitali’s absolute
calculus is precisely the geometry of deformations of type ν of a Vm in the normal
case (this case has been extended by Bortolotti to other cases). At the basis of the
absolute calculus there is a fundamental tensor whose coefficients are exactly the
symbols introduced by Levi and widely used by me […]. […] the transforma-
tion law of these symbols with respect to a transformation of parameters varies
according to the derivatives that appear there: these laws can be formally written
in a unique way by means of appropriate symbolic derivatives […] but still these
symbolic derivatives depend on actual derivatives of the ancient parameters with
respect to the new ones, which are of different orders for different symbols. […]
Now it is precisely this drawback that I overcame with the introduction of the
fundamental invariant forms (1919). To put it in a more geometrical form, the
difference between the two standpoints can be expressed as follows: I showed (in
1919) that while a manifold Vm undergoes a deformation of type ν the manifold
W [locus] of its osculating planes is deformed by ordinary applicability: Vitali’s
calculus deals with ordinary applicability theory, i.e., Riemannian (ordinary)
geometry of W . The covariant derivation of Vitali coincides with that of Ricci
for W .27

Bompiani did not fail to appreciate the importance ofVitali andBortolotti’s achieve-
ments. Nonetheless, he thought that the complications imposed by the cumbersome
algorithmic apparatus of the theory could be bypassed by considerations of a more
intuitive character, consisting in replacing the Riemannian manifold Vm with a higher-
dimensional object to which Ricci’s ordinary differential calculus could be applied.

In some sense, it may be said, Bompiani’s remarks reflected a general methodolog-
ical conviction asserting preference for geometrical intuition over abstract algorithmic
procedures: a point of view, tenaciously mantained, for example, by Bianchi in the

27 E’ merito del Bortolotti di aver posto bene in luce che l’oggetto proprio del calcolo assoluto del Vitali è
precisamente la geometria delle deformazioni di specie ν di una Vm qualora questa presenti il caso normale
(e quel caso è stato esteso dal Bortolotti agli altri casi). A base di quel calcolo assoluto sta un “tensore
fondamentale” i cui elementi sono esattamente i simboli introdotti dal Levi e largamente usati da me […].
[…] la legge di trasformazione di questi simboli per una trasformazione di parametri è differente a seconda
delle derivate che vi compariscono: queste varie leggi si possono formalmente scrivere in modo unico con
l’introduzione di opportune derivate simboliche […] ma rimane il fatto che queste derivate simboliche
dipendono da derivate effettive degli antichi parametri rispetto ai nuovi di ordini differenti per simboli
differenti. […]
Ora è proprio questo inconveniente che io avevo superato con l’introduzione delle forme fondamentali
invarianti (1919). In formapiù geometrica si può esporre la differenza dei punti di vista così: avevodimostrato
(dal 1919) che mentre una varietà Vm subisce una deformazione di specie ν la varietà W [luogo] dei suoi
S(ν − 1) osculatori si deforma per ordinaria applicabilità: orbene il calcolo del Vitali per la Vm rispecchia
esattamente le ordinarie applicabilità, cioè la geometria riemanniana (ordinaria) di W . La derivazione
covariante del Vitali è quella del Ricci per W . (Bompiani 1935, pp. 278-279).
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judgments he had expressed towards Ricci’s calculus some decades before, that had
been prevalent within the Italian mathematical community.28

Similar convictions had guided the work of the commission (consisting of Castel-
nuovo, Pascal, Severi and Fubini) charged with the assignment of the Royal Prize for
Mathematics (1931). While praising the whole of Vitali’s mathematical production,
the commission had to acknowledge that Vitali’s most recent investigations aimed
at providing a generalization of Ricci’s calculus were not sufficient to win him the
attribution of the prize. Indeed, in the report written by Fubini, we read:

[The commission] had to recognize that the introduction by Vitali of absolute
systems and their derivatives, while undoubtedly constituting a valuable work,
does not justify its great formal complication in view of the results that have
been obtained.29

This judgment can be seen as a further indication of the slight impact produced by
Vitali’s calculus within already existing geometrical theories. After all, in contrast to
the reception process of Ricci’s calculus, Vitali could not count on external supports
such as the one carried about by the discovery ofGeneral Relativity. This circumstance,
together with Vitali’s untimely death in February 1932, which prevented any further
advancements of the theory, inevitably relegated the calculus to a marginal condition.

Still, the historical significance and the mathematical value of Vitali’s contributions
to geometry should not be questioned. Indeed, not only do they represent an important
episode in the development of metric and projective differential geometry over the
period 1920-1935, but they also allow us to gain a more complete picture of the
scientific figure of Vitali himself. Indeed, as our analysis has suggested, they are a
testimony to Vitali’s extraordinary algorithmic skills and outstanding mathematical
creativity.
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